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Abstract: A review on the response of gradient elastic structural components, such as bars, beams, plates and shells, to 

static loading is provided. The simplified form II gradient elastic theory of Mindlin with just one elastic constant (the gra-

dient elastic modulus) in addition to the two classical elastic moduli is employed to derive the governing equations of 

equilibrium and buckling of the aforementioned structural components. All possible boundary conditions (classical and 

non-classical) are obtained with the aid of variational formulations of the problems associated with these components. 

Thus, well posed boundary value problems are solved analytically and the response of gradient elastic bars, beams, plates 

and shells to static loading is determined. In all cases, the effect of the microstructure consists of stiffening the structure, 

which results in decreasing deflections and increasing buckling loads for increasing values of the gradient elastic modulus.  
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1. INTRODUCTION 

 Classical theory of elasticity does not take into account 
the effect of the microstructure of the material and as a result 
of that this theory is characterized by the local character of 
stress and the absence of an internal length scale. However, 
for structural components or structures, such as bars, beams, 
plates or shells having extremely small overall dimensions 
comparable to the internal length scale of their material, mi-
crostructural effects are important and have to be taken into 
account when studying their mechanical behavior and re-
sponse to loading. Structures of this extremely small size 
find applications in modern nanoelectronic and nanome-
chanical devices.  

 For the above type of structures, use of generalized or 
higher-order theories of linear elasticity is necessary for the 
study of their mechanical behavior. These theories are char-
acterized by the microstructural effects of non-locality of 
stress and the existence of internal length scales, i.e., addi-
tional elastic moduli with dimensions of length. Among 
these theories, one can mention here the general elasticity 
with microstructure due to Mindlin [1], the micropolar elas-
ticity due to Eringen [2], which is similar to that of the 
Cosserat brothers [3], the couple stress elasticity due to 
Toupin [4] and Koiter [5] and the nonlocal theory of elastic-
ity due to Eringen [6]. A review of higher-order theories of 
elasticity can be found, e.g., in the book of Vardoulakis and 
Sulem [7] and the review article of Lakes [8]. 

 The most general and widely used of all these theories, 
especially during the last 15 years or so, is that version of 
Mindlin’s [1] theory associated with the second gradient of 
strain, i.e., the simplified form II theory with a strain energy  
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density depending on strain gradients. The simplified gradi-
ent elastic theory of form II due to Mindlin [1], is difficult to 
be used in practical applications as it contains five constants 
in addition to the two classical Lamé constants. For this rea-
son, only one or two constants in addition to the two Lamé 
constants are retained in the theory when applied to practical 
engineering problems. These constants represent material 
lengths related to volumetric (most widely used) and surface 
strain energy [7]. 

 In this review paper, the above gradient elasticity theory 
with just one constant (the gradient elastic modulus with 
dimensions of length) in addition to the two classical Lamé 
constants as applied to structural components, such as, bars, 
beams, plates and shells under static loading is considered. 
Only analytical works on the subject are considered with 
emphasis on the works of the authors and their co-workers. 
One can mention here the works of Altan et al. [9], Tsepoura 
et al. [10] and Papargyri-Beskou and Beskos [11] on bars 
under tension, Vardoulakis et al. [12], Aifantis [13], Papar-
gyri-Beskou et al. [14], Vardoulakis and Giannakopoulos 
[15] and Giannakopoulos and Stamoulis [16] on beams un-
der bending, buckling or torsion, Lazopoulos [17], Papar-
gyri-Beskou and Beskos [18] and Papargyri-Beskou et al. 
[19] on plates under bending including buckling and Papar-
gyri-Beskou and Beskos [20] on buckling of circular cylin-
drical shells.  

 For reasons of completeness, one can also mention in this 
introduction analytic works on static analysis of bars, beams 
and plates with material behavior based on generalized or 
higher-order linear theories of elasticity other than the simple 
gradient elastic theory of Mindlin [1]. Thus, one can mention 
the works of Ariman [21], Gauthier and Jahsman [22], 
Krishna Reddy and Venkatasubramanian [23], Yang and 
Lakes [24], Park and Lakes [25], Lakes [8, 26] and McFar-
land and Colton [27] using Cosserat / micropolar theories, 
Ellis and Smith [28], Yang and Lakes [24], Yang et al. [29], 
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Lam et al. [30], Park and Gao [31], Ma et al. [32], Kong et 
al. [33] and Tsiatas [34] using couple-stress and modified 
couple-stress theories and Pisano and Fuschi [35], Peddieson 
et al. [36], Sudak [37], Duan and Wang [38], Reddy [39], 
Reddy and Pang [40], Wang et al. [41] and Zhang et al. [42] 
using nonlocal elasticity theories.  

 In the following sections, after a brief presentation of the 
aforementioned simple gradient elasticity theory with just 
one constant in addition to the two classical elastic constants, 
the governing equations of equilibrium (including buckling) 
for gradient elastic bars, beams, plates and cylindrical shells 
are presented together with their classical and non-classical 
boundary conditions as derived with the aid of variational 
principles. Representative boundary value problems associ-
ated with the above structures under static loading are con-
sidered and the effect of microstructure on their response is 
assessed. It is found that in all cases, the effect of the micro-
structure consists of stiffening the structure and consequently 
on leading to smaller deflections and higher buckling loads.  

2. SIMPLE STRAIN GRADIENT ELASTICITY 

 The simplest possible version of the simplified form II 

theory of strain gradient linear elasticity due to Mindlin [1] 

with five constants besides the two Lamé constants is the one 

with just one constant in addition to the two Lamé constants. 

The constitutive equations for this simple theory have the 

form 

= μ  

 = 2 μ + tr            (1) 

 
μ = g

2
=

 
g

2

 
2μ

 
+ tr( )  

 In the above,  and  are the total and the classical 

Cauchy stress tensors, respectively,  is the unit tensor, μ  is 

the double stress tensor and  and  tr  are the strain tensor 

and its trace, which are expressed in terms of the displace-

ment vector u as  

  
= 1 / 2( ) u + u( )  

 tr = u            (2) 

 Furthermore, g is the volumetric strain energy gradient 

modulus or simply gradient elastic modulus, representing the 

internal or characteristic length of the material microstruc-

ture and  and μ  are the two classical Lamé moduli. One 

should note that, while 
 

, ,  and  are second-order ten-

sors, μ  is a third order tensor associated with the micro-

structure of the material.  

 When dealing with bars and beams, one has only one 

normal stress component  along the longitudinal direction, 

which, in view of Eqs (1), reads as  

 
= E g2E d2 / dx2( )            (3) 

where E is the modulus of elasticity. When dealing with 

flexural plates or shells, one has a state of plane stress and 

Eqs (1) can be written in terms of Cartesian plane coordi-

nates x and y as  
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2
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where  is the Poisson’s ratio and 
2
=

2 / x2 + 2 / y2 . 

Lamé constants  and μ  are given in terms of E and  as  

 

= E / 1+( ) 1 2( )
μ = E / 2 1+( )

           (5) 

3. GOVERNING EQUATION OF AXIAL BAR 

 The following developments are based on the work of 

Tsepoura et al. [10]. Consider a straight prismatic bar of 

constant cross section A and length L under a static distrib-

uted axial load 
 
p  creating a tensile stress  and a displace-

ment  u  along its longitudinal axis x. On the basis of Eq. (2) 

one can write the strain-displacement relation  

 = du / dx             (6) 

 The equilibrium equation along the x direction has the 

simple form  

 
A

d

dx
+ p = 0             (7) 

 Combining Eqs (3) and (6) one receives  

 
= Eu g

2
Eu            (8) 

where primes indicate differentiation with respect to x. Sub-

stitution of Eq. (8) in Eq. (7) results in the governing equilib-

rium equation 

 
AE u g

2
u

IV( ) + p = 0            (9) 

 The above equation for g = 0 reduces to the classical 

case.  

 The boundary conditions of the axial bar problem, as 

obtained through a variational principle [10], satisfy the 

equations  

 

P L( ) AE u L( ) g
2
u L( ) u L( )

P 0( ) AE u 0( ) g
2
u 0( ) u 0( ) = 0

       (10) 

 

R L( ) AEg
2
u L( ) u L( )

R 0( ) AEg
2
u 0( ) u 0( ) = 0

 

where P and R are the classical axial force and the double 

axial force, respectively. 

 For example, if one assumes the two classical boundary 

conditions to be u(0) and u(L) prescribed and the corre-

sponding non-classical ones to be 
 
u 0( )  and 

 
u L( )  pre-
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scribed, then 
 

u 0( ) = u L( ) = 0  and 
 

u 0( ) = u L( ) = 0  

and Eqs (10) are all satisfied. In view of Eqs (10), one can 

observe that when dealing with the classical boundary condi-

tions either u or P have to be prescribed at x=0 and x=L, 

while for the case of non-classical ones either u or R have 

to be prescribed at x=0 and x=L. 

4. GOVERNING EQUATION OF FLEXURAL BEAM 

 The following developments are based on the work of 

Papargyri-Beskou et al. [14]. Consider a Bernoulli-Euler 

prismatic flexural beam of constant cross-section A, moment 

of inertia I and length L under a distributed lateral load q(x) 

along its longitudinal axis x, which undergoes a lateral de-

flection 
 

x( ) . The strain-displacement relation reads  

 = zd
2

/ dx
2           (11) 

where  is the normal to the cross-section strain and z is 

measured along the height of the cross-section of the beam. 

 The equilibrium equations require that the axial force 

resultant be zero and the bending moment due to the normal 

to the cross-section stress  to be equal to the external mo-

ment M, i.e.,  

 
dA = 0 zdA = M

AA

        (12) 

 The first of Eqs (12) indicates that the axis x is a centroi-

dal one, while the second one with the aid of Eqs (3) and 

(11) and the fact that the cross-sectional moment of inertia 

 
I = z

2
dA

A

 yields  

 
EI + g

2 IV( ) = M          (13) 

 Taking into account that  dM / dx = V  and 
 
dV / dx = q , 

where V is the shear force, one finally obtains from (13), the 

governing equation of equilibrium in the form  

 
EI

IV
g

2 VI( ) + q = 0          (14) 

 The above equation for g=0 reduces to the classical case 

of beam bending. 

 In case there is only a constant axial compressive force P 

acting on the beam, one has q=0 and can easily obtain with 

the aid of Eq. (14) the beam buckling governing equation in 

the form [14] 

 
EI

IV
g

2 VI( ) + P = 0         (15) 

 The boundary conditions of the flexural beam problem, 

as obtained through a variational principle [14], satisfy the 

equations  

 

V L( ) EI L( ) g
2 V

L( ) L( )

V 0( ) EI 0( ) g
2 V

0( ) 0( ) = 0

 

 

M L( ) EI L( ) g
2 IV

L( ) L( )

M 0( ) EI 0( ) g
2 IV

0( ) 0( ) = 0
 

 

m L( ) EIg
2

L( ) L( )

m 0( ) EIg
2

0( ) 0( ) = 0
        (16) 

where m is the double bending moment. For example, if one 

assumes the four classical boundary conditions to be 

 
0( ) , L( ) , 0( )  and 

 
L( )  prescribed and the corre-

sponding non-classical ones to be 
 

0( )  and 
 

L( )  pre-

scribed, then 
 

0( ) = L( ) = 0 , 
 

0( ) = L( ) = 0,  

 
0( ) = L( ) = 0  and Eqs (16) are all satisfied. In view 

of Eqs (16) one can observe that, when dealing with the clas-

sical boundary conditions, either the deflection  or the 

shear forces 
 
V = EI g

2 V( )  and the strain  or the 

bending moments 
 
M = EI g

2 IV( )  at the boundary of 

the beam have to be specified. For the case of the non-

classical boundary conditions, one has to specify either the 

boundary strain gradient  or the boundary double mo-

ments 
 
m = EIg

2
.  

 When there is an axial compressive force P acting on the 

beam, the above Eqs (16) are modified by adding the follow-

ing terms in the left hand side of the first of these equations: 

 
P L( ) L( ) + P 0( ) 0( )  [10]. 

5. GOVERNING EQUATION OF FLEXURAL PLATE 

 The following developments are based on the work of 

Papargyri-Beskou and Beskos [18]. Consider a Kirchhoff 

flat, thin, flexural plate of constant thickness h geometrically 

described by its middle surface (x,y). The plate experiences a 

lateral deflection w = w(x,y) along the normal axis z to the 

plane of the plate due to a lateral distributed static load q = 

q(x,y). For this plate one can write the strain-displacement 

relations  
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2
w

x
2

,
yy
= z

2
w

y
2

,
xy
= z

2
w

x y
      (17) 

the equilibrium equations  

 

2
M

x

x
2
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2
M

y

y
2

2

2
M

xy

x y
+ q = 0         (18) 

and the moment-stress relations  

 

M
x
=

xxh/2

h/2

z d z, M
y
=

yy
z d z

h/2

h/2

,

M
xy
=

xy
z d z

h/2

h/2
       (19) 

where 
 xx

,
yy

 are normal and 
 xy

 shear stresses and 

 
M

x
, M

y
 are bending and 

 
M

xy
 twisting moments.  

 Introducing Eqs (17) into Eqs (4) and the resulting ex-

pressions into Eqs (19), one can obtain the moment-

displacement relations in the form  
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Mx = D
2w
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y2
+ g2D
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Mxy = D 1( )
2w

x y
g2D 1( )

4w

x3 y
+

4w

y3 x
, 

where the flexural rigidity 
 
D = Eh

3
/ 12 1

2( ) . Thus, fi-

nally, introducing Eqs (20) into Eq. (18), one can obtain the 

governing equation of equilibrium in the form 

D 4w g2D 6w = q          (21) 

where 
 

4
w =

2 2
w( )  and 

 

6
w =

2 4
w( ) . 

 The above equation for g=0 reduces to the classical case 

of plate bending. 

 In case q=0 and the only loading consists of the in-plane 

compressive forces 
 
P

x
, P

y
 and shear force 

 
P

xy
,  one can eas-

ily obtain with the aid of Eq. (21) the plate buckling govern-

ing equation in the form [18] 
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w g

2
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w + P
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2
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x
2
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2
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2
+ 2P

xy

2
w

x y
= 0    (22) 

 The boundary conditions of the plate bending problem 

can be obtained through a variational principle [19]. How-

ever, they are not repeated here due to their complexity. 

They basically involve prescribed 
 
w, w / n , total shear 

forces V and normal bending moments 
 
M

n
 (classical 

boundary conditions involving though terms with g) as well 

as  
2
w / n

2 and higher order (double) moments 
 
M

nn
 (non-

classical boundary conditions), with the n being the normal 

to the boundary unit vector. These conditions can be all of 

deformation type, all of action type or appropriate combina-

tions of the two types. For example, for a clamped all around 

circular plate one has the classical w = 0 and  w / n = 0  

and the non-classical  
2
w / n

2
= 0  boundary conditions. 

For a simply supported all around circular plate one has the 

classical w = 0 and 
 
M

n
= 0  and the non-classical 

 
2
w / n

2
= 0  or 

 
M

nn
= 0  boundary conditions. 

6. GOVERNING EQUATION OF CYLINDRICAL 

SHELL 

 The following developments are based on the work of 

Papargyri-Beskou and Beskos [20]. Consider a circular cy-

lindrical thin shell element of constant radius R and thick-

ness h, which is geometrically described by its middle sur-

face (x,y) and experiences displacements u,  and w along 

the axes x, y and z, respectively due to a compressive axial 

force 
 
P

x
. The x axis is along the axis of the cylinder, the y 

axis along the circumferential direction, while the z axis 

along the radial direction.  

 On the basis of Donnell’s theory of circular cylindrical 

thin shells one has the strain-displacement relations 
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x
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the equilibrium equations  
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and the force-stress and moment-stress relations 
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where 
 
N

x
, N

y
 are the in-plane normal and 

 
N

xy
 the in-plane 

shearing total forces, 
 
M

x
, M

y
 are the bending moments and 

 
M

xy
 the twisting moments and 

 
N

x
= N

x
+ P

x
.  

 Introducing Eqs (23) into Eqs (4) and the resulting equa-

tions into Eqs (25) one can obtain the force-displacement 

relations 
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and the moment-displacement relations (20). Introducing 

Eqs (26) and (20) into the equilibrium equations (24) and 

neglecting higher order terms, one can obtain three coupled 

equations of equilibrium in terms of u,  and w. Finally, 

elimination of u and  between the above three equations 

results in the governing equation of equilibrium in terms of 

w of the form  

 
D 8w P

x

4
4w

x2
+
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4w

x4
2g2D w10

+ g2P
x

6
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g2 2Eh
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x6
+

6w

x4 y2
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where 
 

8
w =

2 6
w( )  and 

 

10
w =

2 8
w( ) . The above 

equation for g = 0 reduces to the classical case of buckling of 

circular cylindrical thin shells. 
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 Concerning the boundary conditions of the static circular 

cylindrical shell problem, no variational principle has been 

established as yet so as to have all possible of these condi-

tions. However, for simple problems one can make reason-

able assumptions about them and proceed with the solution 

as shown in the examples section.  

7. APPLICATION EXAMPLES 

 In this section some representative examples are pre-

sented taken from previous works of the authors and their 

co-workers in order to assess the effect of the microstructure 

on the response of gradient elastic components to static load-

ing. 

7.1. Axial Bar in Tension [10] 

 Consider a bar of length L, built-in at one end (x=0) and 

under an axial static load P at the other end (x=L). Thus, the 

classical boundary conditions are  

 
u 0( ) = 0 , AE u L( ) g

2
u L( ) = P        (28) 

while the non-classical ones are assumed with the aid of Eqs 

(10) to be  

 
R 0( ) = AEg

2
u 0( ) = 0 , u L( ) = 0

       (29) 

 The solution of Eq. (9) with q=0 is 

 
u x( ) = c

1
ex/g

+ c
2
e x/g

+ c
3
x + c

4
        (30) 

where the constants 
1 4

c c  are obtained with the aid of the 

boundary conditions (28) and (29) and have the form  

 

c
1
= c

2
= g / L( ) o

P / AE( ) / 2cosh L / g( ) ,

c
3
= P / AE, c

4
= 0

      (31) 

 Fig. (1) shows the variation of 
 
u = u / PL / AE( )  versus 

the dimensionless distance 
 
= x / L  for various values of 

g/L for the case of 
 o

= 0.6 . One can observe that the re-

sponse  u  decreases for increasing values of g/L and this 

implies that the microstructural effect consists of stiffening 

the bar.  

 

Fig. (1). Axial displacement of the bar along its length for various 

values of  g / L.  

7.2. Bending and Buckling of a Beam [14] 

 Consider a cantilever beam of length L with its built-in 

end at x=0 under a static uniformly distributed vertical load 

q. Thus, the classical boundary conditions are  

 
0( ) = 0( ) = 0, M L( ) = V L( ) = 0        (32) 

while the non-classical ones are assumed with the aid of Eqs 

(16) to be  

 
0( ) = L( ) = 0          (33) 

 The solution of Eq. (14) is  

 

x( ) = c
1
x3

+ c
2
x2

+ c
3
x + c

4
+ c

5
g4

sinh x / g( ) + c
6
g4 cosh x / g( ) q / 24EI( )x4

       (34) 

where the constants 
 
c

1
c

6
 are obtained with the aid of 

boundary conditions (32) and (33) and have the form  

 

c
1
= qL / 6EI , c

2
= qL2 / 4EI( ) 2 g / L( )

2

+1

c
3
= qL3 / 2EI( ) g / L( ) 2 g / L( )

2

+1 tanh L / g( )
 

 
c

4
= qL4 / 2EI( ) g / L( )

2

2 g / L( )
2

+1        (35) 

 

c
5
= q / 2EI( ) 2 + L / g( )

2

tanh L / g( )

c
6
= q / 2EI( ) 2 + L / g( )

2
 

 Fig. (2) shows the variation of the lateral displacement  

versus the non-dimensional distance 
 
= x / L  for various 

values of g/L. It is observed that the response  decreases 

for increasing values of g/L, and this implies that the micros-

ructural effect consists of stiffening the beam.  

 

Fig. (2). Lateral deflection of the cantilever beam along its length 

for various values of  g / L.  

 Consider now a simply supported beam under the action 

of an axial compressive force P. The solution of the govern-

ing equation (15) of this buckling problem is  

�
���

���

���

���

���

���
��� ��� ��� ��� ��� ��� ��

��	

��

���
���
�����


��


��


��


��
 �

�
�
�
�

�
������������������

����

����

����

����

����

����

����

�

��
 �

����	
����
���	
���

�

��
 �
��
 �

��
 �
��
 �



70    The Open Mechanics Journal, 2010, Volume 4 Papargyri-Beskou and Beskos 

 

x( ) = c
1
x + c

2
x

2
+ c

3
sin x + c

4

cos x + c
5
sinh x + c

6
cosh x

        (36) 

where  

 

= 1 / 2g( ) 1+ 1+ 4g2k2

= 1 / 2g( ) 1+ 1+ 4g2k2

k2
= P / EI

        (37) 

and 
 
c

1
c

6
 are constants to be determined with the aid of the 

boundary conditions. The classical boundary conditions are  

 
0( ) = L( ) = 0, M 0( ) = M L( ) = 0        (38) 

 while the non-classical ones are assumed with the aid of 

the modified Eqs (16) to be  

 
0( ) = L( ) = 0           (39) 

 Thus, use of Eqs (38) and (39) in (36) results in  

 
c

1
= c

2
= c

4
= c

5
= c

6
= 0          (40) 

 
x( ) = c

3
sin x            (41) 

 
sin L = 0           (42) 

 Equation (42) is used to obtain the buckling load in the 

form  

 cr
/

cr

o
= 1+ 2 g / L( )

2

         (43) 

where 
 cr

o
=

2
EI / L

2
 is the classical buckling load. Fig. (3) 

depicts the variation of 
 cr

/
cr

o
 versus 

 

2 g / L( )
2

 and 

shows that the buckling load increases for increasing values 

of g/L. This is in agreement with the previously observed 

stiffening effect of the microstructure. 

 

Fig. (3). Buckling (critical) load of the simply supported beam ver-

sus 
 

2 g / L( )
2

.  

7.3. Bending and Buckling of a Plate [18, 19] 

 Consider a simply supported all around rectangular plate 

with sides a and b along the x and y directions respectively, 

subjected to a lateral uniformly distributed load q. The clas-

sical boundary conditions of the problem are  

w = 0, Mx = 0  at x = 0, a        (44) 

w = 0, My = 0  at y = 0, b 

where the moments Mx and My are given in terms of the de-

rivatives of w by Eqs (20). The non-classical boundary con-

ditions are assumed with the aid of [19] to be of the type 

 
2
w / n

2
= 0  at all sides of the plate, i.e., as  

wxx = 0, at x = 0, a         (45) 

wyy = 0, at y = 0, b 

where subscripts indicate differentiation. In addition, on 

physical grounds, one has that  

wyy = 0 at x = 0, a          (46) 

wxx = 0 at y = 0, b 

meaning that the curvature along any side is zero. 

 A solution of the governing equation (21) is assumed of 

the form  

 

w =

m=1

W
mn

sin
m x

a
sin

n y

bn=1

        (47) 

 Because of the above form of w, the conditions of w=0 at 

all sides are automatically satisfied. Furthermore, one can 

observe that even order derivatives of w with respect to x or 

y have the same form as w in (47) and this implies that  

wxxxx = wyyyy =  wxxyy = 0  at x = 0, a       (48) 

wyyyy = wxxxx = wyyxx at y = 0, b 

 In view of Eqs (45), (46) and (48), one can see from Eq. 

(20) that conditions Mx = 0 and My = 0 in (44) are identically 

satisfied by the chosen form of w. Thus, in conclusion, the 

expression (47) for w satisfies automatically all boundary 

conditions.  

 Assuming that load q can be expressed as  

 

q =

m=1

q
mn

sin
m x

a
sin

n y

bn=1

        (49) 

one can easily find by substituting Eqs (47) and (49) in (21) 

that  

 

W
mn

= q
mn

/ D
m2 2

a2
+

n2 2

b2

2

+ g2 m2 2

a2
+

n2 2

b2

3

 (50) 

 For the special case of a square plate with b = a and m = 

n = 1 one can obtain from Eqs (47) and (50) the normalized 

central deflection 
11

w  as  

 
w

11
/ w

11

c
= 1/ 1+ 2 2 g / a( )

2

        (51) 
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where 
 
w

11

c
 corresponds to the classical case (g = 0). Fig. (4) 

depicts 
 
w

11
/ w

11

c
 versus g/a and shows that the deflection 

decreases for increasing values of g/a, again demonstrating 

the stiffening effect of the microstructure.  

 

Fig. (4). Central deflection of the simply supported square plate 

versus 
 

g / a( )
2

.  

 Consider now the buckling problem of the previous 

square plate with b=a and q=0 as described by the governing 

equation (22) with 
 
P

y
= P

xy
= 0 . Assuming again a solution 

of the form (47) one can easily find out from (22) that the 

buckling load 
 
P

cr
 is  

 
P

cr
/ P

cr

o
= 1+ 2 g / a( )

2

         (52) 

where 
 
P

cr

o
 corresponds to the classical case (g=0). Fig. (5) 

depicts Eq. (52) and shows that 
 
P

cr
 increases for increasing 

values of g/a, exactly as in the case of beams, again indicat-

ing that the microstructural effect results in stiffening of the 

plate. 

 

Fig. (5). Buckling (critical) load of the simply supported square 

plate versus 
 

g / a( )
2

.  

7.4. Buckling of a Circular Cylindrical Shell [20] 

 Consider the buckling problem of the circular cylindrical 

shell of section 6. It is assumed that the shell has a length L 

and is simply supported at both ends x=0 and x=L. The clas-

sical boundary conditions of the problem are  

w = 0, Mx = 0  at x = 0, L        (53) 

where Mx is given by Eq. (20)1. On physical grounds one 

also has  

wyy = 0  at x = 0, L         (54) 

 Non-classical boundary conditions would normally in-

volve prescribed values for higher order derivatives of w 

and/or higher order moments at the two ends x = 0, L. Since 

higher order moments are expressible in terms of higher or-

der derivatives of w, all boundary conditions can be ex-

pressed in terms of higher order derivatives of w. Here these 

conditions are assumed to be  

wxx = 0 at x = 0, L         (55) 

 In accordance with the classical case, a solution of Eq. 

(27) is assumed of the form  

 
w = w

o
sin

m x

L
sin

y

L
         (56) 

where wo denotes the displacement amplitude and  

 
= nL / R           (57) 

with m and n positive integers. For the above expression (56) 

for w one has that w and all second and fourth order deriva-

tives of w become zero at x = 0, L meaning that the assumed 

solution w satisfies all boundary conditions (classical and 

non-classical) automatically. Furthermore, the assumed w 

works with the governing equation (27) which consists of 

only even order derivatives of w. Indeed, substitution of w in 

Eq. (27) results in the expression  

 

K
x
=

m
2
+

2( )
2

m
2

1+ g
2 2

m
2
+

2( )
+

Z
2
m

2

m
2
+

2( )
2

1+ g
2 2

m
2
+

2( )
+

 

 

+2g
2 2

m
2
+

2( )
3

m
2

1+ g
2 2

m
2
+

2( )
+ 2g

2 2

Z
2

m
4
+

4( )
m

2
+

2( )
2

1+ g
2 2

m
2
+

2( )

          (58) 

where 

 
Z =

2 3
2

L2

Rh
1 v2 , K

x
=

x
hL2

D 2
, g = g / L       (59) 

with 
 
P

x
=

x
h . For 

 
g = 0  one recovers the classical 

 
K

x

c
. 

In order to find the critical value of 
 
P

x
 or equivalently Kx 
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one has to determine the minimum of the function Kx = Kx 

 
m, or n( ) . This is accomplished numerically for the repre-

sentative case of a shell with h = R/200, L = 5R and v = 0.3. 

Fig. (6) depicts the ratio 
 
K

x

m
/ K

x

mc
 versus 

 
g = g / L , where 

the superscript m means minimum and c classical. It is ob-

served that the buckling load increases for increasing values 

of the microstructural parameter 
 
g  as in the cases of beams 

and plates. However, whereas in beams and plates this ratio 

increases without bound for large values of g/L, in circular 

cylindrical shells this ratio attains a finite value. This indi-

cates that the stiffening effect due to the microstructure is 

bounded.  

 

Fig. (6). Buckling (critical) load of the simply supported circular 

cylindrical shell versus  g / L.  

8. QUALITATIVE COMPARISONS WITH OTHER 
HIGHER-ORDER THEORIES 

 On the basis of all the aforementioned examples and oth-
ers reported in other works dealing with gradient elastic-
ity([8, 9, 12, 13, 15-17]), one can conclude that for the sim-
ple gradient elasticity theories, increasing values of the gra-
dient coefficient, which manifests macroscopically the mi-
crostructural effects, lead to the stiffening of the structure 
and hence to lower deflections and higher buckling loads 
with respect to the classical case.  

 It is now interesting to observe what is the effect of the 
microstructure on the static response of bars, beams and 
plates on the basis of other higher-order theories. Thus, it is 
easy to see by looking, e.g., at references [21-27] and [28-
34], that the microstructural effect on the basis of Cosserat / 
micropolar and couple-stress theories, respectively, consists 
of stiffening the structure and hence lowering deflections and 
increasing buckling loads, exactly as in the case of the sim-
ple gradient elasticity theory. On the other hand, it is also 
easy to see by looking at references [35-42], that the micro-
structural effect on the basis of the nonlocal theory of elastic-
ity consists of making the structure more flexible and hence 
increasing deflections and lowering buckling loads.  

 The above observations have also been made in particu-
lar cases by, e.g., Papargyri-Beskou et al. [19] when compar-
ing the response of gradient elastic plates with that of cou-

ple-stress and micropolar elastic plates [28, 21] and Papar-
gyri-Beskou and Beskos [20] when comparing buckling of 
gradient elastic shells and beams with that of nonlocal beams 
[37]. 

9. CONCLUSIONS 

On the basis of the results of the previous sections the fol-
lowing conclusions can be stated: 

1) When the internal length of the material microstruc-
ture of a linear elastic bar, beam, plate or circular cy-
lindrical shell is comparable to the overall geometry 
of that structure, use of higher order elasticity theories 
is necessary. In this work, the simple gradient elastic-
ity theory with just one constant (gradient coefficient 
or internal length) besides the two classical elastic 
constants is successfully employed. 

2) The governing equations of equilibrium for gradient 
elastic bars, beams, plates and circular cylindrical 
shells are derived and found to be ordinary (for bars 
and beams) or partial (for plates and shells) differen-
tial equations of an order which is higher by two than 
in the corresponding classical cases. As a result of 
that, one expects additional non-classical boundary 
conditions to the classical ones for a well posed 
boundary value problem. All possible boundary con-
ditions (classical and non-classical) can be rationally 
obtained with the aid of variational principles. 

3) The solution of representative boundary value prob-
lems involving the static response and buckling load 
of gradient elastic bars, beam, plates and circular cy-
lindrical shells demonstrates that the effect of the mi-
crostructure consists of stiffening these structures, 
which thus, exhibit lower deflections and higher 
buckling loads.  

4) Qualitative comparisons of the results of the simple 
gradient elastic theory used here against those of 
other higher-order elastic theories on the basis of the 
static response of bars, beams and plates, reveal that 
the simple gradient elastic theory produces results in 
agreement with those of the couple-stress and mi-
cropolar elastic theories and exactly opposite with 
those of the nonlocal elasticity theory.  
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