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Abstract: The derivation is given of the combined bi-axial bending, compression and shear strength of timber beams. As 
for other materials the elastic–full plastic limit design approach applies, which is known to precisely explain and predict 
uniaxial bending strength behaviour.  

The derivation is based on choosing the location of the neutral line. This provides the stress distribution in the beam cross 
section in the ultimate state for that case, making it possible to calculate the associated ultimate bending moments in both 
main directions and ultimate normal- and shear force. The derived general equations are simplified to possible elementary 
design equations, applicable for building regulation.  
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1. INTRODUCTION 

As known, timber beams behaves quasi isotropic for the 
loading case of bending, compression with shear up to the 
ultimate state [1] and the common beam theory can be ap-
plied. The fictive bending strength mf , based on the line-
arized bending stress in the failure state, given in [2], only 
applies for rectangular cross-sections and for the most ele-
mentary loading case. For combined loading cases and to 
explain measurements, the elastic-full plastic diagram has to 
be used as shown e.g. in [3], where the derivation is given of 
the uniaxial bending, compression and shear strength of tim-
ber beams. For profiles this elastic-plastic approach has to be 
applied to obtain the necessary profile factors on the fictive 
linear bending strength mf . The elastic-full plastic approach 
is the basis for limit design and applies for all materials and 
it is extensively shown also for other materials as steel and 
concrete [4] to be sufficient for the real strength prediction. 
For wood this necessary design method was already gener-
ally known and widely applied since 1930 (see [5]). Al-
though necessary as basis for stability design and for the 
prescribed calculable reliability, bi-axial bending strength 
combined with compression and shear loading is never de-
termined mathematically before and therefore is given here 
to correct this omission.  

The elastic-plastic stress diagram, with a negligible plas-
tic range for tension, applied in the figures below, represents 
an admissible equilibrium system, satisfying equilibrium and 
boundary conditions, violating nowhere the yield criterion, 
and thus is lower bound solution. The highest lower bound 
solution is equal to the real strength and this is reached in this 
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case when the neutral line is a straight line and when unlimited 
flow in pure compression is possible, thus when the shear 
stress is carried in the elastic part of the cross section.  

Thus as confirmed in [3], the uniaxial ultimate combined 
bending-compression strength is determined by the ultimate 
tensile stress tf  and by unlimited “flow” in compression at 
the flow compression stress cf . Bending failure thus always 
is an ultimate tension failure at tf . This therefore is the start-
ing point for the derivations in Section 2 and is an improve-
ment with respect to the old model, applied in [6], which was 
based on a limited ultimate compression strain and therefore 
did not fit precisely to the data.  

The derivations of Section 2 are in principle based on 
choosing the location of the neutral line and calculate the 
associated ultimate bending moments and normal and shear 
forces. There are three cases to regard for the location of the 
neutral line. The neutral line may go through two opposite 
planes of the cross section as given in Fig. (1), or the neutral 
line goes through two adjacent planes, at the tension side or 
at the compression side as given by respectively Fig. (6 and 
7). Mathematically simpler is not to choose the location of the 
neutral line but of the parallel border line of the full plastic 
compression area of the cross section as done in the following.  

2. BI-AXIAL BENDING STRENGTH CASES  

2.1. Dominating Bending in the Stiff Direction ( Y ! b ; 

 Z ! h  in Fig. 1)  

The ultimate state of the determining cross-section of a 
beam loaded under biaxial bending is given in Figs. (1, 6 and 
7). The line EF in Fig. (1) is the boundary of the full plastic, 
ultimate compression strength area of the cross-section of a 
beam. In Fig. (1) an equilibrium state is given of a beam with 
dimension b and h, loaded in “double” bending. For the 
analysis, the bending stresses of the ultimate state are re-
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garded to be a superposition of compression force 
u cN f bh=  of the uniform compression stress cf  over the 

entire cross-section and a tension force by the linear increas-
ing tensile stresses in the plane ABEF with a maximal tensile 
stress t cf f+  in point A. 

In Fig. (1) is: !1 = line BC, !2 = line AD, !3 = line BE, !4 
= line AG. Then: 
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2.1.1. Normal Forces  

The tensile stress at point B is, using eq.(1): 
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The total tensile force T consists of the sum of stresses 
within the stress pyramid of 1T  in the center of gravity of this 
stress pyramid above plane ABG with maximal stress at A of 

t c Bf f !+ "  and the part 2T  above plane ABG, below the 
stress pyramid 1T  with constant stress B!  and finally of 3T  
above plane BEFG, with a linear increasing stress to B!  at 
points B and G. Then is, using eq.(1) and (2):  
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Thus, the ultimate value of T is: 
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The ultimate normal force uN , with (for convenience) a 
positive sign for compression, is: 
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where /t cs f f= . Thus, with the maximal possible value of 
uN  is, with .u m cN f bh= :  
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For uniaxial bending in the stiff direction, Y !"  (or: 
/ 0b Y ! ), this equation agrees with Eq. (2) of [3], where it 

was shown that the theory precisely fits the data.  

Because of the boundary conditions of the equations of 
Section 2.1: Y b! ; Z h!  is: ( ),1 / 1 / 2u u mN N s! ! " " , (9) 
with a tension limit (negative sign) when 1s > , for the equa-
tions of Section 2.1.  

2.1.2. Bending Moments  

The bending moment by 1 2 3T T T T= + + , according to 
eq. (3) to (6), with respect to the resultant compression force 

,u m cN f bh= , thus with respect to the center of the cross-
section of the beam, is: in the stiff direction: 

( ) ( ) ( )1 4 2 4 3 4 3/ 2 / 4 / 2 / 3 / 2 / 2 / 3yM T h T h T h= ! + ! + ! ! =! ! ! !  

1 4 2 4 3 4 3/ 2 / 4 / 3 ( / 2 / 3)T h T T T= ! " " " ! +! ! ! !  (10) 

and in the weak direction: 

( ) ( )1 2 1 2/ 2 / 4 / 2 / 3 0 / 4 / 6zM T b b T b b T b T b= ! + ! + = +  (11) 

Thus, using eqs.(1 to 6): 
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or, by substitution of Z according to Eq.(8), this equation 
becomes: 
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By substitution of Z according to Eq.(8), Eq.(14) be-
comes: 
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For Y !" , 0zM =  as follows from Eq. (14) or (15) 
and thus uniaxial bending occurs and Eq. (8) then becomes: 
( ) ,1 / (2 ) 1 /u u ms Z h N N+ = ! .  

When this is substituted in Eq. (12) for Y !" , the 
uniaxial bending strength becomes:  
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as found before in [3] based on the data of [6]. 

 

Fig. (1). Compression with bi-axial bending. 
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The fictive linear elastic design bending stress, applied in 
the Building Codes, thus is: 
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which is equal to the uniaxial bending strength mf  when 

0N = , Thus when: 
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given in Fig. (2). In [3], the value of 1.3s =  was found for 
the mean strength, while 2s =  for the 95th percentile and 

0.77s =  for the 5th percentile of the uniaxial combined 
bending - compression strength, given in Figs. (3, 4 and 5) of 
[3], where 26 /u mm M f bh=  and /u cn N f bh= . These val-
ues are based on the data of [6] and apply for standard cli-
mate conditions. Important is, that these values of s are inde-
pendent of the load-combination, showing that there is no 
volume effect due to tensile stress distribution but only for 
volume alone. This is explained by a decrease of quality with 
volume increase. This also explains why by not brittle com-
pression failure a volume effect is possible (as reported in 
literature). 

According to the boundary conditions, the equations of Sec-
tion 2.1.2 apply for:  
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2.1.3. Shear Force  

The total ultimate resulting shear force uV  
  

= V
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2
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y

2( )  in 
the elastic region of the cross section is: 
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based on the parabolic shear stress distribution in the elastic 
region. The possible range of uV is: 0 2 / 3u vV f bh! !  for all 
cases of Section 2.1.  

Substitution of Z of Eq.(8) into Eq.(20) gives: 
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or with uniaxial 0,V
!

 according to Eq.(23): 
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The shear strength 0,V
!

 is determined at ultimate uniaxial 
bending, for N = 0 and Y !"  and is given for design as a 
fictive linear elastic parabolic stress distribution over the 
total depth h. according to Fig. (2). Thus  

 

Fig. (2). Bending and shear stress. 

 

Fig. (3). s = 2 - 95th percentile of the bending compression strength. 

 

Fig. (4). s = 1.3 - 50th strength percentile. 

 

Fig. (5). s = 0.77 - 5th strength percentile. 



Derivation of the Bi-axial Bending The Open Mechanics Journal, 2009, Volume 1    17 

  
V

0,!
=

2

3
f

v
bh

2

s + 1
=

2

3
f

v , f
bh  (23) 

For Y !" , Eq. (22) represents the uniaxial loading case 
(see [3]) giving: 
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2.2. Dominating Bending in the Weak Direction ( Z ! h  
and  Y ! b ) 

All equations thus far apply for the case of Fig. (1), thus 
for Z h!  and Y b! . For Z h!  and Y b! , the same equa-
tions of Section 2.1 apply with interchange of z and y; Z and 
Y, b and h as follows by eqs. (25 to 27):  
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Again one component of the biaxial moment shows the 
linear relation with (1 - N/Nu,m). When Eq.(27) is determining, 
also curve Eq.(25) is cut off to this relation (see Section 4).  

2.3. Dominating loading in compression ( Y ! b  and 
 Z ! h  in Fig. 6) 

For dominating compression, the condition Y b!  and 
Z h!  may apply according to Fig. (6).  

2.3.1. Normal Forces  
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According to the boundary conditions is  
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2.3.2. Shear Force  

For the ultimate shear force applies: 
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Due to the boundary conditions Z h!  and Y b! , is uV  

here maximal: , 3u m v
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V f= .  

From Eq. (30) follows, when shear strength is determining: 
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because according to Eq. (29): 
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2.3.3. Bending Moments  

As before, the resultant force of the tensile stress pyramid 
times the distance to the resultant compression force in the 
center of the cross section determines the bending moment.  

For bending applies, using Eq. (28): 
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Knowing yM , N and zM , Y and Z are known and the 
found product YZ should be smaller for bending failure than 
the value of YZ for shear failure according to Eq.(30), thus  

( ) (3 / )bending u vYZ V f!  (34) 

There is no advantage to first eliminate h/Z and to end 
with an expression in b/Y as done before for the cases of Sec-
tions 2.1 and 2.2. 

2.4. Dominating Loading in Tension  

For dominating tension, the condition Y b!  and Z h!  
may apply according to Fig. (7).  

In Fig. (7) is:  
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Fig. (6). Dominating compression with bi-axial bending for Z ≤ h  
and Y ≤ b. 

 

Fig. (7). Dominating tension with bi-axial bending for Z h!  and. 
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2.4.1. Normal Forces  

The tension force T follows from the content of the tension 
pyramid AHKA with height ft +fc minus the contents of pyra-
mids BEKB and FHLF with heights B!  and F!  with:  
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Thus the total tension force is: 
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In the same way is:  
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Thus:  
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The applied ultimate normal compression force is: 
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To replace YZ in other equations, this can be written with 
,u m cN f bh= : 
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In the limit case of Eq.(45) is for: h Z= , Y ! "  (or 
/ 0b Y ! ): 
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The same applies for b Y= , Z !" . 

2.4.2. Shear Force  

The ultimate shear force is: 
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In the limit case is for: ( h Z= , Y !" ) or for ( b Y= , 
Z !" ): 2 / 3u vV f bh= . 

2.4.3. Bending Moments  

The ultimate bending moment is: 
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Thus:  
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For the limit case in accordance with Eq.(36): h Z= , 
Y ! "  applies for yM , giving:  
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The limit case: b Y= , Z !"  applies to ZM  leading to  
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In general is zM : 
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2.4.4. High Tensional Loading  

At higher tensile loading the behaviour is linear elastic 
and determining for failure is the maximal tension stress 
leading to:  
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In this equation tension has the positive sign. 

3. SIMPLIFICATION FOR PRACTICAL DESIGN  

For practical design at dominating bending, the expres-
sions in variables /b Y and /h Z  in the equations can be 
simplified without loss of accuracy.  

3.1. Dominating Compression  

For dominating compression, ( Z h!  and Y b! ), Eqs. 
(28) to (34) are simple enough as design equations.  

3.2. Dominating Bending in the Stiff Direction  

Eq.(13) for dominating bending in the stiff direction 
( Z h!  and Y b! ) is:  
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with: 
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and according to Eq.(13) and (16) is: 
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and b/Y is directly known from: yM , ,yM
!

 and N , where 
yM  is the component in the stiff direction of the ultimate bi-

axial moment and ,yM
!

 the direct calculable uniaxial 
strength in the stiff direction (thus Y !"  or / 0b Y =  in 
Eq. (56). For the component of the ultimate bi-axial bending 
strength in the weak direction zM  is according to Eq. (15) in 
the range of 0 / 1b Y! ! :  
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because  
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According to Eq. (22) is:  
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3.3. Dominating Bending in the Weak Direction Stiff 

The equations of Section 3.2 apply with interchange of b 
with h and Y with Z and y with z 

Thus for dominating bending in the weak direction when 
Y b!  and Z h! :  
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3.4. Dominating Tension  

The foregoing equations also apply for tension with 
bending and will cover the cases in practice. For dominating 
tension, the calculation according to Section 2.4.1 to 2.4.3 of 
Fig. 7 should be followed. These equations can not be sim-
plified and should be tabulated for different values of 

/h Z and /b Y or solved by a numerical method for a given 
loading. Because for high tension and for lower qualities and 
large structural sizes the (long term) tensile strength will be 
lower than the compression strength and the behaviour is 
linear elastic, based on the ultimate tensile stress according 
to Section 2.4.4: 
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4. DESIGN EQUATIONS  

The given equations for biaxial bending are easy pro-
grammable for numerical solutions. However it always is 
necessary to provide simple Code rules.  

The boundary conditions of application of the equations 
are determined by the uniaxial bending cases and therefore 
the conditions:  
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apply for dominated bending in the stiff and weak direction and 
for dominated tension according to Sections 2.1, 2.2 and 2.4.  

For dominating high compression, and therefore low 
shear loading and by N reduced bending moments according 
to Eqs.(32) and (33) of Section 2.3, applies: 
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The boundary conditions for application of the other 
bending moment equations are for: 

Dominating bending in the stiff direction, Section 2.1:  
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Dominating bending in the weak direction, Section 2.2:  
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The same conditions apply for yM  and zM  of dominat-
ing tension according to Sections 2.4.1 to 2.4.3. However as 
Code rule, these equations are too extended and should be 
replaced for design for dominating tension by the save 
Eq.(53). 

Thus for dominating compression, when Z h!  and 
Y b! , Eqs(28) to (34) apply. Else design can be based on 
the equations of Section 3. 

Eq.(54) can be written, using Eq.(18): 
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Similarly Eq.(58) can be written: 
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This is a linear relation between m and n, the same as ap-
plies for the shear strength Eq. (24). 

According to the 3-point bending test is: u uV a M= , 
where a = L/2 is the distance of the load in the middle of the 
beam to the support. Thus / /u ua h M V h=  is the shear-
slenderness with critical value:  
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This critical value of maximal bending and maximal 
shear failure at the same time is / 3ca h !  according to the 
test-beam dimensions of the shear strength test for mean 
quality European softwoods. Eq. (24) thus may be written: 
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For a = 3h, the boundary is reached where below the 
maximal possible bending moment will be reduced by the 
maximal possible shear force and Eq.(68) then becomes: 

1 yn m= ! .  

This linear relation was the basis of the Dutch Code [7], 
and should apply for all Codes as long as the shear calcula-
tion according to Eq. (68) is absent. Eq. (68) shows the para-
bolic Eurocode line to be a factor 2 too unsafe when a = 3h 
(see Fig. (8) and [3]).  

Because such a linear relation also is determining for one 
component of the biaxial strength as given by Eq. (67). The 
curved line Eq, (66) the best also can be approximated by 2 
straight lines through the end points (m = 1; n = 0) and (m = 
0; n = 1), and the point on the curve for n = 0.5 (see [3]) 
where according to Eq. (66): 
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for n =0.5, giving: 
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The same equations apply for dominating bending in the 
weak direction after interchange of b with h and Y with Z and 
y with z.  

5. CONCLUSIONS 

A derivation is given of the biaxial bending strength in 
accordance with the limit analysis method and thus based on 
elastic-full-plastic behaviour. Therefore, with the restriction 
of neglecting hardening stages after initial “flow”, the analy-

 

Fig. (8). Interaction curve cut off (by the dashed bending- compres-
sion strength shear line or no cut off by the drawn ultimate shear 
line). 
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sis is rigorous and the strength prediction realistic and the 
result has to be applied in the Building Codes to provide the 
prescribed sufficient precise reliability calculation. 

For the highest lower bound solution of biaxial bending 
strength is necessary that the neutral axis is a straight line 
and that unlimited flow in pure compression occurs, thus 
when there is bending-tension failure and when the shear 
stress is carried in the elastic part of the cross section. This is 
an improvement with respect to the thus far applied old 
model [6] restricting the ultimate plastic compression strain. 

The derived general expressions in coordinates of the 
boundary line of the full compression area are simplified to 
elementary design equations, which also has to be in the 
Regulations. Chosen is, for simplicity of design, for separate 
ultimate shear strength and ultimate bending-compression 
strength equations.  

The equations contain also the solution for uniaxial bend-
ing cases, which are already shown to precisely explain and 
fit data by the elastic full plastic limit approach.  

The value of /t cs f f=  appears to be about constant for 
all load combinations of bending with compression, indicat-
ing again that there always is failure by the ultimate tensile 
strength. A volume effect by stress distribution thus needs 
not to be regarded as follows from the uniaxial data. The 

volume effect thus now is caused by the volume alone due to 
decreasing quality by volume increase.  
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