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Abstract: The present work deals with the effect of the thermally-induced residual stresses on the shape of a cross-
section’s neutral line for hot-rolled steel beams under combined loading conditions. In general, the neutral line of a beam 
cross-section is considered to be straight. In this study it is shown that, taking into account the existing thermal residual 
stresses, this line becomes a curve as far as the beam is subjected to pure bending or to combined loading that consists of a 
bending moment and an axial force. 
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INTRODUCTION  

The lifetime of a structural member is usually determined 
by the interaction between the defects within the member 
and the stress states to which it is subjected to, regardless of 
its material properties. 

Contrarily to the externally applied loads, which can be 
readily and comprehensively introduced in the design of 
structural members, it is considerably more difficult to ac-
count for residual stresses in both the analysis and the design 
procedure. 

This is true, since residual stresses vary significantly in 
magnitude, they are strongly non-linear (in distribution and 
nature), unpredictable and cannot be reliably measured. 

Focusing on hot-rolled steel structural elements, the most 
common and simultaneously unavoidable type of residual 
stresses arising are the so called process-induced ones, which 
can be either flow-induced or thermally-induced, with the 
latter being the dominant component. 

The mechanism of the development of thermally-induced 
residual stresses and their distribution for steel structural 
elements can be found in detail in numerous text-books, pa-
pers and reports (Huber and Beedle [1], Alpsten [2], 
Michaltsos [3], and others not quoted herein). 

For the majority of widely used hot-rolled beams with 
sections as I-sections or orthogonal ones, this distribution is 
symmetric along the primary axes and thus the effect of such 
a self-equilibrated stress system is neglected either in elastic 
analysis or in elastoplastic one, mainly when simple (pure) 
loading conditions are specified, i.e. when the distribution of 
the stresses due to external loads is also symmetric. 

However, this is not the case when combined loads are 
acting upon the component, as for beam-columns, moment 
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frame beams, crane structures etc. Shifting of the neutral axis 
may cause a significant reduction of the moment resistance 
and subsequently of the overall bearing capacity of the 
member. With the continuing encouragement not only to 
optimize material performance, but simultaneously to mini-
mize component weight, the primary advantages of steel (as 
for example ductility) must be utilized to the maximum ex-
tent. 

In doing so, elastoplastic or plastic analysis ought to be 
used in the design of structural steel-work, and in order to 
provide reliable results, the effect of thermal residual stresses 
must be accounted for.  

The existence of efficient non-destructive or semi-
destructive techniques for measuring to a considerable depth 
the aforementioned stresses (e.g. neutral diffraction or crack 
compliance respectively), offers to engineering practice the 
capacity of a quantitative ascertainment of the amount of 
thermal residual stresses on a wide range of hot-rolled steel 
sections. 

To the knowledge of the authors, however, there seems to 
be a lack of practice design guidelines and tools, based on 
solid theoretical background for taking into account the 
aforementioned stresses. 

A limited number of publications exist in the relevant lit-
erature, but it deals mostly with built-up or complex struc-
tural components, as in Marcelin [4] or Dixit and Dixit [5]. 
The effect of thermal residual stresses on bearing capacity of 
hot rolled sections under either combined bending moment 
and axial force or, also, combined bending moment and 
shearing force is already proven [6, 7]. 

The present work aims to contribute to the specific topic 
mentioned above, and especially to deal with the effect of 
thermal-induced residual stresses on the form of the neutral 
line of hot-rolled sections under the action of bending mo-
ment and axial force. With the use of the elementary elasto-
plastic analysis, simple formulae are obtained and character-
istic examples are presented.  
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EFFECT OF THERMALLY-INDUCED RESIDUAL 
STRESSES  

The residual stresses are due to the way of treatment and 
production of the structural steel and they constitute a self-
equilibrated stress state. Therefore, they are usually ignored 
in the analysis. 

The distribution and magnitude of the thermal residual 
stresses can be readily taken form Alpsten [2] as well as 
from Eurocode 3 [8], and are shown in Fig. (1a) for a steel I-
section and in Fig. (1b) for a solid orthogonal cross-section. 

The I-Section 

For the distribution shown in Fig. (1a), and taking into 
account the conditions: 
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The Solid Orthogonal Cross-Section 

For the distribution showing in Fig. (1b), and taking into 
account the conditions: 
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one can find 
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As it is shown in the followings, the thermally-induced 
residual stresses cause a displacement of the neutral line of 
the cross-section in Fig. (1a), while for the one in Fig. (1b) 
the neutral line changes to a curve as well. 

EXTERNAL LOADS AND RESIDUAL STRESSES 

Let us consider now, a cross-section subjected to the ac-
tion of a moment My and an axial force Nx.  

As the above moment and axial force increase, the cross-
section is strained and enters from the elastic region firstly 
into elastoplastic region and then into the plastic one - see 
Figs. (2a) to (2c).  

It has been proved that the full plasticization of a cross-
section cannot be realized from a theoretical point of view. A 
small elastic kernel always remains near the neutral line (in 
its final position) that behaves elastically, since any more 

 
Fig. (1a). Residual stresses in a steel I-section. 

 
Fig. (1b). Residual stresses in an orthogonal steel cross-section. 
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plasticization involves an extremely large (theoretically infi-
nite) deformation of the external fibers, which in fact cannot 
take place – see Fig. (2d). 

This elastic kernel extends from 2% to 4% of the total 
cross-section area. Therefore, a situation like the one shown 
in Fig. (2c) will be considered as a fully plasticized cross-
section. 

THE ELASTIC REGION  

The I-Section 

Ignoring the thermal residual stresses, the position of the 
neutral line is given by the expression: 
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where My and Nx are the moment and the axial force and Ib 
and Ab are the cross-section’s moment of inertia and area, 
respectively. 

Taking into account the thermal residual stresses, we 
have:  
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For the determination of the neutral line position will be: 
σx=0, or because of Eq. (1) 
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In Fig. (3) one can see the old (zo) and the new position 
(zn) of the neutral line as well as the corresponding diagrams 
of σx for the case of a bending moment acting alone and of a 
simultaneous action of a bending moment and an axial force. 

The Solid Orthogonal Cross-Section 

Ignoring the thermal residual stresses, the position of the 
neutral axis is given also by the expression (3), while taking 
into accent the thermal residual stresses we get the expres-
sion (4). By setting σx=0 and because of Eq.(2) we obtain: 

  

M
y

I
b

z
n
+

N
x

A
b

+ A ! ( y2
+ z

n

2 ) + B y2z2
+ " = 0  

which finally concludes to the following expression: 
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Fig. (3). Stress distribution diagrams. 
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Fig. (4) shows the new position of the neutral line for the 
case of a pure moment (Fig. 4a) and of a simultaneous action 
of a moment and an axial force (Fig. 4b). 

We discern that, except the change of its position, the 
neutral line changes from a straight line into a curve. 

ELASTOPLASTIC AND PLASTIC REGIONS 

As the influence of the thermal residual stresses is more 
evident and indicative on solid orthogonal cross-sections, the 
following analysis focuses on this type of cross-sections. 

Once a cross-section enters into the elastoplastic region, 
the distribution of stresses (including the thermal residual 
ones) will have one of the forms shown in Fig. (5a) or Fig. 
(5b) - see also Fig. (2). 

The part ΓΔ of diagrams (5a) and (5b) is a curve having 
the same form with the part AB of the σr – diagram. This 
curve may be determined as follows: 
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Fig. (4). Neutral line positions due to bending, axial and thermal stresses. 

 
Fig. (5a). Neutral line position with plastic region at the bottom. 

 
Fig. (5b). Neutral line position with top and bottom plastic regions. 
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The equation of the straight line AB is: 
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or finally: 
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and the σc (from the hatched section of diagram σr) is given 
by the relation: 
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or finally: 
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The case in Fig. (5a) 
With the notations of Fig. (5a), we have:  
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therefore, the unknown ζ1 and ζ2 can be determined through 
the following conditions:  

  

! dz
"h/2

h/2

# =
N

x

b
and ! z dz

"h/2

h/2

# =

M
y

b
 (11) 

The first condition gives: 

  

N
x

b
= !

f
(h "#

1
"#

2
) +

1

2
!

f
#

2
"

1

2
!

f
#

1
+ !

c
dz

$
1

$
2

%  

or finally: 

  

!
f
(h "#

1
"
#

2

2
"

#
1

2

2#
2

) +
($

1
"$

2
)3

6
( A+ By2 ) =

N
x

b
 (12) 

The second condition gives: 
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Fig. (7). Stress distribution in an I-section. 
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Equations (12) and (13) constitute a system, the solution 
of which gives the unknowns ζ1 and ζ2.  

In order to define the position of the neutral line, we have 
to determine the equation of the curve ΓΔ (see Fig. 5a).  

The equation of the straight line !"  is given by the rela-
tion: 
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and the equation of the curve ΓΔ is: 

  

! = !
"#

+!
c
=

z $%
1

%
1
$%

2

(!
o
$ !

f
) +

+!
o
+ (z $%

1
)(z $%

2
)( A+ By2 )

 (14) 

with the notations of Eq.(10). 
The solution of the equation 0=! gives the neutral line 

zn for various values of y. 
The case in Fig. (5b) 
With the notations of Fig. (5b) we have: 
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Where, the unknowns α1 and α2, can be determined by the 
conditions (11). 

The first condition gives: 
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The second condition gives: 
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which concludes to: 

  

!
f
"

1
#

1
+"

2
#

2
+
#

1

2
+#

2

2

2
+

2# 2

3

$

%
&
&

'

(
)
)
+

+
("

1
+"

2
)("1*"

2
)3

12
( A+ By2 ) +

+(
h

2
*# *#

1
)

("1*"
2
)3

6
( A+ By2 ) =

M
y

b

 (17) 

Equations (16) and (17) constitute a system, the solution 
of which gives the unknowns α1 and α2.  

The equation of the straight line !"  is given by the rela-
tion: 
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and the equation that gives the curve ΓΔ is: 
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The solution of the equation 0=!  gives again the neu-
tral line zn for various values of y (See also Fig. (6)). 

NUMERICAL RESULTS AND DISCUSSION 

The Elastic Region 

Let us consider an IPE200 standard steel profile with σf = 
3000dN / cm2 which has the following properties: h = 20 cm, 
b = 10 cm, tf = 0.85 cm, tw = 0.56 cm, Iy = 1940 cm4, Ab = 
38.50 cm2, Aw = 10.36 cm2. We also assume that the thermal 
residual stresses have the form shown in Fig. (1a) with val-
ues σ1 = -400dN / cm2, σ2 = 400dN / cm2. 

The cross-section is subjected to the moment My=200000 
dNcm and an axial force Nx=5000 dN. 

Ignoring at first the thermal residual stresses, the neutral 
line is found at: 
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Applying Eq.(5), we obtain: 
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n
= +2.54 cm . 

Let us see now the influence of the thermal residual 
stresses on the neutral line and the resistant moments. Ignor-
ing the thermal residual stresses, we have: 
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Taking into account the influence of the thermal residual 
stresses we have: 
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We consider next an orthogonal solid cross-section of 
dimensions b*h = 4x6 cm2, and we consider in addition that 
the residual stresses have the form shown in Fig. (8) with 
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Under the action of a moment My=24 000 dNcm and an 
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(without the influence of the thermal residual stresses) will 
be at the position: 
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Applying the Eq. (6), we find the curve of the neutral line 
zn as it is shown in Fig. (9), where the neutral axis zo (with-
out the influence of the thermal residual stresses) is also 
shown. 

Let us see now the influence of the thermal residual 
stresses on the neutral line and the resistant moments. With-
out the influence of σr we have:  
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From the above equations, without the influence of the 
thermal residual stresses we have: Wo=84 cm3 and Wu=28 
cm3, while with the influence of the thermal residual stresses 
we have: Wo=93.17 cm3 and Wu=28.75 cm3 (See also Fig. 
(10)). 

The Elasto-Plastic and Plastic Regions 

Considering again the orthogonal solid cross-section, one 
can easily determine the plastic moment (the moment which 
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Fig. (8). Thermal stresses in a solid cross-section. 

 
Fig. (9). Displaced position of the neutral line. 

 
Fig. (10). The influence of thermal stresses in the form of neutral 
line. 
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causes full plastification of the cross-section): MF = 108000 
dNcm. 

Under the action of a moment My = 80000 dNcm and an 
axial force Nx = 10000 dN, and ignoring the stresses σr , the 
neutral axis will be at zo = -0.4167 cm. 

Considering the stress distribution σr shown in Fig. (7) 
and applying Eqs. (16), (17) and (18), we find that the neu-
tral line becomes a curve as shown in Fig. (11). 

Ignoring the influence of σr , we have: 
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and since it is: ζ1=h1-ζ , and ζ2=h2-ζ (see Fig. 12a,b), we get: 
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Taking into account the influence of σr it is valid that:
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and since it is: ζ1=h1-ζ and ζ2=h2-ζ , we obtain: 
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or finally:  
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From the above expressions, without the influence of σr 
we get: W = 28.0556 cm3 while with the influence of σr we 
get: W = 23.7684 cm3. 

CONCLUSIONS  

This paper studies the influence of the distribution of the 
thermal residual stresses on the position as well as the form 
of the neutral line through a simple approach.  

 
Fig. (11). Neutral line evolving to curve.  

 
Fig. (12). Plastic regions and stress distributions in a solid cross-section. 
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A displacement of the neutral line (in doubly symmetric 
cross-sections) takes place in the case of simultaneous action 
of a bending moment and an axial force and only in the elas-
tic or elastoplastic region, while the form and position of the 
neutral line in the plastic region is not affected. 

This displacement is significant and ranges (for the case 
studies presented herein) from 5% to 30% of the height of an 
I-cross-section and from 2% to 10% for a solid orthogonal 
one. 

A phenomenon that appears in solid orthogonal cross-
sections is the evolution of the form of the neutral line which 
from a straight line becomes a curve. 

The aforementioned alteration of the form and the dis-
placement of the neutral line lead to the change of the corre-
sponding resistant moments, which for the I-section of the 
case study amounts to 25% for the upper resistant moment 
and to 45% for the bottom one. 

The corresponding change for the solid orthogonal cross-
section studied herein amounts from 20 to 25%. 
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