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Abstract:

Background:

Beam models have been proven effective in the preliminary analysis and design of aerospace structures. Accurate cross sectional
stiffness constants are however needed, especially when dealing with bending, torsion and bend-twist coupling deformations. Several
models have been proposed in the literature, even recently, but a lack of precision may be found when dealing with a high level of
anisotropy and different lay-ups.

Objective:

A simplified analytical model is proposed to evaluate bending and torsional stiffness of a prismatic, anisotropic, thin-walled box. The
proposed model  is  an  extension of  the  model  proposed by Lemanski  and Weaver  for  the  evaluation of  the  bend-twist  coupling
constant.

Methods:

Bending and torsional stiffness are derived analytically by using physical reasoning and by applying bending and torsional stiffness
mathematic definition. Unitary deformations have been applied when evaluation forces and moments arising on the cross section.

Results:

Good accuracy has been obtained for structures with different geometries and lay-ups. The model has been validated with respect to
finite element analysis. Numerical results are commented upon and compared with other models presented in literature.

Conclusion:

For cross sections with a high level of anisotropy, the accuracy of the proposed formulation is within 2% for bending stiffness and
6% for torsional stiffness. The percentage of error is further reduced for more realistic geometries and lay-ups.

The proposed formulation gives accurate results for different dimensions and length rations of horizontal and vertical walls.

Keywords: Thin-walled beams, Composite box, Bending stiffness, Torsional stiffness, Composite beam, Bend-twist coupling.

1. INTRODUCTION

Beam models have proven themselves to be effective in a variety of engineering structures. In aeroelastic studies,
for example, beam models have been used to reveal important trends and generally, rectangular or trapeze cross sections
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have been used to model wing boxes [1 - 4].

One example of prismatic thin-walled box of rectangular cross section is shown in Fig. (1). Its global coordinate
system, shown in Fig. (2), is denoted with letters X, Y, Z, and it can be located in any point of the cross section. The
origin of the frame is denoted by the letter O.

Fig. (1). An example of prismatic thin-walled composite box.

Fig. (2). The global frame X, Y, Z of the box.

For aeroelastic purposes, the structures analysed are often slender and long, so that three essential stiffness constants
are required to evaluate the deformations. As suggested by Weisshaar [5], at any cross section along the reference x-axis
of the beam, a linear equation describes the structural behaviour:

(1)

where:

EI the bending stiffness [Nm2]

GK the torsional stiffness [Nm2]

K the bend-twist coupling stiffness [Nm2]

M(X) the bending moment at the span wise coordinate x [Nm]

T(X) the twisting moment at the span wise coordinate x [Nm]

X the span wise coordinate along the main dimension of the beam [m]
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ϑ(X) the twisting angle at the span wise coordinate x [m-1]

φ(X) the flexural angle and the span wise coordinate x [m-1]

Once the internal loads M(X) and T(X) are calculated from the external distribution of forces and moments, Eq. 1
can be inverted and the deformation of the beam can be evaluated.

In  order  to  obtain  appropriate  deformations,  the  evaluation  of  stiffness  EI,  GK  and  K  must  be  as  accurate  as
possible. A correct evaluation of the stiffness parameters of a composite beam is not a trivial problem as confirmed by
the number of different formulations presented in literature [6 - 15]. Such models often show a lack of precision when
cross sections with different geometries (even simple rectangular cross sections) and unbalanced lay-ups are analysed.
This effect is more accentuated when a high level of anisotropy exists. It is the case of reinforcements made by fibres
with the same orientation.

Concerning bend-twist coupling stiffness, K, the analytical predictions of Lemanski and Weaver [12] is relatively
accurate, simple and based on physical reasoning. Their results have been investigated and reproduced as part of this
work. Examples, in fact, are shown in section 3. No further discussion on the stiffness K is therefore provided.

The same cannot be said for bending and torsional stiffness, since formulae presented in the literature are not able to
provide sufficient accuracy when cross sections of different geometries and lay-ups are analysed. Therefore, models
able to predict accurate results are required.

The  approach  used  by  Lemanski  and  Weaver  to  calculate  K  is  extended  in  this  paper  to  evaluate  the  bending
stiffness EI of a symmetric composite thin-walled box. A new analytical formula is also proposed to evaluate GK.

2. ANALYTICAL MODELS

2.1. Evaluation of EI

The strategy used by Lemanski  and Weaver  to  evaluate  bend-twist  coupling stiffness  K  is  now extended to the
evaluation of the bending stiffness EI.

The key point is the definition of the stiffness K: it is the twisting moment arising in a cross section when a unitary
bending curvature  is applied.

When  a  unitary  bending  curvature   is  applied,  (without  twisting,  i.e.  a  torsional
moment is obtained from Eq. 1 as:

The numerical value of the stiffness therefore coincides with the twisting moment arising in the walls of the cross
section. Similar reasoning can be used to evaluate EI: as the bending moment arising in the cross section when the same
unitary bending deformation is applied.

Consider a hollow box shown in Fig. (3).

The box is symmetrical, such that the top and bottom laminates are identical. Moreover, the vertical walls are made
by balanced laminates,  as unbalanced laminates are not necessary to induce bend-twist  coupling of the box. Let us
denote its geometrical characteristics by:

w the length of the horizontal wall [m]

2h the length of the vertical wall [m]

ty the thickness of the vertical wall [m]

th the thickness of the horizontal wall [m]

Now apply a unitary bending deformation.  On the top wall of the box, if the material is orthotropic and the
stiffness of vertical walls negligible, then strains would be [10]:

), 

(2)dx
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(3)

Where:

εx axial strain

εxy transversal strain

Vxy shear strain

νxy Poisson’s ratio of composite laminate

Fig. (3). Geometric characteristics of a box cross section.

The strains of Eq. 3 are written with respect to the local coordinates x, y of the laminate, shown in Fig. (4).

Fig. (4). Local coordinates in a laminate wall.

The forces per unit of length corresponding to these strains are:

Nx axial force per unit of length of horizontal laminate

Ny lateral forces per unit of length of horizontal laminate
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Nxy shear force per unit of length of horizontal laminate

they are evaluated by using Classical Lamination Theory [16]. As the box is made of laminated composite materials
and the presence of vertical walls constrains the deformation of horizontal laminate, the strain field, Eq. 3, requires
modification.

Two corrective terms Δ1 and Δ2 are added for the following reasons:

Lateral deformation εy of the horizontal laminate is constrained by the vertical walls and depends not only on the1.
characteristics of the laminate itself but also on the elastic properties of the vertical walls.
Shear deformation γxy of the laminate is present; otherwise no bend/twist coupling effect exists.2.

The strain field of the horizontal laminate is re-written as

(4)

where Aij is the membrane constants of the top laminate. The terms Δ1 and Δ2 are unknown. Two algebraic equations
are needed to determine them. The first equation can be written evaluating displacement δ of Node 1, shown in Fig. (5).

Node 1 can be thought as a part of the horizontal laminate. Therefore, the displacement δ can be written as

(5)

Fig. (5). Displacement δ of Node 1.

Fig. (6). An idealization of the deflection of the vertical wall.
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On the other hand, Node 1 is also part of the vertical wall. Its deflection can be calculated by modelling half of the
vertical wall as a cantilevered beam (Fig. 6), as suggested by Lemanski and Weaver [12]. The displacement, δ, is that of
a cantilever beam [14]:

(6)

where Ny is found directly from Classical Lamination Theory,

(7)

If Eq. 7 is substituted in to Eq. 6 and combined with Eq. 5, then:

(8)

The second expression can be deduced from the equilibrium of tangential forces, as suggested in reference [10]:

(9)

where Gv is the shear modulus of the vertical wall.

An algebraic system comprising two equations (Eq. 8 and 9) in two unknowns Δ1 and Δ2 is obtained and is readily
solved.  Once  Δ1  and  Δ2  are  calculated,  they  are  substituted  in  to  Eq.  4  and  the  strain  field  of  the  top  laminate  is
completely defined.

Concerning vertical walls, their local coordinates xv, yv are shown in Fig. (7).

Fig. (7). Local coordinates of vertical walls.

Consequently, xv  and x,  are coincident and they have the same direction of the global axis X.  Forces per unit of
length of vertical walls are:

Nxv the axial force per unit of length.

Nvv the lateral force per unit of length

Nxvy is the shear force per unit of length

While corresponding strains are given by:
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εxv the axial strain

εvv the lateral strain

γxvy the shear deformation

As EI  is the bending moment arising in the cross section when a unitary bending curvature is applied, it can be
calculated as the bending moment with respect to the global Y axis,

(10)

Where:

dC the infinitesimal element of the contour

 the axial force per unit of length in the global reference. It includes contributions from both Nx and Nxv.

Eq. 10 can be divided into two components, those from the horizontal and vertical walls. The contribution from the
top and bottom laminates is:

(11)

Where:

(12)

And the strains of Eq. 12 are found from Eq. 4.

Now consider half of the vertical wall, in order to evaluate the second component. The strain εxv, for simple bending,
is a linear function of the global coordinate Z:

εxv = Z

(13)

The contribution of the vertical walls to the bending stiffness is, consequently:

(14)

where tv is the thickness of vertical walls. The final expression of bending stiffness EI is:

(15)

2.2. Evaluation of Torsional Stiffness GK

In this section, a model to predict the torsional stiffness GK is presented. The starting point is the formula developed
by Librescu and Song [7]. It has been chosen among several formulations because it shows two good characteristics:

It is quite accurate, especially if compared to the other models investigated.
Its formulation is relatively straightforward.

Other models, such as that due to Kollar and Pluzsik [10], for example, contain more information and are more
involved to implement.

The initial formula proposed by Librescu and Song can be re-arranged as follows:

(16)
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Where:

Aij
v the terms of the membrane matrix of the vertical wall

Ω the area enclosed by the contour of the cross section

(17)

There are two contributions to the torsional stiffness:

the contribution given by the vertical walls:
the contribution given by the top and bottom laminates:

(18)

(19)

Using Lemanski and Weaver’s approach, the stiffness GK can be thought as the twisting moment arising in a cross
section when a unitary twisting curvature is applied. The forces per unit of length arising on the vertical and horizontal
walls are derived from Eq.16, as

(20)

To ensure dimensional accuracy, forces per unit length in Eq. 20  should be divided by . These forces
per unit of length are usually not equal and they are constant along the walls. This fact implies a discontinuity of the
tangential forces per unit of length at the corners of the cross sections, as shown in the example of Fig. (8).

Fig. (8). Discontinuity of tangential forces in the model of Librescu and Song.

The shear continuity at the corners is imposed by assuming a parabolic distribution in the horizontal laminates, of
force per unit of length, with the maximum value between Nxyv and Nxy. For example, when Nxy is greater than Nxyv, the
shear flow of the top/bottom laminate will be assumed to vary parabolically: Its value at the corner will be equal to Nxyv,
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and its maximum value, at the middle point of the wall, will be equal to Nxy (Fig. 9). In other words, the shear flow of
the horizontal laminates is now a parabolic function Nxy(y), where y is the local axis of the laminate, shown in Fig. (4).
An analogous distribution occurs when Nxyv is greater than Nxy. In this case, the shear flow of the vertical laminates is
assumed to vary parabolically. The average shear flow in the horizontal laminate is

(21)

The stiffness GK can be therefore evaluated with Bredt’s formula [17]:

(22)

Where N is an average expression of the shear flow along all the contour found from

(23)

This formulation provides excellent results for rectangular geometries and it can be easily extended to the trapeze
cross sections, as it will be shown in the section 3.2.

Fig. (9). Parabolic correction of Nxy (in red) on the Librescu formulation (in black).

3. RESULTS

Two different cross-sections have been analysed. The first one is with rectangular shape. Even if the geometry is
simple, to the authors’ knowledge the analytical model proposed in this paper is the only one providing good accuracy
for structures with high level of anisotropy. The second one is a trapeze cross section, with realistic laminates. It has
been analysed to show that the model is able to provide good results with more realistic structures.

3.1. Rectangular Cross Section

Three rectangular cross sections representing three different boxes, have been analyzed. Top and bottom laminates
are made with one single layer whose fibres orientation α can vary from 0 to 90 degrees with respect to the local frame
represented  in  Fig.  (4).  This  assumption  has  been  made  to  maximise  the  effects  of  anisotropy.  Vertical  walls  are
orthotropic. They are made with one single layer with fibres oriented at 0 degrees. Appropriate elastic properties for
both vertical and horizontal laminates are:

E1 = 181 GPa

E2 = 10.3 GPa
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G12 = 4.55 GPa

ν12 = 0.28

Elastic properties of α- oriented laminates are calculated by using the constants reported above and the classical
lamination theory.

These  three  cross  sections  have  different  wall  lengths,  but  the  same  shape  and  the  same  area  enclosed  by  the
contour. Data are reported in Table 1.

Table 1. Geometric properties of three different boxes.

Wing Box Type
Length of Vertical

Walls
[m]

Length of Horizontal Walls
[m]

Thickness of Vertical Walls
[m]

Thickness of Horizontal Walls
[m]

Representative Wing Box 0.3 0.6 0.006 0.006
Square

Wing Box 0.424 0.424 0.006 0.006

Tall
Wing Box 0.6 0.3 0.006 0.006

Finite element analysis (FE) using Patran/Nastran [18] was performed to validate the results. The displacements and
rotations are set to zero on one side of the beam whilst MPC of type RBE2 have been used to apply the end tip loads as
shown in Fig. (10).

Fig. (10). An example of FE model used to validate the analytical results.

The following steps were done to obtain bending and torsional stiffness.

A unitary bending moment is applied to the tip of the beam.1.
Bending and twisting deformations are measured in a cross section located at  the middle span of  the beam:2.
Sufficiently far from the tip and root, in order to avoid the effects of local deformations. The ensuing bending
and  twisting  deformations,  due  to  a  unitary  bending  moment,  represent  bending  and  bend/twist  coupling
compliances (Eq. 1).
A unitary twisting moment is applied to the tip of the wing with no bending moment.3.
Twisting deformation is measured and consequently twisting compliance.4.
Once all the compliances are known, they can be inverted. The inverse of the compliance matrix is the stiffness5.
matrix of Eq.1.
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Fig. (11). EI for the “Tall” unbalanced composite wing box. Fibres angle vary from 0 to 90 degrees.

Results for EI of unbalanced boxes are shown in Figs. (11-13). The analytical model presented in this paper has
been compared with two other different models (Kollar and Pluzsik theory [10] and Librescu and Song’s theory [7] and
also with FE.

Fig. (12). EI for the “Square” unbalanced composite wing box. Fibres angle vary from 0 to 90 degrees.
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Fig. (13). EI for the “Representative” unbalanced composite wing box. Fibres angle vary from 0 to 90 degrees.

The analytical model is shown to be accurate and it gives approximately the same results as Kollar and Pluzsik
theory, but its formulation is simpler.

The  model  has  also  been  tested  with  structures  whose  top  and  bottom  walls  are  made  of  balanced  composite
materials (laminates with + α and -α fibres). Results obtained for the square wing box are shown in Fig. (14). In this
case, all the models give approximately the same results.

Fig. (14). EI for the “Square” balanced composite wing box. Fibres angle vary from 0 to 90 degrees.
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Results for the evaluation of GK have also been produced. The new formulation has been compared with the models
of Librescu and Song and Kollar and Pluzsik, respectively Figs. (15-17). It is evident that the model proposed in this
paper is the only one (to our knowledge) which works sufficiently well for all three different geometries.

Fig. (15). GK for the “representative” unbalanced composite wing box. Fibres angle vary from 0 to 90 degrees.

Fig. (16). GK for the “square” unbalanced composite wing box. Fibres angle vary from 0 to 90 degrees.
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Fig. (17). GK for the “square” unbalanced composite wing box. Fibres angle vary from 0 to 90 degrees.

The  main  reason  lies  on  the  fact  that  the  proposed  way  to  calculate  stiffness  is  based  on  its  physical  meaning
(deformation  under  unitary  loads)  rather  than  the  integration  of  stiffness  along  the  segments  of  the  cross  section
(furthermore Librescu’s models offer a slightly simpler formulation compared to Kollar’s model and the results could
be slightly less accurate when dealing with high level of anisotropy).

Concerning bend/twist coupling stiffness K, good results have been obtained by using Lemanski-Weaver's model
[12]. The development of a new theory is therefore not needed. In Figs. (18-20), a study case on boxes described in
Table  1  is  shown.  The  models  of  Lemanski-Weaver  and  Kollar-Pluzsik  have  the  same  level  of  accuracy,  but  the
implementation of the model of Lemanski and Weaver, also in this case, is simpler.

Fig. (18). Bend/twist coupling stiffness K for a representative wing box.
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Fig. (19). Bend twist coupling stiffness K for a square wing box.

Fig. (20). Bend twist coupling stiffness K for the “tall” wing box.

3.2. Trapeze Cross Section

A more complex geometry is studied in this section. Rear and front webs have different lengths. The cross section,
in other words, has a trapeze shape (Fig. 21). This geometry can be used as a simplified model of wing boxes. Their
stiffness  can  be  used  for  aeroelastic  applications.  It  is  also  important  to  remark  that  such  stiffness  parameters  are
independent from the angle of sweep of the wing.
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Fig. (21). Trapeze cross section: geometrical properties.

Top and bottom walls are built with laminates having the following volume fractions: 40% 0 degrees fibres, 20% 90
degrees fibres and 40% α degrees fibres, with α varying between 0 and 90 degrees. Vertical walls are orthotropic. They
are made by 20% 90 degrees fibres, 40% 0 degrees fibres and 40% 45 degrees fibres. Appropriate elastic properties are
those reported in section 3.1.

Geometrical properties are described in Table 2.

Table 2. Geometrical properties of the trapeze box.

Length of Right Vertical wall
[m]

Length of Left Vertical Wall
[m]

Length of Bottom Laminate
[m]

Length of Top Laminate
[m]

Wall Thickness
[m]

0.2 0.4 0.6 0.632 0.006

The analytical model for EI described in section 1 can be applied once the structural symmetry of the cross section
is found, even if the structure in not geometrically symmetric. In other words, the analytical model can be applied once
the neutral axis (only for bending along the Y-axis) is found, as shown in Fig. (22). The neutral axis is such that

Fig. (22). Neutral axis of a trapeze cross section.

(24)

Where:

Zn the distance of the point of the cross section from the neutral axis.

The position of this neutral axis varies slightly with the angle α. However, when the difference between the lengths
of left and right walls is not large, and it is often the case of wing box models, the position of the neutral axis with the
respect to the axis shown in Fig. 22 can be calculated by using the simplified formula

(25)

Where:

p the height of the neutral axis (Fig. 21).

H1 the height of the left wall

H1 the height of the right wall

0	� dszN nx                                                     
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Bending stiffness is calculated by applying the analytical formulation of section 1 to the semi-rectangular cross
sections placed below the neutral axis.

Models to evaluate GK and K can be applied to trapeze cross sections without difficulties. Numerical results are
shown in Figs. (23, 24 and 25). The analytical model has been compared, also in this case, with the models of Kollar
and Librescu and with FE results, obtained with the same technique described in section 3.1. Concerning EI, all the
models produce almost the same result. Regarding K and GK, the analytical model is the only one with a good level of
accuracy. It is important to remark that the model of Librescu underestimates the torsional stiffness, even if no parabolic
correction  is  applied.  The  model  of  Canale  and  Weaver,  on  the  other  hand,  predicts  good  results  because  of  the
assumption resumed in Eq.23.

Fig. (23). Bending stiffness of a trapeze cross section with realistic laminates.

Fig. (24). Torsional stiffness of a trapeze cross section with realistic laminates.
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Fig. (25). Bend-twist coupling stiffness of a trapeze cross section with realistic laminates.

4. DISCUSSION

With regards to the bending stiffness EI, the current analytical formulation gives the same level of accuracy as the
model of Kollar and Pluzsik but its formulation is simpler. The current model does not evaluate the contribution of
vertical and horizontal walls separately. The contribution of the top and bottom walls to EI is considered as a function
of the stiffness of the vertical walls and vice versa.

With regards to the torsional stiffness, GK, the current analytical model is able to give accurate results for several
geometries (rectangular and trapeze cross sections) and lay-ups (high anisotropy or realistic laminates) while the other
models underestimate or overestimate the stiffness. The model of Librescu and Song has been enhanced in two steps. In
the first one, a parabolic distribution of the maximum shear flow has been applied. In the second one, the average shear
flow has been calculated in order to apply the Bred’s formulation of thin walled closed cross sections.

CONCLUSION

An analytical model to evaluate bending and torsional stiffness of a composite box has been presented. It is
relatively  accurate,  simple  and  based  on  physical  reasoning.  It  can  be  also  easily  extended  to  trapeze  cross
sections. For cross sections with high level of anisotropy, the accuracy of the proposed formulation is within 2%
for EI  and within 6% for GK  whilst  other models can give errors of ca.  40% and 100% respectively.  These
percentages  of  error  of  the  proposed  model  have  been  approximately  found  constant  for  all  the  geometries
analysed. The percentage of error is even further reduced when more realistic (and less anisotropic) laminates
are used.
Analyses performed on EI and GK show that the formulation proposed is able to give highly accurate results for
different dimensions, length ratios of horizontal and vertical walls and different lay-ups.

NOMENCLATURE

Aij = Term of the A matrix of classical lamination theory [Nm-1]

EI = The bending stiffness [Nm2]

GK = The torsional stiffness [Nm2]

2h = Height of the vertical wall of the box [m]

K = The bend-twist coupling stiffness [Nm2]
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M(X) = The bending moment at the span wise coordinate x [Nm]

Nx = Axial force per unit of length [Nm-1]

Nxy = Shear force per unit of length [Nm-1]

Ny = Lateral force per unit of length [Nm-1]

T(X) = The twisting moment at the span wise coordinate x [Nm]

th = Thickness of the horizontal wall of the box [m]

tv = Thickness of the vertical wall of the box [m]

w = Length of the horizontal wall [m]

X = The span wise coordinate along the main dimension of the beam [m]

εx = The axial strain

εy = The lateral strain

νxy = Poisson’s number of the laminate

γxy = Shear strain

ϑ(X) = The twisting angle at the span wise coordinate x [m-1]

φ(X) = The flexural angle and the span wise coordinate x [m-1]

Ω = Area enclosed by the cross section [m2]
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