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Abstract: Due to manufacturing flaws or cyclic loading, cracks frequently appear in a rotating spindle system. These 

cracks markedly affect the dynamic characteristics in higher modes of the rotating machinery. For faster rotational speeds, 

especially for super-high-speed cutting, a spindle with magnetic bearings is necessary. However, most investigations into 

spindle system dynamic characteristics have been confined to ball-bearing-type spindles. The dynamic response of 

rotating cracked spindle systems with magnetic bearings is examined in this article. A Euler-Bernoulli beam of circular 

cross section is used to approximate the spindle and the Hamilton principle is employed to derive the equation of motion 

for the spindle system. The effects of crack depth, rotation speed and bearing length on the dynamic response of a rotating 

magnetic bearing spindle system are studied. 

INTRODUCTION 

 Cracks frequently appear in rotating machinery due to 
manufacturing flaws or cyclic fatigue during operation. 
Numerous cracks can be observed after severe operating 
conditions, especially in high speed spindles [1, 2]. Local 
structural irregularities caused by cracks in the spindle may 
significantly change the dynamic behavior of a rotating 
machinery system. The effects of cracks on the dynamic 
and static behaviors of structures have been studied by a 
number of researchers [3-5]. The effects of cracks on 
spindle dynamics, shaft and rotor systems, were also 
studied by researchers [6-9]. When a spindle rotates, the 
vibrational response is altered by the crack opening and 
closing in each cycle. Most investigations were motivated 
by the hypothesis that only opening cracks markedly 
change the spindle dynamics. This paper focuses on the 
dynamics of a spindle with a transverse crack. 

 High speed machining is one of the most modern 
manufacturing engineering technologies. In a machining 
system, the spindle is the most critical element that affects 
the dynamic performance and capabilities of the system in 
the machining process. However focusing exclusively on 
the spindle system is insufficient because the bearings can 
change the dynamics of a machining spindle system. 
Hence, the bearing effects on the spindle system must also 
be considered. Bearings are used in many rotating 
machines to brace the rotating spindles and rotors. In the 
past, the required rotor speed was low, allowing ball and 
roller bearings to be used in rotating machinery. High 
temperatures are generated with ball-bearing spindle 
systems operating at high speeds. The high temperatures 
often bring about machine failure. To attain greater 
complexity and accuracy, modern engineering technologies 
demand machinery that can be run at high speeds. To avoid 
the high temperatures generated by the contact between the 
spindles and bearings, non-contact magnetic bearings are  
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used for the spindle and rotor in high speed rotating 
machinery. 

 Traditionally, ball bearings have been used to support the 
spindle systems when the rotational speed was not high. 
Previous investigations on bearing spindle systems were 
confined to spindles with ball bearings. In some studies, the 
focus was on the dynamic response of a spindle supported by 
bearings [10, 11]. At higher speeds, this bearing changes the 
stiffness of the entire spindle system and significantly alters 
the system properties [12-15]. Precise machining requires 
higher spindle speeds, making the magnetic-bearing spindle 
necessary. Investigations as [16-20] studied the performance 
and dynamic properties of magnetic bearings. Most studies 
deal with a magnetic ring for a radial magnetic bearing used as 
an unlimited one long magnetic bar for a permanent magnetic 
bearing. Investigation as [21] studied the bearing capacity and 
stiffness of radial magnetic bearings. 

 Thus far, most investigations as [22-24] on the dynamic 
characteristics of a cracked spindle system were limited to 
ball-bearing-type spindles. This study examines the crack 
effects on the dynamic response of a rotating spindle system 
with magnetic bearings. A Euler-Bernoulli beam of circular 
cross section was used to approximate the spindle model. The 
equations of motion for the bearing-spindle system were 
derived using the Galerkin method and Hamilton principle. A 
model the size of an actual spindle system was used. To 
simplify the calculations, massless springs were employed to 
model the stiffness of the magnetic bearings. The effects of 
crack depth, rotational speed and bearing length on the 
dynamic response of a spindle system were investigated. 

 

a spindle supported by bearings 
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a simple model of bearing spindle system 

Fig. (1). A rotating spindle with bearings scheme. 

 

Fig. (2). Geometry of a cracked spindle. 

Theory  

 This paper considers a spindle supported by magnetic 
bearings, as shown in Fig. (1a), to elucidate the dynamic 
response of a spindle system. Fig. (1b) presents a simple 
model for this bearing-spindle system. In this model, 
massless springs are employed to simulate the stiffness of 
the magnetic bearing and support the spindle. The 
rotational speed  of the spindle cannot be ignored in the 
rotating machinery bearing application. In this study, the 
deflection components (z,t), and u(z,t) denote the two 
transverse flexible deflections of the spindle system. E and 
I represent the Young’s Modulus and area inertia of the 
spindle, respectively. Only the transverse flexible 
deflections are studied in this article.  

 According to [25], the governing equations of the 
spindle system are displayed as: 

   

Au 2 A v A 2u + EI u( )
       + k

x1
u z z

1( ) + k
x2

u z z
2( ) = 0

 (1) 

   

Av + 2 A u A 2v + EI v( )
       + k

y1
v z z

1( ) + k
y2

v z z
2( ) = 0

 (2) 

where  

kx1 : the bearing stiffness in u deflection at a position z1 , 

ky1  : the bearing stiffness in v deflection at a position z1 , 

kx2  : the bearing stiffness in u deflection at a position z2 , 

ky2  : the bearing stiffness in v deflection at a position z2 , 

 : density , 

 A  : cross section area, 

 : rotating speed, 

( )  : Dirac delta fuction, 

 
z

1
 : the first located position of bearings, 

 
z

2
 : the second located position of bearings. 

 For convenience, the dimensionless equations of motion 
for this spindle are: 

   

u 2
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AL4
v +
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AL4

2u + u( )
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x1

u z z
1( ) + k

x2
u z z

2( )} = 0
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v + 2
EI

AL4
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AL4
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where the dimensionless parameters are given using: 

 
z =

z

L
, 
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1
=

z
1

L
, 
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2
=

z
2

L
, 

 

=
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, (5) 

 
u z( ) =

u z( )
L

, 
 
v z( ) =

v z( )
L

, 

 

k
x1
=

k
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L3

EI
, (6) 

 

k
x2
=

k
x2

L3

EI
, 

 

k
y1
=

k
y1

L3

EI
, 

 

k
y2
=

k
y2

L3

EI
 (7) 

and the boundary conditions are: 

 u = u = v = v = 0 , at  z = 0  (8) 

 u = u = v = v = 0 , at  z = 1  (9) 

 The Galerkin method is employed to derive the spindle 
equations of motion in matrix form. Therefore, the solutions 
for Eqs. (3) and (4) can be assumed to be:  

  

u z , t( ) = i
i=1

m

z( ) p
i

t( )  (10) 

 

  

v z , t( ) = i
i=1

m

z( )q
i

t( )  (11) 

where 
  i

z( ) ,  
i

z( )  are comparison functions for the spindle 
system, and 

  
p

i
t( ) ,  q

i
t( )  are the time coefficients to be 

determined for the system. The exact solution for a beam with 
free-free boundary conditions is considered, and five 
comparison function modes are used. 

  i
z( ) = i

z( ) = i
z( )

2

1 cosh
i
z cos

i
z( )  (12) 
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i
= i

3

2
u* i 2( ) , 

   i = 1,  2,  3,  (13) 

where 
  
u* ( )  is the unit step function. Substituting Eqs. 

(10) and (11) into Eqs. (3) and (4) respectively, the 
equations of motion in matrix form for the spindle system 
can be derived as:  

   

M
1

     0  

  0      M
2

 

p t( )
q t( )

+ 2
   0       G

1

  G
2
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p t( )
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2
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q t( )
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2 2
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p t( )
q t( )
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2
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2
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  0      K
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p t( )
q t( )

= 0

 (14) 

where 

 

=
EI

AL4
.  

 The elements of the matrices in the above equation are 
given as follows, 
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 For the sake of convenience, Eq. (14) can be rewritten 
as,  

   
M X{ } + G X{ } + 2 K X{ } = 0

 
(25) 

where  

  

M =

M
1

     0  

  0      M
2

 
 (26) 

  

G = 2
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1

  G
2

     0 
 (27) 
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K
e 1

     0  
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e 2

 
+

2
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1
     0  

  0      K
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      +
K

s1 1
     0  

  0      K
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+

K
s2 1

     0  

  0      K
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 (28) 

 A space vector is introduced in Eq. (25) to solve the 
eigenvalue problem for the system. 

 

  

V{ } =
X

X
.  (29) 

 Substituting Eq. (29) into Eq. (25), the equation can be 
rearranged as; 

   

M      0

  0    2 K
V{ } +

G       2 K

2 K         0
V{ } = 0

 

(30) 

 The non-dimensional frequency 
 n

 in Eq. (30), i.e., the 
natural frequency of the spindle system, is defined as:  

  
n
=

n
/

EI

AL4
 for n = 1,2,..... (31) 

 In industry, ball bearings are frequently used to support 
rotating spindles in rotating machinery. Recently, magnetic 
bearings have been employed increasingly to support spindles 
because they must rotate at higher speeds. Few investigations 
focused on the dynamic responses of defective spindle systems 
with magnetic bearings. Therefore, this investigation addresses 
the dynamic response of a cracked spindle supported by 
magnetic bearings. 

Crack Effect 

 Considering a crack located at   z = z *  on this spindle, the 
strain energy of the defective spindle will include the released 
energy caused by the crack. Fig. (2) shows the geometry of a 
cracked spindle. The released energy caused by a crack, as 
noted in [26], with a depth of a  may be expressed as:  

  

U c
=

1 μ2( )
E

K
I

2 ( )
b

b

d  (32) 

where 
 
b = R2 R a( )

2

 

and μ  is the Poisson's ratio of the spindle, 
 
K

I
is the stress 

intensity factor under a mode I load and R is the radius of the 
spindle. In this case, the stress intensity factors 

 
K

I
can be 

approximated as 

 

  

K
I ( ) =

4M
b

R4
R2 2 F

2 h( )  (33) 

where, bM  is the bending moment, and  

 
h = 2 R2 2  (34) 
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= a + R2 2 R  (35) 

  

F
2 h( ) = 2h

tan
2h

0.923+ 0.199 1 sin
2h

4

cos
2h

   (36) 

 The notations a and R are the maximum crack depth 
and radius of the spindle, respectively. Based on the inves-
tigations in [26, 27], alterations of the elastic deformation 
energy caused by lateral bending moments are the only 
important changes in the case of slender beams with a 
crack. The released energy of the crack with respect to  
due to the bending moment is obtained as: 

  

U c
= E 1 μ2( )

2v

z2
z z*( )

b

b

0

a

0

L 2

       R2 2( ) F
2

2

h( ) d d dz

 (37) 

 Similarly, the released energy of the crack with respect 
to  is derived as follows, 
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b
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0
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0

L 2

        2 F
1

2

h( ) d d dz
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where 

  

F
1 h( ) = 2h

tan
2h

               

0.752 + 2.02
h

+ 0.37 1 sin
2h

3

cos
2h

 (39) 

 For simplification, the dimensionless equations are 
employed as: 
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 The bearing-spindle with a crack can be obtained as: 
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 Similarly, the equations of motion for the defective spindle, 
i.e. Eq. 13, can be rearranged in matrix form using Galerkin’s 
method as follows:  
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where  
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Supported by Magnetic Bearing 

 Few investigations on radial magnetic bearings were found, 
so these bearings were selected for this article. The rotor is 
kept in the desired position by a magnetic bearing stator using 
a magnetic field induced by permanent magnets. According to 
[21], the bearing force Fr is derived as follows,  

 

F
r
=

B
r1

B
r 2

4 μ
0

S  (49) 

Where 
 
B

r1
: remanence of the external magnetic loop for the 

magnetic bearing; 
 
B

r 2
 : remanence of the internal magnetic 

loop for the magnetic bearing; 
 
μ
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 : permanence in vacuum 

and,  
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where R1: external radius of the external magnetic 

loop g mgR 2h L+ +  

R2 : internal radius of the external magnetic 

loop g mgR h L+ +  

R3 : external radius of the internal magnetic loop gR h+  

R4 : internal radius of the internal magnetic loop R  

lm : length of the magnetic loop 

 
L

mg
: clearance between the internal and external magnetic 

loops 

 hg: the thickness of the magnetic loop 

 e : is eccentric of the magnetic bearing 

 Consequently, the stiffness of a radial magnetic bearing 
can be derived as follows:  

 

k
m
=

F
r

e
=

B
r1

B
r 2

4 μ
0

S

e
 (59) 

ANALYSIS AND DISCUSSION  

 In ultra-high-speed machining, using magnetic bearings 

to support the spindle is necessary [28]. The dynamic 

properties of a multi-mode spindle with bearings of the 

size actually used in engineering applications are addressed 

and a magnetic bearing is considered in this work. The 

dimensions R=0.02m and L=0.2m of a rotating spindle are 

assumed. The bearings positions are assumed to be 
  
z

1
= 0  and 

  
z

2
= 1 . 

 A spindle system braced by a magnetic bearing is 
important in engineering applications, especially for high-
speed rotational machinery. For the above-mentioned spindle 
dimensions, the important magnetic bearing parameters were 
selected as follows. Nd-Fe-B material was employed to model 
the elements of a permanent magnet in the radial magnetic 
bearings. For this material, the remanence 

 
B

r1
= B

r 2
 

 
= 1.13 wb m2  can be shown. Corresponding to the spindle 
imension, the length of the magnetic 

 
l
m
= 20mm  and the 

clearance 
 
L

mg
= 0.001m  were assumed.  

 

Fig. (3). The variations in the crack flexibility with the crack depth 

ratio. 

 The variation in the crack flexibility with the crack depth 
ratio is plotted in Fig. (3). The numerical analysis reveals that 
the crack flexibility increases as the crack depth is increased. 
From the results, the crack depth markedly affects the shaft 
stiffness. As a whole, these results and those from previous 
investigation [29] are identical. Fig. (4) presents the natural 
frequencies of a spindle bearing system with and without 
cracks. The logarithmic scale was employed to study higher 
modes in this figure. At lower modes, the natural frequencies 
of the spindle bearing system change slightly regardless of 
whether there is a crack or not in the system. However, at 
higher modes, the natural frequencies of a spindle bearing 
system decrease when there is a crack in this spindle system. 
With magnetic bearings, the crack effect on the dynamics of a 
spindle system has more influence at the higher modes than at 
the lower modes. The effect of the crack depth on the natural 
frequencies is considered in Fig. (5). In this figure, the lower 
and higher mode natural frequencies, the 1

st
 and 5

th
 modes, are 

studied together. Both the 1
st
 and 5

th
 natural frequencies 

decrease with increasing crack depth. If the crack depth were 
0.1 , the crack size would have little influence on the 

natural frequencies of a rotating blade system. However, the 
natural frequencies are depressed significantly when the crack 
size is larger than 0.1.  
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Fig. (4). The natural frequencies of a magnetic-bearing spindle 

with and without a crack, (  = 0.5,  a D = 0.25,  z*
= 0.5 ). 

Fig. (5). The natural frequencies of a magnetic-bearing spindle 

with different crack depths, (  = 0.5,   z*
= 0.5 ). 

 Crack location dramatically changes the dynamics of a 
spindle with magnetic bearings. Fig. (6) shows the 
variation in the natural frequencies of a spindle with 
different crack locations. As mentioned above, only the 1

st
 

and 5
th

 natural frequencies were examined. When the crack 
is located at both ends, the natural frequencies are almost 
the same as a system without a crack. The value of the 

natural frequencies of the system is the lowest when the crack 
is located at the middle of the spindle. The phenomena 
illustrated in Fig. (6a) and (6b) are similar. The effect of 
rotation speed on the dynamics of a cracked spindle with 
magnetic bearings is plotted in Fig. (7). Double roots for the 
natural frequencies of a cracked spindle with magnetic 
bearings are observed only if this system has no rotation speed. 
With rotation speed, the natural frequencies of this system are 
divided into two parts, the forward and backward frequencies. 
Only the 1

st
 and 2

nd
 natural frequencies are shown in this 

figure. The 1
st
 natural frequency of a cracked spindle with 

magnetic bearings increases as the rotational speed increases. 
However, it was found that if the rotational speed increases, 
the 2

nd
 natural frequency decreases. 

Fig. (6). The natural frequencies of a magnetic-bearing spindle with 

different crack locations, (  = 0.5,   a D = 0.25 ). 

 For radial magnetic bearings, the length of the bearings 
remarkably alters the system stiffness. Fig. (8) illustrates the 
variations in natural frequencies for a cracked spindle with 
different magnetic bearing lengths. The results indicate that the 
natural frequencies of a magnetic-bearing spindle increase as 
the magnetic bearing length increases. Finally, the frequency 
responses of a spindle system with and without cracks are 
illustrated in Fig. (9). Both the lower and higher frequency 
domains were examined. In the lower frequency domain, the 
figure shows that the frequency response of a bearing-spindle 
system without a crack is almost the same as one with a crack. 
The peak frequency response values for a spindle with 
magnetic bearings are depressed in the higher frequency 
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domain if there is a crack in the spindle. As above, the 
effect of a crack may significantly influence the dynamics 
of a spindle system with magnetic bearings at higher 
modes.  

 
Fig. (7). The natural frequencies of a magnetic-bearing spindle 

with different rotational speeds, (  z
*
= 0.5,   a D = 0.25 ). 

 

Fig. (8). The natural frequencies of a rotating cracked spindle 

with different lengths of magnetic bearing, 

(  z
*
= 0.5,   a D = 0.25 ). 

CONCLUSIONS 

 The effect of cracks on the dynamics of a spindle 
supported by magnetic bearings was studied. The most 
significant observations in this study are summarized as 
follows: 

1. With magnetic bearings, the natural frequencies of a 
spindle system decrease as the depth of the crack 
increases. 

2. At higher modes, a crack will markedly affect the 
dynamics of a spindle with magnetic bearings. 
However, at lower modes, the natural frequencies of 
the spindle bearing system change just slightly no 
matter whether there is a crack or not.  

3. The rotational speed and magnetic bearing length will 
significantly influence the dynamics of a spindle with 
magnetic bearings.  

 

Fig. (9). The frequency response of a rotating spindle with and 

without a crack, (  = 0.5,  a D = 0.25,  z*
= 0.5 ) 

4. The crack will dramatically affect the dynamic 
characteristics of a spindle with magnetic bearings if the 
crack is located at the middle of the spindle. 
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