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Abstract: This paper aims at investigating, both through a theoretical and an experimental analysis, the discharging phase 

of a blowing unit of compressed air, used for the industrial production of plastic made bottles. The proposed mathematical 

model leads to a system of differential equations describing the flow through an open system. The solution was found by 

numerical simulations using the software Matlab, determining the gas density, pressure, temperature and mass flow rate, 

as functions of time. The pressure loss across the down flow has been tackled with a theoretical investigation, determining 

the mechanical loss coefficient  and evaluating the effect of these losses on the emptying time of the blowing unit. The 

numerical results agree with the real discharging times obtained by experimental tests, and the proposed improvements 

allow to reduce loss of pressure and the emptying time of 35% and 20% respectively. 

INTRODUCTION 

 The excellent level, in terms of quality and productivity, 
reached by industrial bottling lines, in particular the PET 
bottles lines, proves that the interest in bottling industries, in 
the last years, is increasing. 

 The blowing machine here examined is based on an 
optimised frame, including both the oven for pre-shaped 
bottles heating and the stretch-blowing units. These ones are 
mounted on a rotating platform on which the pre-shaped 
bottles are conveyed, after the heating phase, and the formed 
bottles evacuation accomplished. 

 In this paper we deal with one of the main problems of 
the compressed air discharging phase, that is the reduction of 
the required time. Even if it doesn’t influence the quality of 
the shaped bottles, it can affect the machine efficiency. With 
this purpose in mind, problems related to turbulent flux of a 
gas in not stationary conditions are considered from a 
theoretical point of view, with particular attention to the 
quantification of pressure losses and to their influence on the 
discharging time. On this regard, it is possible to notice a 
lack of reference in literature; there are no published papers 
concerning similar or related work by other authors. Finally, 
we aim at optimizing the discharging phase by acting on the 
more significant discharge channel obstructions. 

 The goals of this paper are: 

-  the analysis of the gas discharging path with a 
particular attention to geometry and obstructions; 

-  the proposal of mathematical model able to simulate 
the discharging phase; 

-  the evaluation of the loss of pressure coefficient  
(taking account of both concentrated and distributed 
losses); 

-  the improvement of the channel geometry aimed at 
reducing the discharge phase time. 
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ANALYSIS OF THE GAS OUTFLOW 

 During the platform rotation, on the blowing units the 
stretch-blowing and air exhaust processes occur (Fig. 1). The 
discharging phase of the compressed air from the blowing 
unit occurs after the stretch-blowing phase, when the bottle 
has been already shaped. 

 A solenoid valve controls the compressed air inlet into 
the blowing unit for the bottle filling. Once the valve is 
closed, an air volume (including the bottle, the blowing 
nozzle, a double effect cylinder in which is located the stem 
for the bottle stretching, a flexible duct and a valve control 
unit) is isolated. After the stretch-blowing phase, the 
compressed air reaches a thermodynamic equilibrium with a 
temperature of 10 °C and a pressure of 37 bar (the blow 
moulding process takes place at a temperature around 3 °C). 
These conditions have been measured by means of 
thermocouples and manometers [1]. The discharging phase 
starts at the opening of the solenoid valve. The compressed 
air flows through a second flexible duct which connects the 
valve control unit with a muffler, which reduces the acoustic 
noise caused by the gas ejection. A cooling unit is installed, 
aimed at reducing the air temperature and its aptitude to keep 
humidity, so that the risk of condensation is decreased. 

 The mathematical model considers a thermodynamic 
system constituted by a gas in a tank. At first the discharge 
valve is closed and the tank contains a gas whose absolute 
pressure is higher than the atmospheric pressure. Once the 
discharge valve is opened, the discharging of the gas into the 
atmospheric environment is studied, being well-known the 
volume of the tank, the exit gas cross-section, the initial and 
boundary thermodynamic conditions and the nature of the 
gas. 

 The following hypotheses are assumed: 

-  the gas is compressible with uniform physical 
properties; 

-  the process is adiabatic; 

-  the pressure head is described by introducing the 
mechanical loss coefficient  [2,3], defined as: 
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p po =
W 2

2
 (1) 

 In this model the mechanical losses, both concentrated 
and distributed, are located exactly in the exhaust section, 
which acts, in this way, as the only obstruction to the down 
flow. The mechanical loss coefficient , defined in Eq. (1), 
connects gas pressure and density just upstream the exhaust 
section with gas pressure downstream and average velocity 
on the exhaust section. The discharging phase is extremely 
fast, hence the transformation can be considered adiabatic. 

 The parameters used in simulating the discharging 
process from the blowing machine, are [4]  = 1.4, R = 
287.041 J/kgK, cv= 716.4 J/kgK, V = 1.768x10

-3
 m

3
, S = 

1.767x10
-4

 m
2
, pin= 37 bar, p0= 1.01325 bar, Tin= 10 °C. For 

the ideal gas, the initial density would be in= 45.52 kg/m
3
. 

IDEAL GAS MODEL 

 In transient conditions, the energy balance equation for 
the ideal gas is: 

m
W 2

2
+ cv T TR( )+ RT =

=
M

cv T TR( ) M cv

T
 (2) 

 The mass balance equation reads as: 

M ( )= ( ) V  and 
M

= m  (3) 

 The mean velocity is linked to the mass flow rate: 

W =
m

S
=

V

S

1
 (4) 

 As a consequence, the gas pressure is linked to the 
density, from Eq. (1), as follows: 
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 The pressure and its derivative are then: 
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 The time derivative of temperature, for the ideal gas, is: 

T
=

1 p p
2

1

R
 (7) 

 Hence the Eq. (2) reads as: 
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valid if   0. This is a second order differential equation, 
not linear and written in a not normal form (that means not 
singleness of the Cauchy’s problem). 

 Nevertheless, the solution investigated is not easy to 
obtain. 

 The gas density decrease is expected at the initial 
moment, in which the tank is opened, hence /   0. 

 By defining the new function: 

u( ) =  (9) 

the Eq. (8) can be written as: 

u
u C1

2
u2

= C2  (10) 

 

Fig. (1). Main phases of the process. 
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where the known constants C1 and C2 are: 

C1 = +1+
1

      C2 =
S2

V 2 po  (11) 

 The first order differential Eq. (10) requires, to be solved, 
a further definition: 

 
z(ñ) = u2  (12) 

 Hence the first order linear differential equation is 
obtained 

z C1 z = 2 C2  (13) 

whose solution has the following form: 

z( ) =
C1

2C2

1 C1

1 C1 + K  (14) 

with K constant of integration calculated by means of the 
initial condition. 

 Using the Eqs. (10) and (12), the solution (14) can be 
written as: 

= ±
2C2

1 C1

+ K C1

1

2

 (15) 

 The only solution with physical meaning is the negative 
one, because, when the tank is opened, the density of the gas 
is expected to drop. 

 The existence domain for the solution to the Eq. (15) is: 

2C2

(1 C1 ) K

1

C1 1

 (16) 

 The steady state is represented by /  = 0, which 
implies: 

*=
2C2

(1 C1 ) K

1

C1 1

 (17) 

 The density function  is monotonically decreasing; it 
reaches its steady state at the time *, so that the solution to 
the problem is the solution to the Eq. (15) for   *, the Eq. 
(17) for   *. 

 Even any small oscillation of , due to pressure waves 
spreading along the exhaust duct, can be ruled out by a 
qualitative analysis [5] of the differential equation. The 
phenomenon concerning the emptying of the tank ends after 
a * time, just when the first derivative of  is zero. 

 Coming back to the Eq. (15) and integrating it, starting 
from the initial state  = 0, we get: 

d '
0

=
2C2

1 C1

' + K 'C1

1

2

in

d '  (18) 

 Unfortunately there is not an analytical solution to the 
Eq. (18). So, after having reduced the beginning linear 
differential equation in order to obtain a qualitative analysis 

of the solution, it is suitable resorting to a numerical 
analysis. 

 The solution to Eq. (8) has been numerically investigated 
using a dedicated software: Matlab. Matlab collects 
additional software modules, called “toolboxes”, which 
perform specific tasks. Many of these toolboxes can be used 
to solve differential equations with constant coefficients. In 
particular, the Runge-Kutta method of second and third class 
[6], has been chosen to solve this model. The respective 
solver function of Matlab is “ode23”; it is a one step solver 
which solves initial value, moderately stiff problems. 

REAL GAS MODEL 

 Looking at the intensive properties (pressure and 
temperature), for both initial state and critical point of air, 
the reduced coordinates have been computed and, resorting 
to the Nelson-Obert diagram [2], the compressibility factor 
has been calculated. It allows quantifying the real gas 
deviation from the ideal gas behaviour. Fearing the ideal gas 
hypothesis not reliable, a second model of calculation has 
been accomplished: the real gas model, according to Van der 
Waals equation: 

p +
a

v2 v b( ) = R T  (19) 

 Following the same procedure as for the ideal gas model, 
the energy balance equation reads as: 

1 b( ){
2

2
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2

2
R
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+

+ 2 b ]
R

cv

+ 2b 1
a S2

V 2
2

+

R

cv

+1
S2
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 (20)  

valid if   0. 

 It can be observed that, if a and b were supposed 
negligible, the energy balance Eq. (20) would coincide with 
the differential Eq. (8) of the ideal gas model. 

 Solving this second order not linear differential equation, 
the behaviour the tank discharge can be described. Even in 
this case, the computation of the equation has been carried 
out numerically using Matlab, in particular the function 
solver “ode23”. 

 Some more parameters of the air must be introduced, 
exactly: a = 161.9 (m

3
/kg)

2 
Pa, b = 1.26x10

–3
 m

3
/kg [2]. 

 The density value at the initial state has been computed, 
being known pressure and temperature values, applying the 
Van der Waals equation. It is equal to in=46.98 kg/m

3
, 

slightly different from the value for the ideal gas model 
(45.52 kg/m

3
). 

THE LOSS COEFFICIENT  

 The coefficient , defined by the Eq. (1), represents all 
the coefficients of mechanical losses (both concentrated and 
distributed) related to the flow in the control volume: 
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= i
1

n

 (21) 

with i =  ci +  di. 

 The computation of the coefficient  has been carried out 
by means of a dedicated literature [7], presenting a huge 
collection of tables and charts for every kind of pressure loss 
encountered by a fluid stream. 

 By the results obtained [7], it comes up that the 
distributed losses just represent 5% of the total losses. This 

gives reason to the initial hypothesis: the coefficient of 
mechanical losses  is particularly affected by the 
concentrated mechanical losses, i.e. by the duct geometry. 
For the particular geometry here considered, the loss 
coefficient is  = 39.93 [7]. 

RESULTS 

 This section shows the perfect gas model results. These 
results have been obtained introducing into the model, not 
only the known parameters related to gas properties, system  
 

 

Fig. (2). Transient air density within the open thermodynamic system. 

 

Fig. (3). Absolute air pressure within the open thermodynamic system. 

 

Fig. (4). Airflow rate from the open thermodynamic system. 
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geometry, and boundary and initial thermodynamic 
conditions, but also the coefficient of mechanical losses . 

 Figs. (2-5) represent a comparison between the time 
evolution of density, pressure, flow rate and gas velocity 
according to ideal gas model for three different values of the 
coefficient . 

 Introducing into the ideal and real gas models, the value 
of  computed for the blowing machine, and looking at the 
moment in which the gas density derivative becomes zero, 
that is the same in which the air pressure reaches the 

atmospheric value, we are able to know the time needed to 
complete the exhaust phase: 

= 0.7695 s Perfect gas model

= 0.7705 s Real gas model
 (22) 

 As the mechanical losses appeared to be mostly 
concentrated into the double effect cylinder, a test was 
carried out on the cylinder, using two digital manometers (to 
measure pressure upstream and downstream), a Pitot tube (to 
measure average velocity) and a thermocouple. Following 

Fig. (5). Air velocity in the outflow section during the transient. 

Fig. (6). Mach number during the discharge transient. 

 
Fig. (7). Compressibility factor evolution during the discharge transient. 
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the results of the experimental tests [1], the time required by 
the blowing machine, to discharge the quantity of air needed 
to shape a plastic bottle (1.5 dm

3
) is about 0.7÷0.8 s. 

 In Fig. (6) the Mach number is reported in the exit 
section, during the discharge transient. It is always less than 
unit. This result let us say the air discharge from a blowing 
station happens with a subsonic motion. 

 The comparisons concerning results obtained with ideal 
gas and real gas models, show a considerable similarity. This 
consideration is analytically proven; in fact Fig. (7) shows 
that the compressibility factor, calculated with the equation: 

Z =
p

R T
 (23) 

is about a unitary value during the entire transient. 

 With the purpose of reducing the time required to carry 
out the complete outflow of the gas (that means to increase 
the machine performance) the possibility to decrease the 
coefficient of mechanical losses  has been investigated. 
Paying attention to the geometric components, in particular 
the two bushings of the stem set into the double effect 
cylinder, which appeared to be the major obstacles to the air 
flow, and modifying properly their geometry, the coefficient 
 has been reduced from 39.93 to 25.95. 

 Introducing the new value of  into the ideal and real gas 
models, it has been found a reduced time for the discharging 
phase:  

=

=

modelgasReals0.6287

modelgasPerfects0.6207
 (24) 

 
Fig. (8). Section view of the air discharging flow into the stretch-blowing unit, with a zoom view of the stem bushings. 

Fig. (9). Section view of the air discharging flow into the stretch-blowing unit, with a zoom view of the stem bushings, after the optimisation 

 
Fig. (10). Air density evolution during discharging phase, after the optimisation of the duct geometry. 
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 The stretch-blowing unit is shown in Figs. (8-9), focusing 
the stem bushings before and after the optimization, 
respectively. 

 Fig. (10) shows the air density evolution during the 
transient. 

 Fig. (11) shows the required time for the discharging 
phase, as a function of the coefficient of mechanical losses. 

CONCLUSIONS 

 In this study, a numerical model has been carried out in 
order to analyze the discharging phase of air from a blowing 
machine. The model of simulation is based on the laws of 
thermodynamic governing the outflow of a compressible gas 
from an open system. 

 The mechanical losses, due to each geometrical 
singularity of the ducts crossed by the air, have been 
estimated. The discharging path has been modified in order 
to reduce their relevance. An investigation how the exhaust 
phase length is affected by the total coefficient of mechanical 
losses was carried out. 

 The geometry optimisation of the discharging path 
showed a reduction of the coefficient  of 35% and a 
discharging time reduction of 20% that means to increase the 
blowing machine efficiency. 

 Another parameter affecting the time reduction is the air 
temperature at the beginning of the discharging phase into 
the blowing unit. 

 The real gas model and the ideal gas model give very 
similar results, being the compressibility factor Z very close 
to unity. Future work will be focussed on the 3-D gas 
velocity and temperature, obtained through numerical 
analysis, slightly simplified by the ideal gas model. 

GLOSSARY 

a = Van der Waals coefficient in Eq. (19); (m
3
/kg)

2 
Pa 

b = real gas covolume; m
3
/kg 

C1 = dimensionless coefficient 

C2 = constant; kg/m
3
 s

2
 

cp = specific heat at constant pressure; J/kg K 

cv = specific heat at constant volume; J/kg K 

K = constant of integration for the Eq. (14) 

m = gas mass flow rate; kg/s 

M = air mass into the tank; kg 

Ma = Mach number W/Ws 

n = number of singularities along the discharging path 

p = pressure; Pa 

p0 = atmospheric gas pressure; Pa 

R = ideal gas specific constant; J/kg K 

S = gas outlet section surface; m
2 

T = gas temperature; K 

TR = conventional temperature corresponding to zero  
   value of the gas internal energy; K 

v = specific gas volume; m
3
/kg 

V = tank volume; m
3
 

W = average gas velocity; m/s 

Ws = sound velocity in the gas; m/s 

Z = compressibility factor 

GREEK SYMBOLS 

 = mechanical loss coefficient 

 = cp/cv ratio 

 = gas density; kg/m
3 

* = steady state density defined in Eq. (17); kg/m
3
 

 = time; s 

* = instant time corresponding to ( )= * 

SUBSCRIPTS 

c = concentrated mechanical losses 

d = distributed mechanical losses 

i = singularity along discharging path 

in = initial time,  = 0 
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Fig. (11). Time of the discharging phase as a function of the coefficient of mechanical losses. 
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