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Abstract: Estimating passive earth pressure accurately is very important when designing retaining wall. Based on the 
unified strength theory and plane strain assumption, an analytical solution has been developed to determine the passive 
lateral earth pressure distribution on a retaining structure when the backfill is cohesive and inclined considering the effect 
of the intermediate principal stress. The solution derived encompasses both Bell’s equation (for cohesive or cohesionless 
backfill with a horizontal ground surface) and Rankine’s solution (for cohesionless backfill with an inclined ground 
surface). 
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INTRODUCTION 

 Passive earth pressure plays an important role in soil-
structure interaction in many structures in civil engineering 
such as retaining walls, retaining piles around a foundation 
ditch, and so on. Therefore, estimating the pressure accu-
rately is very useful in geotechnical engineering, especially 
in the design of simpler retaining structures such as small 
gravity retaining walls. A theoretical framework for earth 
pressure theory has been firmly established over the past 
couple of decades. Classical Rankine passive pressure theory 
is one of the most important earth pressure theories because 
of its rigorous theory, clear concept and simple calculation. 
Therefore, Rankin’s theory is still used. 
 Passive earth pressure, σp, acting on a retaining structure 
with inclined cohesionless backfill with an angle β with the 
horizontal (with cohesion, c=0, and friction angle, φ>0) is 
expressed by Rankine: 
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 Here, σz is the vertical effective stress, and Kp is the 
passive earth pressure coefficient, where 
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 When the backfill is cohesive (φ > 0, c > 0) and is 
horizontal, the passive earth pressure, σp, is calculated using 
Bell’s eq. (3): 
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Where 
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 Equations (1)–(4) are valid for smooth vertical walls. 
Although the back of every real retaining wall is rough, 
approximate values of the earth pressure can be obtained on 
the assumption that it is smooth [1]. Therefore, all the 
retaining walls in this paper are assumed to be smooth and 
vertical. 
 There are other theoretical methods to determine the 
lateral earth pressures when the wall is vertical, in addition 
to the method of Rankine. Based on the assumption of a 
logarithmic spiral failure surface, Caquot and Kerisel [2] 
developed tables of earth pressure coefficients. Sokolovski 
[3] presented a method based on finite-difference solution. 
Habibagahi and Ghahramani [4] developed a solution for 
lateral earth pressure coefficients based on zero extension 
line theory.  
 All the above methods can not be used in the case where 
the soil behind the wall is sloping and consists of soils with 
cohesion. With the trial wedge (graphical) method NAVFAC 
[5] determined the active lateral force for each case using a 
force polygon.  
 In general, the most favorable backfill materials are 
permeable coarse-grained soils with well settlement, prefer-
ably with little silt or no clay content, but such materials may 
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be unavailable or too expensive. So in some areas where 
well-drained granular soils are in short supply locally 
available cohesive or poor quality granular soils are used as 
backfill [1]. 
 Based on multi-slip mechanism and the model of multi-
shear element, M.H.Yu established the unified strength 
theory (UST) which takes into consideration the different 
contribution of all stress components to the yield of failure of 
materials [6, 7]. The UST encompasses the twin shear 
strength theory [8, 9] and single strength theory. The theory 
agrees with experimental results well over a wide range of 
stress states for many materials including metal, rock, soil, 
concrete, and others. So it has been applied successfully in 
some cases [10-12]. 
 However, little research on passive earth pressure has 
been done with respect to the intermediate principal stress. J. 
Zhang [13] has done some work. Further studies are still 
necessary to calculate passive earth pressure considering all 
principal stresses.  
 The purpose of this paper is to determine the passive 
lateral earth pressure distribution on a retaining structure 
against an inclined cohesive backfill when considering the 
intermediate principal stress.  

REVIEW OF THE UNIFIED STRENGTH THEORY 

 The UST has a unified model and simple unified mathe-
matical expression that is suitable for various materials. The 
mathematical expression can be introduced as follows [6, 7]: 
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Where b is coefficient of intermediate principal stress, the 
parameter, λ, is the ratio of tensile strength, σt, and 
compressive strength, σc. In geotechnical, λ and σt can be 
expressed by shear strength parameters: 
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 According to unified strength theory, the parameter b 
plays a significant role. With different values of b, the uni-
fied strength theory represents or approximates all the tradi-
tionally strength or yield criteria. Hence, the unified strength 
theory may be regarded as a theoretical system to cover a 
series of regular strength criteria. When b=0; 0.5 and 1, the 
Tresca yield criterion, linear approximation of the von Mises 
yield criterion and the twin-shear stress yield criterion are 
obtained, respectively [6]. Fig. (1) shows the loci of UST in 
the deviatoric plane. 

 
Fig. (1). The loci of the unified strength theory in the deviatoric 
plane (by M.H. Yu 2001). 

 Substituting eqs. (7) and (8) into eq.(5) and eq. (6), we 
get: 
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THEORETICAL ANALYSIS MODEL 

 The following conditions are assumed in deriving the 
analytical solution: (1) the soil is isotropic and homogeneous 
and has both internal angle of friction and cohesion; the 
friction and cohesion are constant and remain independent of 
depth; (2) the force on the wall is acting parallel to the slope.  
 Consider a retaining wall with a cohesive backfill of 
slope angle β (β is positive when the surface of the backfill 
slopes upwards from the top of the wall), as shown in Fig. 
(2). If the backfill of the retaining wall moves to the wall, the 
force on the wall decreases gradually. On the contrary, if the 
retaining wall moves to the backfill behind the wall, the force 
on the wall increases gradually. When the soil behind the wall 
is in the passive stress state, the pressure acting on the wall is 
the passive earth pressure. For an element of soil at the dept z 
at the back of the wall, the construction of Mohr’s circle of 
stresses in passive stress state is shown in Fig. (3). The 
vertical stress on the soil element is denoted as OA and is 
expressed as 

OA = γz cosβ 

Where γ is the unit weight of the soil, and z is the depth 
below ground surface. The lateral stress on the soil element 
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is denoted by OB' in Fig. (3). OA and OB' will hereafter be 
referred to as σz and σ, respectively. However, it should be 
noted that in this paper σz and σ are not stresses acting 
normal to their respective planes.  

 
Fig. (2). General soil-structure system. 

 
Fig. (3). Mohr’s circle to derive the analytical active earth pressure 
expression. 

 The equations of the Mohr’s circle and Line OH can be 
written as, respectively 
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 So we get a unary quadratic equation of σ: 
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Passive earth Pressure Strength pp  

 When the soil is in passive limit equilibrium state, the 
force is denoted as the passive earth pressure pp. As seen 
from Fig. (3), lines OH and OH' are symmetrical, the lengths 
of lines OA and OA' are the same; the lengths of lines OB 

and line OB' are also the same. When the force on the wall is 
the passive earth pressure, then  
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Where σA and σB are the two roots of eq. (13): 
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 From eqs. (13), (14) and (16), the following equations are 
obtained: 
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 According to eqs. (14), (15) and (16), eq. (19) is 
obtained: 
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 Equating eq. (19) with eq. (17), we get: 
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Definition of Intermediate Principal Stress 

 Plane strain state is widely existent in geotechnical 
engineering such as slope, strip foundation, retaining wall 
etc. Intermediate principal stress can be determined by using 
the generalized Hook’s law when analyzing the strength and 
deformation condition of rock and soil body with the 
nonlinear method. Suppose that the cross section of retaining 
wall as x-z plane, thus the direction vertical to the cross 
section is y-direction. With the elastic solution of plane 
strain problem, 
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 In x-z plane: σz+σx=σ1+σ3. The intermediate principal 
stress is tentatively defined as:  
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 Substituting eq. (21) into eqs. (9) and (10), then eqs. (22) 
and (23) can be obtained: 
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Then, 
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 Based on the UST and plane strain assumption, we derive 
the passive earth pressure in two different cases: 

FORMULA DERIVATION OF PP IF 
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Formula Derivation of pp 
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 Minimum principal stress σ3 can be obtained according to 
eq. (22): 
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 Uniting eqs. (18) and (25), the following equation is 
obtained: 
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 Eq. (26) is a unary quadratic equation of σ1, we here 
introduce parameters of G and Q,  
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 Here, we have to make sure that discriminant of the 
square root is positive (G2-4Q > 0) in order to get the real 
root. Obviously, the inclined angle should be bigger than the 
internal friction angle.  

 Substituting eq. (28) into eq. (24), we can obtain:  
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 In eq. (28), the positive root σ1 becomes the minimum 
principal stress in passive earth pressure circle (while the 
negative root σ1 becomes the maximum principal stress in 
active earth pressure circle); Likewise, in the eq. (29), the 
bigger σ3 is the minimum principal stress in passive earth 
pressure circle, and the other is the maximum principal stress 
in active earth pressure circle. 

 In the passive earth pressure circle: 
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 Substituting eq. (30) into eq. (20), we can obtain: 
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 Eq. (31) can be used to calculate the passive earth pres-
sure strength with an inclined cohesive backfill considering 
the effect of the intermediate principal stress.  

 Cases of pp when, 
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 The validity of eq. (31) can be verified for simplified 
soil–structure scenarios. 

Case A 

 Cohesive soil with horizontal backfill surface behind the 
wall not considering the intermediate principal stress 

Substituting β=0, b=0 in eqs. (26) and (27), we get 
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And 
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 Substitute eq. (35) into eq. (31) when β=0, b=0: 
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 Which is identical to Bell’s expressions for cohesive 
soils, eqs. (3) and (4). 

Case B 

 Granular soil with an inclined backfill surface not 
considering the intermediate principal stress (when b=0) 
 Substituting c=0, b=0 in eqs. (26) and (27), we get 
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Substitute eq. (39) into eq. (31) when c=0, b=0: 
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 Which is identical to Rankine’s expressions with an 
inclined backfill surface for cohesionless soils, eqs. (1) and 
(2). Obviously, we have to make sure that discriminant of the 
square root is positive (cos2β-cos2φ > 0) in order to get the 
real root, the inclined angle should be smaller than the 
internal friction angle from eq. (40).  

 Formula Derivation of pp if 
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Formula Derivation of Passive Earth Pressure pp 

 The derivation process of the section, very similar to 
section 4, is as follows: 

 According to eq. (23) maximum principal stress σ1 can be 
obtained, 
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 Based on eqs. (18) and (41), the following expression is 
obtained: 
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 Eq. (42) is a unary quadratic equation about σ3, we 
introduce another two parameters G' and Q': 
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 So the solution to eq. (42) about σ3 is obtained: 
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 Here, we, also, have to make sure that discriminant of the 
square root is positive (G2-4Q > 0) in order to get the real 
root. Obviously, the inclined angle should be smaller than 
the internal friction angle.  

 From eqs. (42) and (45),  
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 Similarly, in eq. (45), the positive root σ3 becomes the 
minimum principal stress in passive earth pressure circle, 
(while the negative root σ3 becomes the minimum principal 
stress in active earth pressure circle); Likewise, in the eq. 
(46), the bigger σ1 is the maximum principal stress in passive 
earth pressure circle, and the other is the maximum principal 
stress in active earth pressure circle. 

 In passive earth pressure state: 
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 Finally, the passive earth pressure is obtained: 
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 In order to verify the validity of eq. (48), there are 
simplified soil–structure scenarios. 

Case A 

 Cohesive soil with horizontal backfill surface behind the 
wall not considering the intermediate principal stress 
 Substituting β=0, b=0 in eqs. (44) and (45), we get 
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 Substituting eq. (51) into eq. (48) when β=0, b=0, we 
obtain: 
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 Which is identical to Bell’s expressions for cohesive soils 
with a horizontal backfill surface, eqs. (3) and (4). 

Case B 

 Cohesionless soil with an inclined backfill surface not 
considering the intermediate principal stress (when b=0) 
 Substituting c=0, b=0 in eqs. (44) and (45), we get, 
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 Substituting eq. (55) into eq. (48), we obtain: 
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+
2c(1+ b) cos#

(1! sin#)(1+ $b)
) cos%

! & z cos%

= & z cos%
cos% + cos2 % ! cos2 #

cos% ! cos2 % ! cos2 #

 (56) 
 Which agrees with Rankine’s expressions for cohesion-
less soils with an inclined backfill surface, eqs. (1) and (2). 
Obviously, we have to make sure that discriminant of the 
square root is positive (cos2β- cos2φ > 0) in order to get the 
real root, the inclined angle should be smaller than the 
internal friction angle from eq. (56).  

COMPARISON BETWEEN THE NEW RESULTS AND 
THE CLASSICAL ONES 

 In order to show the differences between the classical 
(b=0) and the present magnitudes of the earth pressure, we, 
firstly, should know whether σ2 is bigger than 

 

!
1
+!

3

2
+
!

1
" !

3

2
sin#  or not. The result counts on the 

values of Poisson’s Ratio (ν) and internal friction angle (φ). 
The value of ν is, mostly, less than 0.5, so σ2 is the smaller 
one. Two cases are listed as follow: 

Case A: Comparison between the New Results and 
Rankin’s Theory 

 There are three figures (Figs.4, 5 and 6) to compare the 
new results with Rankin’s theory by changing different 
parameters. The results show that passive earth pressures 
computed by Rankin’s theory are obviously higher than the 
new results. The pressures become smaller when b increases 
from Fig. (4). The pressures change slightly with Poisson’s 
ratio increasing from Fig. (5). 

Case B: Comparison between the New Results and Bell’s 
Equation 

 Similarly, we make another three figures (Figs. 7, 8, and 
9) to compare the new results with Bell’s equation by 
changing different parameters. The results show that passive 
earth pressures computed by Bell’s theory are obviously 
higher than the new results. From the figures, the pressures 
become smaller when b increases. The pressures decrease  
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Fig. (4). Pressures at different heights changing with b. 

Fig. (5). Pressures of different Poisson’s Ratios changing with b. 

Fig. (6). Pressures of different internal friction angles changing with b. 
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slightly with Poisson’s ratio changing from Fig. (8), and 
greatly with internal friction angle changing from Fig. (9). 

CONCLUSIONS AND DISCUSSIONS 

 An analytical solution has been developed to determine 
the passive lateral earth pressure distribution on a retaining 

Fig. (7). Pressures at different heights changing with b. 

Fig. (8). Pressures of different Poisson’s Ratios changing with b. 

Fig. (9). Pressures of different slope angles changing with b. 
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wall with a cohesive inclined backfill considering the effect 
of the intermediate principal stress based on UST and the 
plane strain assumption. The results show that the Poisson’s 
Ratio, ν, has an slight effect on the earth pressure while 
coefficient of intermediate principal stress, b, has an big 
effect on the earth pressure. The analytical solution is a 
generalized expression that can be used to for retaining 
structures against inclined various soil and rock backfills. 
The results show that the analytical solution encompasses 
both Rankine’s solution and Bell’s equation.  
 However, it should be noted that the principal stress σy 
be not always the intermediate principal in the direction of 
εy=0. Only in the plane strain condition, the principal stress 
σy is always the intermediate principal in the direction of 
plane strain. It is a pity that, in this paper, there is no 
comparison between the calculated earth pressure and the 
actual earth pressure, mostly because the actual earth 
pressure is hard to be measured. 
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LIST OF SYMBOLS 

σ1 = Maximum principal stress 
σ2 = Intermediate principal stress 
σ3 = Minimum principal stress 
b = Coefficient of intermediate principal shear stress 
σt = Tensile strength 
σc = Compressive strength 
c = Soil cohesion 
φ = Internal friction angle of soil 
λ  = The ratio of tensile strength σt and compressive  
  strength σc 

α = Angle that the failure surface makes with the  
  horizontal 
εy = Strain in y-direction 

E = Modulus of elasticity 
γ = Unit weight of soil 
ν = Poisson’s Ratio of filling, 0<ν<0.5 
β  =  Angle that backfill makes with the horizontal 
Pp = Passive lateral earth pressure 
τ  =  Shear strength of soil 
σ = Lateral stress in soil 
σz = Vertical stress in soil at depth of  
z = Depth below ground surface 
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