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Abstract: Diesel engines have been widely used in various engineering applications. The performance of diesel engines is 

influenced greatly by the operation condition of the cylinder liner-piston ring. It is therefore crucial to investigate and 

assess the working condition of the cylinder liner-piston ring. Literature review indicated that there are few studies on this 

issue. Therefore, this study proposes a condition identification model for the cylinder liner-piston ring via fuzzy C-means 

clustering technique. The experiments of different surface treatment of cylinder and several typical fault modes were 

carried out using an internal combustion engine simulation tester. The fuselage vibration signals of the diesel engine were 

collected.The wavelet packet was then used to obtain the high frequency components of the vibration signal and extract its 

energy characteristics. The vibration identification model based on fuzzy C-means clustering has been established 

according to these characteristics. The analysis results show that the proposed model can identify the operating mode of 

cylinder liner-piston ring according to the vibration characteristics effectively. 
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1. INTRODUCTION 

 Marine diesel engine is the heart of the vessel. The 
normal operation of marine diesel engines ensures the 
scheduled completion and efficiency of a trip. Any failures 
may result in significant economic losses and severe 
accidents. However, the engines often suffer from the 
deterioration of rubbing pairs [1, 2]. The cylinder liner-
piston ring is one of the most important rubbing pairs of the 
internal combustion engine, whose tribological condition has 
great influence on engine power, reliability, durability, 
economy and emissions. It is hence crucial to monitor 
condition of the typical tribological systems in a reliable and 
timely manner, which can detect undergoing faults in time to 
ensure the normal operation of the vessels. Additionally, it is 
very significant to extend the work reliability and life of 
cylinder liner-piston rings, improve the efficiency of diesel 
engine and fuel economy, and prolong service life through 
the study on the tribological problems of cylinder liner-
piston ring [3]. 

 Ryk and Kligerman [4] evaluated the effectiveness of 
micro-surface structure to improve tribological properties of 
reciprocating automotive components. Fu [5, 6] showed that 
surface texturing with micro-pores could be used to maintain 
hydrodynamic effects even on nominally parallel surfaces. 
Optimal parameters for lubrication performance were also 
given. The area occupancy of micro-pores was 15%, and the 
depth-diameter ratio was 0.5. Lubrication oil thickness was  
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increased by 10 ~ 15% and average friction force was 
decreased by 20% with bore processed cylinder. Burstein 
and Ingman [7] studied the lubrication model of the piston 
ring surface processing of random concave and regular 
concave. Rhode [8] concluded that the friction was 
reasonable if the length-diameter ratio was close to 0.14. 

 Fuzzy clustering has been extensively used for 
performing tasks such as information retrieval [9], pattern 
recognition [10], and image processing [11]. Fuzzy 
clustering differs from hard clustering in the sense that it 
tries to split a data set into a number of overlapping subsets. 
The notion of fuzzyness can be thus found in the idea that 
data points are allowed to be part of multiple clusters. 

 There are many fuzzy clustering methods being 
introduced [12]. Fuzzy C-means clustering algorithm is one 
of the most important and popular fuzzy clustering 
algorithms. At present, the FCM algorithm has been 
extensively used in feature analysis, pattern recognition, 
image processing, classifier design [13, 14]. In this study, the 
fuzzy C-means clustering is adopted to identify the operation 
models of the diesel engine. A series of experiment tests 
have been done to show the efficacy of the fuzzy C-means 
clustering in the condition monitoring of diesel engines. 

2. EXPERIMENT AND METHODOLOGY 

2.1. Experiments 

 All experiments are conducted using a simulation tester 
[15], whose principle and image are illustrated in Fig. (1). 
The tester is designed for investigating the tribology and 
vibration characteristics of key parts in the internal 
combustion engine. A set of vibration sensors has been 
installed on tester fuselage to record the engine vibrations 



Study on Identification Model of Cylinder Liner-Piston Ring The Open Mechanical Engineering Journal, 2012, Volume 6    127 

from different locations and directions. A pipeline has been 
designed to collect the lubricant oil of the tester. 

 

 In the experiments, four kinds of cylinders, including the 
regular surface-concave cylinder, regular surface-groove 
cylinder, cylinder with concave and groove, and untreated 
cylinder, are prepared. The cylinders are composed of cast 

 

1-Oil pan 2-Clutch pedal 3-Cement base 4-Electromotor 5-Clutch 6-Flywheel 7-Left-side sliding bearing 8-End cover 9-Frame 10-Cyclinder 11-Resistance 

wire 12-Cylinder head 13-Bolt 14- ‘O’ shape sealing ring 15-Piston ring 16-Piston 17-Bearing seat 18-Right-side sliding bearing 19-Crankshaft 

Fig. (1). The principle and image of the simulation tester. 

Table 1. Geometric Models of Cylinders 

 

    

Distribution 

    

Parameters 
Concave dia. 2 mm 

Concave depth 200μm 

Groove width 1 mm 

Length 20 mm 

Groove depth 200μm 

Concave dia. 2 mm 

Concave depth 200μm 

Groove width 1mm Length 20mm 

Groove depth 200μm 

 

Table 2. Images of Fault Modes 

 

Rocker Fracture Bolt Fracture Exfoliated Ejector Pin  

 
 

4 5 6 7

8

9
10

11
12

13 14 15 16

17 18

19123



128    The Open Mechanical Engineering Journal, 2012, Volume 6 Guo et al. 

iron with the geometrical dimensions of 115 mm internal 
diameter and 105 mm stroke respectively. Geometric models 
of cylinders are shown in Table 1. The cylinder liner-piston 
ring has been tested using the mentioned cylinders, as well 
as several typical fault modes (such as the rocker fracture, 
bolt fracture and exfoliated ejector pin). Images of fault 
modes are illustrated in Table 2. The lubricant of the diesel 
engine is 15W/40CD. The engine speeds set to 800 rpm 
during the tests, vibration signal is collected every 20 
minutes after running 2h in each test conditions, the testing 
duration time was 8 hours and the sampling frequency is 20 
kHz. 

2.2. Signal Processing and Feature Extraction 

2.2.1. The Wavelet Packet Decomposition 

 During the measurement of actual mechanical signals, 
the mixture of noise signals increases the difficulty of fault 
feature extraction. The sources of noise are complicated. 
Possible reasons are mechanical defect or the occurrence of 
other vibration excitations. As a result, it is necessary to 
analyze and process the measured signals so that we can 
extract useful features [16]. 

 The diesel engine is very complex system. The surface 
vibration of the diesel engine is caused by the interaction of 
its diverse internal excitations, including cylinder pressure, 
transverse impact of piston and reciprocating inertia force of 
crankshaft, etc. The cylinder vibration is caused by rocking 
of the piston. The impact of piston is high-frequency 
excitation. Therefore, it is worthy of analyzing the high-
frequency signal of the diesel engine [17]. 

 There are mainly three characteristic bands for vibration 
signal in power spectrum. The change in high frequency 
components is bigger than low frequency components. With 
the increase of test time, high frequency components 
increase. 

 The wavelet packet decomposition method [18] is 
adopted to analyze the high frequency of 2 kHz-6 kHz. The 
original vibration signals are decomposed to four layers 

using wavelet packet decomposition. 16 wavelet sub-bands 
in the fourth layer are obtained. The fourth layer are arranged 
according to ascending order X(4, i), i=0,1,2, 15. It is 
required to reorder the coefficient after wavelet packet 
decomposition. In order to keep the main frequency 
consistent with i monotonic increasing, the practical 
frequency bands reorder as (4, 0), (4, 1), (4, 3), (4, 2), (4, 6), 
(4, 7), (4, 5), (4, 4), (4, 12), (4, 13), (4, 15), (4, 14), (4, 
10),(4, 11), (4, 9), (4, 8). Since the highest frequency of 
signal is 10 kHz, so the frequency of 2 kHz is contained in 
wavelet packet node (4, 2). Because the high frequency 
components over 6 kHz is so faint that it can be basically 
negligible, the high frequency vibration components of 2 
kHz-6 kHz are obtained through reconstructed the wavelet 
packet (4,2)- (4,13). The vibration signals and power 
spectrum with regular surface-concave cylinder are show in 
Fig. (2), which include original signal and reconstructed 
signal after wavelet packet decomposition and 
reconstruction. 

2.2.2. Feature Extraction 

 During the wavelet packet decomposition and 
reconstruction, useful characteristics of high frequency 
components on the vibration signal could be calculated. In 
the time domain, the root mean square (RMS) and kurtosis 
are extracted. The root mean square (RMS) and kurtosis are 
defined as follows: 

 Root mean square (RMS) 

RMS =
1
n

2
xii=1

n
           (1) 

 Kurtosis (KR) 

KR =

n (xi x)4
i=1

n

( (xi x)2
i=1

n
)2

           (2) 

where, xi (i=1, …., n) is the signal value of sampling point 

 

Fig. (2). The Vibration signals and power spectrum with regular surface-concave cylinder. 
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on number i, n is the number of sampling points, x  is the 

average value. 

 Fourier transform method is the main analysis tool in 
frequency domain. It occupies an important position in the 
signal processing by building up a bridge between time 
domain and frequency domain. Feature vectors of frequency 
domain are extracted via Fourier transform. The extracted 
features are as follows: 

 Root mean square frequency (RMSF) 

RMSF =

fk
2Xkk 1

K

Xkk=1

K            (3) 

 Standard deviation frequency (STDF) 

STDF =

( fk FC)2 Xkk 1

K

Xkk=1

K            (4) 

where, Xk  is the measurement of number k in the spectrum 

signal, K is the total number of spectral lines, fk  is 

frequency value of number k spectrum line, FC is center 

frequency. 

3. FUZZY C- MEANS CLUSTERING 

3.1. Fuzzy C-Means Clustering Algorithm 

 FCM (Fuzzy c-means clustering) is known as fuzzy 
ISODATA. It is a clustering algorithm to determine the 
degree that each data point belongs to a cluster. Generally, 
traditional hard clustering algorithms use obvious boundaries 
to cluster different groups for the original data. To overcome 
this shortcoming, Bezdek offered the FCM algorithm 
improve the HCM (Hard c-means clustering) [19], where 
boundaries of different groups were allowed to be 
overlapped. The fuzzy logic was used to realize this. 

 FCM aims to classify vector xi (i=1,2,…, n) into c 
ambiguity group and calculate clustering center of each 
group. Fuzzy partition used in FCM is the mainly difference 
between fuzzy FCM and HCM. It determines the degree that 
each data point belongs to each group using membership 
value 0-1. The element of membership matrix U is allowed 
to be from 0 to 1, which geared to Fuzzy partition. The total 
of membership in a data set is 1 based on the regulation of 
normalization. 

uij = 1, j = 1,...,n
i=1

c
           (5) 

where c is the number of ambiguity group. 

 Then, cost function (or objective function) of FCM is 
generalization form of equation (6): 

J(U,c1,...,cc ) = Jii=1

c
= uij

mdij
2

j

n

i=1

c
         (6) 

where, uij is between 0 and 1, ci is the clustering centers of 

fuzzy group i, dij=||ci-xj|| is the Euclidean distance between 

the ith clustering centers and the jth data point, xj is the jth 

data point, m [1, ]  is weighted index. 

 New objective function is structured to obtain the 
necessary condition which makes equation (6) into 
minimum. 

J(U,c1,...,cc , 1,..., n )

= J(U,c1,...,cc )+ j ( uij 1)
i=1

c
j=1
n

= uij
mdij
2

j

n

i=1

c
+ j ( uij 1)

i=1

c

j=1

n

          (7) 

where j j=1,2,…, n is Lagrange multiplier of n 
constrained formula in equation (5). The necessary condition 
which makes equation (6) into minimum is then given by: 

ci =

uij
mx jj=1

n

uij
m

j=1

n             (8) 

and 

uij =
1

dij
dkj

2/(m 1)

k=1

c

           (9) 

 From the above two necessary condition, the FCM 
(Fuzzy c-mean) algorithm is a simply iterative process. To 
obtain the center ci and memberships matrix U of each 
cluster by iteration, the following steps are adopted in FCM 
algorithm. 

 Step 1: initialize membership matrix U using random 
number between 0 and 1, and make it satisfy the constraint 
conditions equation (5); 

 Step 2: calculate the clustering centers ci using equation 
(8); 

 Step 3: calculate the cost function according to equation 
(6). The algorithm stops if it is less than a certain threshold 
value or it is less than a certain threshold value compared 
with the change of last cost function value; 

 Step 4: calculate next matrix U based on equation (9), 
return to Step 2. 

 From the above discussion, two parameters of cluster c 
and weighted index m are required in FCM algorithm. 
Ordinary c is far less than total number of cluster sample, 
while it is ensured that c > 1. m is a parameter which control 
the flexibility of algorithm, the effect of cluster will be poor 
if m is too large while the algorithm will be close to HCM 
(Hard C mean clustering) if m is too small. 

3.2. The Proposed Identification Model 

 The fuzzy logic is very suitable for the condition 
identification of the diesel engines because that it is often 
difficult in determining the boundaries of different faults. 
The FCM is used to learn the relationship between the 
vibrations and the engine operation states. The FCM is 
trained by the input features of the engine vibration signals 
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to form an intelligent identification model. Then, the trained 
FCM identification model is tested by new input samples. 
The sketch diagram of the proposed identification model is 
illustrated as Fig. (3). 

4. VIBRATION IDENTIFICATION MODEL 

4.1. The Establishment of Vibration Identification Model 

 Characteristic parameters used in this study includes 
RMS, KR, RMSF, STDF, maximum amplitude and total 
vibration energy. Vibration identification model is 
established in which original cylinder, regular concave, 
regular groove, rocker fracture, bolt fracture and exfoliated 
ejector pin are taken as the output states of the cylinder-
piston ring. Thirty samples have been prepared for each 
condition with the rotational speed of 800 rpm. A portion of 
the feature extraction results are shown in Table 3. 

 A training feature space FR6 180 is formed after the 
feature extraction. The column data are arranged in the order 
of RMS, KR, RMSF, STDF, maximum amplitude and total 
vibration energy. Cluster center of each state and 
memberships belong to each state are calculated using FCM 
(Fuzzy c-means clustering) algorithm. Vibration 
identification model is shown in Fig. (4). 

 Abscissa is the input data group in Fig. (4), each state has 
30 samples, and it is arranged in the order of original 
cylinder liner, regular concave, regular groove, rocker 
fracture, bolt fracture and exfoliated ejector pin. The first 
group, 0~30 samples are characteristic values in the state of 
original cylinder liner. The second group, 31~60 samples are 
characteristic values in the state of regular concave. The 
third group, 61~90 samples are characteristic values in the 
state of regular groove. The forth group, 91~120 samples are 
characteristic values in the state of rocker fracture. The fifth 
group, 121~150 samples are characteristic values in the state  
 

of bolt fracture. The sixth group, 151~180 samples are 
characteristic values in the state of exfoliated ejector pin. 
Ordinate of Fig. (4) is the cluster center of each state. It can 
be seen that the training samples have been grouped into six 
clusters, and each sample has been identified correctly. 

 

Fig. (4). Vibration identification model. 

 Taking this model as a benchmark, it only needs to add 
input feature vector into this model to determine the 
operation mode of other vibration signals. Then, the 
corresponding mode can be obtained by comparing 
clustering center values. Taking the vibration signals of 
regular concave as an example, the feature values is shown 
in Table 4. The corresponding relation after adding to this 
model is shown in Fig. (5). 

 It can be seen from Fig. (5) that the clustering center 
value of the testing data accords with the second group, so it 
belongs to the running state of regular concave. Thus, the 
identification result is correct. 

 

Fig. (3). The sketch diagram of the FCM based identification model. 

Table 3. Eigenvalue of Vibration Signal 

 

n/(r min
-1

) type RMS KR RMSF STDF Maximum Amplitude Total Vibration Energy 

Original cylinder  1.000 0 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0 

Regular concave 0.930 1 0.629 7 0.382 0 1.040 0 1.048 9 0.386 7 

Regular groove 1.206 2 1.461 1 1.929 6 1.027 0 1.455 8 3.769 8 

Rocker fracture 0.600 1 0.861 3 0.912 5 0.962 9 0.356 6 0.774 2 

Bolt fracture 0.903 7 0.866 3 1.112 7 0.567 1 0.331 0 1.378 3 

800 

Exfoliated ejector pin  1.006 4 0.529 6 2.495 9 1.005 1 0.764 9 6.778 5 
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Fig. (5). Identification legend. 

4.2. Validation of Vibration Identification Model 

 The running state of diesel engine can be obtained using this 
vibration identification model. Howerevr, the membership value 
is not equal to 1, which is obtained only according to the 
maximum membership degree. It need to output the membe-
rship matrix and calculate the corresponding membership if the 
membership value is required. 

 Additional five samples for each condition are provided 
in Table 5, which belong to the running state of regular 
concave in 800 rpm. The membership matrix which is 

calculated based on this identification model is shown in 
Table 6. It properly identifies the correct state of cylinder 
liner-piston ring. As a result, the proposed FCM based 
identification model is efficient for the monitoring of diesel 
engines. 

5. SUMMARY 

 The experiments are conducted using an internal 
combustion engine simulation tester for key rubbing pairs under 
different surface treatment of cylinder liner and several typical 
fault operation modes. The fuselage vibration signals during 
testing are collected and the wavelet packet decomposition 
techlonogy is used to obtain a high frequency signal 
components and extract its energy characteristics. Based on 
these characteristics, the vibration identification model is 
established using fuzzy C-means clustering. This model can 
identify the operating modes of cylinder liner-piston ring 
according to the characteristics of vibration signals. 
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Table 5. Vibration Signal of Regular Concave 

 

n/(r min
-1

)  RMS KR RMSF STDF Maximum Amplitude Total Vibration Energy 

1 1.072 8 0.631 1 0.421 1 1.123 8 1.053 1 0.476 3 

2 0.982 1 0.737 4 0.455 9 1.073 8 1.058 9 0.390 1 

3 0.974 6 0.697 1 0.510 3 1.055 6 1.187 9 0.521 6 

4 0.990 7 0.728 6 0.490 6 1.041 4 1.062 0 0.454 6 

800 

5 0.975 4 0.742 6 0.411 8 1.048 8 1.098 7 0.395 4 

 

Table 6. Membership Value of Vibration Identification 

 

Class Number 
n/(r min

-1
) Type 

1 2 3 4 5 

Original cylinder  0.005 8 0.004 9 0.002 8 0.002 2 0.006 5 

Regular concave 0.990 6 0.991 9 0.995 7 0.996 4 0.989 1 

Regular groove 9.1 10-5 7.5 10-5 4.0 10-5 3.1 10-5 0.000 1 

Rocker fracture 0.000 3 0.000 3 0.000 1 0.000 1 0.000 4 

Bolt fracture 9.2 10-5 7.6 10-5 4.0 10-5 3.1 10-5 0.000 1 

800r/min 

Exfoliated ejector pin  0.002 9 0.002 6 0.001 2 0.00 1 0.003 7 

Table 4. Vibration Signal of Regular Concave 

 

 RMS KR RMSF STDF Maximum Amplitude Total Vibration Energy 

Regular concave 1.072 8 0.631 1 0.421 1 1.123 8 1.053 1 0.476 3 
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