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Abstract: A novel 3RPS-3SPR serial-parallel manipulator (S-PM) with 6 degree of freedoms (DOFs) is proposed in this 
paper. It includes a lower 3RPS parallel manipulator (PM) and an upper 3SPR PM. Its inverse kinematics, active forces 
and workspace are solved. First, the inverse displacement is solved in close form based on the geometrical and the 
dimensional constraints of this S-PM. Second, the 9×9 and 6×6 form inverse Jacobian matrices are derived and the active 
forces are solved using principle of virtual work. Third, the workspace of this S-PM is constructed by using CAD 
variation geometry approach. 
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INTRODUCTION 

 Recently, parallel manipulators (PMs) have attracted 
much attention due to their merits and industrial applications 
[1]. This kind of manipulators has been studied widely [2-7]. 
However, few investigations have been developed on S-
PMs. 
 The S-PM has merits of both serial manipulator (SM) and 
PM. This kind of manipulators is characterized by its high 
stiffness compared with SM and large workspace compared 
with PM. In this aspect, Tanev [8] solved the forward and 
inverse position problems of a hybrid manipulator. Lu and 
Hu [9] solved active forces of a 2(3-SPR) S-PM by CAD 
variation geometry approach, and solved the forward 
kinematics of this S-PM [10] based on the analytical results 
of 3RPS PM. Jaime[11] studied the kinematics and dynamics 
of 2(3-RPS) manipulators by means of screw theory and the 
principle of virtual work. Zheng et al., [12] studied an S-PM 
which possess of a pure translational and a pure rotational 
3UPU PMs. O. Ibrahim and W. Khalil [13] proposed a 
method for the calculation of the inverse and direct dynamic 
models for S-PMs using recursive Newton Euler formalism. 
A. Ramadan [14] proposed a compact but yet economical 
two-fingered micro–nano hybrid manipulator hand. Liu [15] 
studied an S-PM formed by adding a 2-dof mechanism on 
Tricept.  
 In Gallardo’s work [11], an improved 2(3SPR) S-PM 
with a more compact topology than the original one pro-
posed by Lu [9] was investigated. The improved 2(3SPR) S-
PM with compact topology can effectively diminish undesir- 
able deflections and the presence of bending moments over 
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the kinematical pairs which affecting the accuracy of this 
manipulator [11]. From this point of view, a novel S-PM 
which consists of a 3RPS PM [16-18] and its invertible 
structure 3SPR PM [19] adopting compact topology by using 
compound spherical joint [20] is investigated in this paper. 
 The forward kinematics of this kind of manipulators has 
been studied [8-12]. However, the inverse kinematics of this 
kind of manipulators is a difficult work and hasn’t been 
attempted. Inverse kinematics is a common issue for kinema-
tics analysis and plays an important role in control. This 
paper focuses on establishing the inverse displacement, 
inverse velocity and active forces of a 3RPS-3SPR S-PM 
based on the dimension and geometrical constraints. It is also 
a challenging work to solve the workspace of 3RPS-3SPR S-
PM due to its complicated kinematics. The workspace of this 
S-PM is solved using CAD variation geometry approach in 
this paper. 

1. CHARACTERISTICS OF 3RPS-3SPR S-PM 

 The 3RPS-3SPR S-PM with 6-DOF is consisted of a 
lower 3RPS PM and an upper 3SPR PM. The 3RPS and 
3SPR PMs are connected serially. The lower 3RPS PM 
includes a moving platform mb, a base B, and three 
extendable active limbs rbi (i=1, 2, 3) with their linear 
actuators. The upper 3SPR PM includes a moving platform 
m, a base mb which is simultaneously used as the moving 
platform of the lower PM, and three extendable driving 
limbs rci (i=1, 2, 3) with their linear actuators. m is a 
equilateral triangle Δc1c2c3 with o as its center and li=l as its 
side. B is an equilateral triangle Δa1a2a3 with O as its center 
and Li=L as its side. mb is a equilateral triangle Δb1b2b3 with 
di=d as its sides.  
 Three identical RPS limbs rbi (i=1, 2, 3) of the lower 
3RPS PM connect mb to B by a spherical joint S on mb at bi, 
a driving limb with a prismatic joint P, and a revolute joint R 
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on B at ai, respectively. The R joint on B at ai is parallel with 
the subtense of ai. Three identical SPR limbs rci (i=1, 2, 3) of 
the upper 3SPR PM connect m to mb by a revolute joint R on 
m at point ci, a driving limb with a prismatic joint P, and a 
spherical joint S on mb at bi, respectively. The R joint on m at 
ci is parallel with the subtense of ci. Let {B} be a coordinate 
O-XYZ with O as its origin fixed on B at O, {m} be a 
coordinate o-xyz with o as its origin fixed on m at o. Let || 
and ⊥ be parallel and perpendicular constraints, respectively. 
Some constraints (X||a1a3, Y⊥a1a3, Z⊥B, x||c1c3, y⊥c1c3, z⊥m) 
are satisfied, see Fig. (1). 

 
Fig. (1). 3RPS-3SPR S-PM. 

2. INVERSE DISPLACEMENT ANALYSIS 

 The position vectors ai (i=1, 2, 3) of vertices ai in {B} 
can be expressed as follows 
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 The position vectors ci(i=1, 2, 3) of vertices ci in {m}can 
be expressed as follows 
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 The position vectors ci of vertices ci in {B} can be 
expressed as follows 
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 Here Xo, Yo and Zo are three position coordinates of o, R 
is a rotation transformation matrix from {B} to {m}, E 
denotes the distance from point O to ai, C denotes the 
distance from point o to ci and q=31/2. 
 Let α, β and λ be three Euler angles. Let φ be one of (α, β, 
λ), sφ=sinφ, cφ=cosφ. Using X-Y-X type Euler rotations, the 
rotation transformation matrix can be expressed as follows 

[16]: 
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 Let Ri1 (i=1, 2, 3) be the revolute joints at ai (i=1,2,3) on 
the lower PM, Ri2 (i=1,2,3) be the revolute joints at ci 
(i=1,2,3) on the upper PM. Then the unit vectors Rij of Rij 
(i=1, 2; j=1, 2, 3) in {B} can be expressed as following 
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 In the lower and upper PMs, the geometrical constraints 
satisfy 

1i bi
R r! ,

2i ci
R r! (i=1, 2, 3)  (5a)  

 From Eq. (5a), it leads to  

    
R

i1
! (b

i
" a

i
) = 0  (5b) 

    
R

i2
! (b

i
" c

i
) = 0   (5c) 

here, bi denotes the position vectors of point bi (i=1, 2, 3). 
 Let hix, hiy, hiz be three position coordinates of point 
hi(i=1, 2, 3), where h comes form a, b, c. 
 From Eq. (5b), it leads to 
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 From Eqs. (6a) to ( 6c), it leads to 
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 From (5c), it leads to 
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 Expanding Eqs. (8a-c), it leads to 
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 From Eqs. (9a-c), b1z, b2z and b3z can be expressed as 
follows:  
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 From Eqs. (7a-c) and Eqs. (10a-c), the position vectors bi 
(i=1, 2, 3) of vertices bi can be expressed as follows: 
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 From the dimension constraints of the mb, it leads to 
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 From Eqs. (13), it leads to 
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 From Eq. (14a), it leads to 
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 From Eq. (16), it leads to 
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 From Eqs. (14a and 17), it leads to 
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 The necessary condition for Eq. (18) to have nontrivial 
solutions is 

U 0=  (19) 

 Eq. (19) is a polynomial about b2y. When Xo, Yo, Zo, α, β 
and λ are given, b2y can be solved from Eq. (19), b1y and b3y 
can be solved from Eq. (14a-b) and the coordinates bi(i=1, 2, 
3) can be solved form Eq. (11). Then the inverse kinematics 
can be solved subsequently by the following equations. 
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3. INVERSE JACOBIAN ANALYSIS 

 The loop equation of Oaibicio (i=1, 2, 3) can be written as 
follows 
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 By differentiating both sides of Eq. (21) with respect to 
time, it leads to 
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Where rbi and rci are the vectors, δbi and δci are the unit 
vectors of rbi and rci, respectively. vrbi and vrci(i=1,2,3) are the 
velocities, ωrbi and ωrci are the angular velocity vectors of rbi 
and rci, respectively. v denotes the velocity of point o, ω 
denotes the angular velocity of m and ei denotes the vectors 
form o to ci . 
 Based on the geometrical constraints of the upper 
manipulator, it leads to 
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 Since rbi (i=1, 2, 3) rotate with Ri1(i=1,2,3), it leads to 
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here, ωrbi are the angular velocities of Ri1. 
 Differentiating both sides of Eq. (23a) with respect to 
time, it leads to 
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 Dot-multiplying Eq. (22) with Ri2 at both sides and by 
means of (23a and 24b), it leads to 
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 From Eq. (25a), it leads to  
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 Dot-multiplying Eq.(22) with δci at both sides, it leads to 
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 Substituting Eq. (23b) into Eq. (26a), it leads to 
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 The velocity of bi can be expressed as following 
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 Since b1b2b3 is an equilateral triangle, the dimension 
constrained equations can be expressed as follows: 
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 Differentiating both sides of Eq. (28a) with respect to 
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 From (25b), it leads to 
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 From Eq. (26b), it leads to 
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 Substituting Eq. (27) into Eqs. (28c-e), yield 
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 From Eq. (30a), it leads to 
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 Eq. (30b) has nine rows and nine columns. From the first 
six rows and the first six columns, it leads to 
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here, vr = [vrb1 vrb2 vrb3 vrc1 vrc2 vrc3]T, Jf is the inverse 
Jacobian matrix. 

4. DRIVING FORCES ANALYSIS 

 Let frbi and frci (i=1, 2, 3) be the active forces along limbs 
rbi and rci (i=1, 2, 3), respectively. Let F and T be a central 
force and a central torque applied onto m at o. Based on the 
principle of virtual work, it leads to 
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 From Eq. (32), it leads to 
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Where, fr=[frb1 frb2 frb3 frc1 frc2 frc3]T, F=[Fx Fy Fz]T , T=[Tx Ty 
Tz]T. 

5. NUMERICAL EXAMPLE  

 Set E=120/q, C=60/q, d=80 cm. F=[-20, -30, -30]T kN, 
T=[-30 -30, 100] kN.cm. The pose parameters of the moving 
platform are given as Xo=68.89, Yo=49.63, Zo=225.3 cm, α=  
-11.08, β = 32.97, γ = -12.88º. The velocity parameters of 
moving platform are given as vx=1, vy=2, vz=3cm/s, ωx=1, 
ωy=2, ωz=3 º/s, the position vectors of bi (i=1, 2, 3) are 
solved as Table 1, 2 and 3. 
Table 1. The Coordinates of b1 

 

b1 1 2 3 4 

X (cm) 50.667 45.141 39.998 21.167 

Y (cm) -29.253 -26.06 -23.093 -12.22 

Z (cm) 115.64 116.73 117.74 121.44 

 5 6 7 8 

X (cm) -90.26+167.89i -51.398 -40.555 -90.26-167.89i 

Y (cm) 52.111- 96.931i 29.674 23.415 52.111+ 96.931i 

Z (cm) 143.37- 33.038i 135.72 133.59 143.37+ 33.038i 

 
Table 2. The Coordinates of b2 
 

b2 (cm) 1 2 3 4 

X  0 0 0 0 

Y 32.471 39.947 46.19 64.583 

Z 120.44 118.98 117.75 114.15 

b2 (cm) 5 6 7 8 

X 0 0 0 0 

Y -138.95- 172.52i -31.569 -45.511 -138.95+ 172.52i 

Z 154.01+ 33.785i 132.98 135.71 154.01- 33.785i 

 
Table 3. The Coordinates of b3 
 

b3 (cm) 1 2 3 4 

X 64.528 65.347 -37.528 63.356 

Y 37.255 37.728 -21.667 36.579 

Z 73.394 72.88 137.43 74.13 

b3 5 6 7 8 

X  -184.96+13.944i -74.269 29.45 -184.96- 13.944i 

Y  -106.79+8.0503i -42.879 17.003 -106.79- 8.0503i 

Z  229.93 + 8.75i 160.48 95.40 229.93+8.75i 
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 From the results, it can be seen that there are eight 
solutions of the position vectors of bi (i=1, 2, 3), this means 
that the inverse displacement of the 3RPS-3SPR PM has 
eight solutions. However, not all of them are real solutions. 
The real solutions are used to solve inverse displacement as 
follows: 
 By using the CAD variation geometry approach proposed 
in reference [9], a simulation mechanism of this PM can be 
created and the forward displacement solutions can be 

derived subsequently. By comparing, it is known that the 
simulation solution coincides with the third solution of 
analytical result in Table 4. Then the velocity and statics are 
calculated at this pose as following (See Table 5) 

WORKSPACE ANALYSIS 

 The workspace of this S-PM can be created using CAD 
variation geometry approach [9]. When given the maximum  
 

Table 4. Inverse Solutions of 3RPS-3SPR PM 
 

(cm) 1 2 3 4 5 6 

rb1  116.1401  117.9807  119.9824  129.4582  186.9944  176.9975  

rb2  125.9397 122.5390 119.9962 114.2482 166.8976 177.7500 

rb3  161.4403 162.0518 139.8558 160.5745 161.3236 140.6064 

rc1 125.1317 124.9137 125.0120 127.8178 167.8407 159.6376 

rc2  122.7075 121.0418 120.0042 118.8893 152.6122 161.9011 

rc3  175.3520 175.9541 150.1267 174.4991 168.4908 154.4953 
 
Table 5. Velocity and Statics at the Reasonable Pose 
 

vrb1 (cm/s) vrb2(cm/s) vrb3(cm/s) vrc1(cm/s) vrc2(cm/s) vrc3(cm/s) 

-3.9609 11.9576 -31.7202 9.1684 -9.9490 35.6654 

f rb1 (kN) f rb2(kN) f rb3(kN) f rc1(kN) f rc2(kN) f rc3(kN) 

-48.9508 -104.8954 78.6797 -22.1896 -81.8418 79.9695 
 

Table 6. The Construction Processes of Sub-Workspace 
 

rb1 rb2 rb3 rc1 rc2 rc3  

rbmin~rbmax rbmin~rbmax rbmax rcmax rcmax rcmax St1 
rbmin~rbmax rbmax rbmin~rbmax rcmax rcmax rcmax St2 

rbmax rbmin~rbmax rbmin~rbmax rcmax rcmax rcmax St3 
rbmin rbmin~rbmax rbmax rcmin~rcmax rcmax rcmax Sc1 
rbmin rbmin rbmax rcmin~rcmax rcmin~rcmax rcmax Sc2 

rbmin~rbmax rbmin rbmax rcmax rcmin~rcmax rcmax Sc3 
rbmax rbmin rbmin~rbmax rcmax rcmin~rcmax rcmax Sc4 
rbmax rbmin rbmin rcmax rcmin~rcmax rcmin~rcmax Sc5 
rbmax rbmin~rbmax rbmin rcmax rcmax rcmin~rcmax Sc6 

rbmin~rbmax rbmax rbmin rcmax rcmax rcmin~rcmax Sc7 
rbmin rbmax rbmin rcmin~rcmax rcmax rcmin~rcmax Sc8 
rbmin rbmax rbmin~rbmax rcmin~rcmax rcmax rcmax Sc9 
rbmin rbmin~rbmax rbmin rcmin~rcmax rcmax rcmin Sm1 

rbmin~rbmax rbmin~rbmax rbmin rcmax rcmax rcmin Sm2 
rbmin~rbmax rbmin rbmin rcmax rcmin~rcmax rcmin Sm3 
rbmin~rbmax rbmin rbmin rcmax rcmin rcmin~rcmax Sm4 

rbmin~rbmax rbmin rbmin~rbmax rcmax rcmin rcmax Sm5 
rbmin rbmin rbmin~rbmax rcmin~rcmax rcmin rcmax Sm6 
rbmin rbmin rbmin~rbmax rcmin rcmin~rcmax rcmax Sm7 
rbmin rbmin~rbmax rbmin~rbmax rcmin rcmax rcmax Sm8 
rbmin rbmin~rbmax rbmin rcmin rcmax rcmin~rcmax Sm9 
rbmin rbmin rbmin rcmin~rcmax rcmin rcmin~rcmax Sl1 
rbmin rbmin rbmin rcmin~rcmax rcmin~rcmax rcmin Sl2 
rbmin rbmin rbmin rcmin rcmin~rcmax rcmin~rcmax Sl3 
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Fig. (2). A reachable workspace W of the 3RPS-3SPR S-PM. (a) 
the isometric view, (b) the top view, (c) the upper view. 

extension rbmax, the minim extension rbmim and the increment 
δrb of active legs rbi(i=1, 2, 3), the maximum extension rcmax, 
the minim extension rcmim and the increment δrc of active 
legs rci(i=1, 2, 3), the reachable workspace W of the 3RPS-
3SPR S-PM can be constructed by its simulation mechanism. 
 When four of rbi and rci (i=1, 2, 3) reach their limited 
values of (rbmin, rbmax, rcmin, rcmax), varying the remaining 
two of rbi and rci (i=1,2,3) from rbmin to rbmax and from rcmin to 
rcmax, respectively, each sub-workspace can be constructed. 
 The construction processes are described as follows: 
Step 1. Set rb3 = rbmax, rc1=rc2=rc3=rcmax. 
Step 2. Set rb1 = rbmin +(j−1)δrb (j = 1, . . . , n1), 
where n1=(rbmax - rbmin)/ δrb. 
Step 3. Set j=1 and increase rb2 by δrb at each increment from 
rbmin to rbmax. Solve the position components (Xo Yo Zo) by 
using CAD software. Then, a spatial curve c1 is formed from 
the solutions of (Xo Yo Zo) of n1 points. 
Step 4. Repeat the steps 2, except that set j = 2, . . . , n1, thus 
other cj can be constructed. Construct the n1 spatial curves cj 
(j =1,…,n1) by the loft command. Then the surface St1 can be 
obtained. 
Step 5. Repeat the steps 1-4, except that set rbi and rci 
verifying versus Table 6, the other sub-workspace can be 
obtained. 
 The workspace of 3RPS-3SPR S-PM is constructed as 
shown in Fig. (2). 

CONCLUSIONS 

 A novel 3RPS-3SPR serial-parallel manipulator (S-PM) 
is constructed by connecting a 3RPS parallel manipulator 
(PM) with a 3SPR PM in series. Some formulae are derived 
for solving the inverse displacement, velocity, and statics 
models of this S-PM.  
 It is known from the analytic solutions that this S-PM has 
eight inverse solutions. A reasonable solution can be 
obtained by comparing with the simulation solutions. The 
inverse velocity and the active forces are computed at this 
reasonable pose. 
 A 9×9 Jacobian matrix is derived from the geometrical 
constraint and the dimension constraint equations. A 6×6 
Jacobian matrix is derived for solving inverse velocity by 
taking the first six rows and the first six arranges out of the 
9×9 Jacobian matrix. 
 The active forces are derived based on the principle of 
virtual work. Its workspace is constructed by CAD variation 
geometry approach, this novel S-PM has a large workspace. 
 This S-PM has some potential applications for the serial–
parallel machine tools, the sensors, the surgical manipulators 
and the satellite surveillance platforms. The method for 
solving the inverse kinematics and workspace can also be 
used for other S-PMs. 
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