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Abstract-The experimental method of caustics was used for the evaluation of the stress-singularities created by 

concentrated oblique load applied at the apex of a wedge or on the horizontal straight boundary of a half-plane. The 

wedge was considered to be elastic, isotropic and under generalized plane stress conditions. According to the method of 

caustics, the light rays impinging normally at the thin plate are partly reflected from either the front or the rear faces of the 

plate. The reflected rays are deviated because of the important constraint of the plate at the vicinity of the applied 

concentrated load and the significant variation of the refractive index there. The deviated light rays, when projected on a 

reference screen, are concentrated along a singular curve which is strongly illuminated and forms a caustic. It was proved 

that the shape and size of the caustic depend on the stress singularity at the point of application of the load. The parametric 

equations of caustics created by such a singularity were studied in relation with the loading mode of the wedge. Thus, by 

measuring the dimensions of the caustic, one can evaluate the state of stress at the singularity. The experimental evidence, 

based on the above method on Plexiglas (PMMA) wedges, corroborated existing elastic theories concerning the order of 

singularities for concentrated loads. The relations for the calculation of the load, the components of stress and the 

concentration factor based on the geometrical characteristic of caustics, which were reflected from the front face of the 

wedge, were given. 
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I. INTRODUCTION 

 The optical method of caustics is suitable for the 
experimental study of singularities in stress fields created 
either by geometric discontinuities or by loading. For many 
crack problems, the stress intensity factors at the crack-tip 
were calculated by caustics [1-3]. Contact and wedge 
problems have many practical and important applications 
[4]. The stress distribution problem in a semi infinite plate 
under generalized plane stress conditions, which is loaded by 
a concentrated load applying at a point of the straight 
boundary was solved by Flamant [5], while Boussinesq [6] 
solved the same problem for the case of any inclined load. 

 For the solution of such problems, besides mechanical 
analysis, the experimental method of caustics can also be 
applied. Caustics has been applied to the study of the singular 
stress fields developed near concentrated or uniformly 
distributing loads which are applied along straight boundaries 
[7,8], the load sharing in roller-bearings [9, 10], in multiple 
gear tooth contact [11,12] and in study of vertical concentrated 
load in wedges [13]. Also, three-dimensional wedge problems, 
bimaterial wedges in antiplane shear deformation and rubber 
wedges in large strain analysis were studied [14-16]. The 
optical method of caustics has been applied to study of the 
singular stress fields near holes [17, 18] and in the contact 
problems of anisotropic materialas [19]. 
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 The aim of the present work is to give the parametric 
equations of the caustics in wedges made of isotropic 
materials for the case of a concentrated oblique load at the 
apex of the wedge. Also, the relations of calculation of the 
concentrated oblique load at the apex of wedge, the 
components of stress at any point and the concentration 
factors of the stresses based on the diameter and the opening 
displacement of the caustic were given. 

II. CONCENTRATED OBLIQUE LOAD AT THE 
APEX OF THE WEDGE 

 Concentrated oblique load P per unit thickness of the 

wedge (compressive load) was applied on the direction 

which is limited by the angle  with the axis of the wedge 

(Fig. 1). The thickness of the wedge was taken as unity. 

Resolving the oblique force P into two components, P cos  

vertically and P sin  horizontally (Fig. 1), the conditions 

along the faces, = ± , of the wedge are satisfied by the 

stress components which are derived from the stress function 

[4]: 
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where  is the angle of wedge and r,  are the polar 

coordinates. 
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Fig. (1). Geometry of a symmetrical wedge of angle 2 . 

 The stress components are derived from equation (1) as: 
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are the stress concentration factors. 

 By taking = / 2  and =0 the solution for a semi-

infinite plate was given which has been studied by the 

method of caustics and photoelasticity method [9, 10]. 

 For =0 (vertical force at O, Fig. 1) the stress function 
and the radial stress are [13]: 

=
P

2
Ar sin   (6) 

rr = k1

cos

r
  (7) 

with: 

A =
1

+
1
2

sin2
 and k1 = PA =

P

+
1
2

sin2
 

 

 

and for = /2 (horizontal force at O, Fig. 1) the stress 
function and the radial stress are: 
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III. EXPERIMENTAL METHOD OF CAUSTICS 

 The light rays reflected from the rear or front face of the 
specimen or transmitted through the specimen form wave 
fronts [1-3]: 

S(x, y, z) = const.   (10) 

 If s(x,y) expresses the optical path of the light ray 
between two planes parallel to the middle plane of the loaded 
plate and lying at the faces of the plate, then the relation: 

S(x, y, z) = z s(x, y) = const.   (11) 

is valid and: 

grad S(x, y, z) = k
s

x
i

s

y
j   (12) 

where i, j, k are the unit vectors of the (Ox,y,z) Cartesian 
coordinates system. For optically isotropic materials and for 
the first light ray reflected from the rear face (r) or from the 
front face (f) of the specimen the deviation of the light rays 
at a distance z0 from the middle plane of the specimen, is 
expressed by the vector wr,f on the plane z=z0 and according 
to the theory of Econal [20], is given as: 

 

wr , f =
z0dcr , f

m

grad( 1 + 2 )   (13) 

where d is the thickness of the specimen, cr,f are the stress-

optical constants, =1 for reflected light rays from the front 

(f) face and =2 for reflected light rays from the rear (r) face 

of the specimen and . m . is the magnification ratio, which 

for divergent light beam is given by the relation: 

0 i
m
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where z0 is the distance between reference-plane and 

specimen and zi is the distance between specimen and the 

light beam focus. The stress-optical constant cf is cf = / , 

where  is the Poisson’s ratio and E is the modulus of 

elasticity of the specimen material. The sum of the stresses 

21 +  is given by: 
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 Then, the Rel.(13) becomes: 
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where: 

Cr , f =
z0dcr , f P

m

, cf =
E

  (17) 

 The parametric equations of the caustic are: 

Wr , f = r + wr , f = r cos + ir sin + wr , f  

or: 

Xr , f = r cos ± Cr , f r 2 Acos2 Bsin2[ ]   (18) 

Yr , f = r sin ± Cr , f r 2 Asin2 + Bcos2[ ]   (19) 

where r is the radius of the initial curve of the caustics and  

takes values in the region + . For divergent light 

beam, the sign (-) corresponds to the caustics (r) (caustics 

which are formed by the reflected light rays from the rear 

face (r) of the specimen) and the sign (+) corresponds to the 

caustic (f) ( caustics which are formed by the reflected light 

rays from the front face (f) of the specimen). 

 The initial curve r of the caustic is determined by setting 
the functional determinant Jacobian J equal to zero: 

J =
(Xr , fYr , f )

(r, )
= 0   (20) 

 Then, the initial curve is: 

r0 = r = 2Cr , f A2
+ B2( )

1/3

  (21) 

 By substituting equation (21) into equations (18), (19) the 
parametric equations of the caustics becomes: 
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 Considering the relations (4) and (5), the equations (22) 
and (23) can be written, respectively: 
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and: 
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 Fig. (2) illustrates the ratio = k2 / k1 of the stress 

concentration factors versus the wedge angles  for angles 

of loading = 1 ,10 , 45 ,60 ,80 . 

 For =0 (B=0), concentrated vertical load at O [13], the 
initial curve of the caustics and the respective parametric 
equations of the caustics, are: 
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 For = /2 (A=0), concentrated horizontal load at O the 
initial curve of the caustics and the respective parametric 
equations of the caustics, are: 

r0 = r = 2Cr , f B( )
1/3

  (31) 
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 For values of  between –  and + , the caustic (r), from 

the rear face of the plate and the caustic (f), from the front 

face of the plate, are obtained around the point of the 

concentrated load P. Fig. (3) illustrates the shapes of the 

respective caustics for angle loading =45
o
 and for 

(a)wedge of =45
o
, (b)wedge of =90

o
, (c) wedge of 

=120
o
 and (d) wedge of =135

o
. The respective positions 

and the magnitude of the two caustics are depended on the 

values of the respective radii of the initial curves and the 

stress optical constants cr , cf . Also, Fig. (4) illustrates the 

shapes of the respective caustics around the point of the 

concentrated load for wedge of =90
o
 (semi-infinite plate) 

and for angles of loading (a) =0  (vertical load [13]), (b) 

=60
o
, (c) =80

o
 and (d) =90

o
 (horizontal load). 

IV. EXPERIMENTAL SET-UP 

 In order to verify the theoretical results of the 

concentrated load and the concentration factors evaluation at 

the apex of the wedges by the method of caustics, specimens 

made of Plexiglas (PMMA) were used. The thickness of the 

specimens was d = 3x10 3 m . The experimental set-up was 

simple, Fig. (5) [1-3]. A coherent divergent light beam from 

a He-Ne gas laser impinged on the face of the specimen 

close to apex of the wedge. Screen in front the specimen was  

 

placed at distance z0  and parallel to specimen mid-plane. On 

this screen the caustics from reflected rays were formed and 

recorded by a camera. The optical set-up had z0 = 1.79m , 

zi = 0.30m  and the magnification ratio m  of the optical 

system was m = 6.97 (Rel. (14)). For a positive value of zi  

(the focus lying in front of the specimen) a double caustic is 

formed on the screen due to reflections from the front and 

the rear face of the specimen (caustics of Figs. 3, 5). The 

mechanical properties of the specimen material (Plexiglas) 

were: Poisson’s ratio = 0.38  and elastic modulus 

E = 2.2MPa  The stress-optical constant of the specimens 

material was cf =
E

= 1.7x10 10 m2 / N . The specimens 

were loaded by a uniform concentrated load at the apex of 

the wedges. 

 Fig. (6) illustrates the experimental reflected caustics (f) 

and (r) which were carried out by divergent light beam, for a 

Plexiglas specimens of thickness d = 4 10 3 m . The 

loading angle was =0
o
 and the wedge angles were (a) 

=45
o
, (b) =90

o
 and (c) =120

o
. Also, Fig. (7) illustrates 

the theoretical (a) and the experimental (b) reflected caustics 

(f) and (r) for a Plexiglas specimens of thickness 

d = 3 10 3 m . The loading angle was =25
o
 and the wedge 

angles was (a) =135
o
, We can see good quality agreement 

between theoretical and experimental caustics. The relative 

position of the two caustics, (r) and (f), is depended on the 

values of the stress optical constants cr  and cf . 

 From Figs. (3, 4) it is appeared that for oblique loading 
the diameters of the caustic can not be calculated. In these 
cases the load P and the concentration factors can be 
calculated from the opening displacement L of the caustic 
(Fig. 3b). The horizontal and the vertical components of the 
opening displacement L are given: 

 

Fig. (2). Variation of the stress concentration factors ratio k2 / k1  vs the wedge angles  for angles of loading = 1 ,10 ,45 ,60 ,80 . 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. (3). Caustics (r) and (f) at the apex of wedge for angle of 

loading =45
o
 and for wedges of (a) =45

o
, (b) =90

o
, (c) =120

o
 

and (d) =135
o
. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. (4). Caustics (r) and (f) at the apex of wedge of angle =90
o
 

(semi-infinite plate) and for loading angles of (a) =10
o
 (about 

vertical force), (b) =60
o
, (c) =80

o
 and (d) =90

o
 (horizontal 

force). 
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Fig. (5). The optical set-up for reflected caustics. L1, L2 lenses of 

focus-distances f1, f2, respectively. 

 

(a) 

 

(b) 

 

(c) 

Fig. (6). Experimental caustics (r) and (f) at the apex of wedge for 

angle of loading =0
o
 and for wedges of (a) =45

o
, (b) =90

o
 and 

(c) =120
o
. 

 

(a) 

 

(b) 

Fig. (7). Theoretical (a) and experimental (b) caustics (r) and (f) at 

the apex of wedge for angle of loading =25
o
 and for wedge of 

=135
o
. 

LH = Yf =
Yf =

= 2 m 2Cf A2
+ B2( )

1/3

sin +
A

2 A2
+ B2

sin2
  (34) 

 The vertical component of the opening displacement L is 
given: 

LV = X f =
X f =

= 2 m 2Cf A2
+ B2( )

1/3 B

2 A2
+ B2

sin2
  (35) 

and the opening displacement L of the caustic is: 

L = LH
2

+ LV
2

= 2 m 2Cf A2
+ B2( )

1/3

R   (36) 

where: 
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R = sin +
A

2 A2
+ B2

sin2

2

+
B

2 A2
+ B2

sin2

2 1/2

 (37) 

 By comparing equations (17) and (36) the oblique 
concentrated load P is calculated by the relation: 

P =
L3

16z0d m
2 cf

1

R3 A2
+ B2

  (38) 

 Because of the P is the load per unit thickness, the total 
load is: 

Q = Pd =
L3

16z0 m
2 cf

1

R3 A2
+ B2

  (39) 

 The experimental stress concentration factors k1
ex , k2

ex
, 

according to relations (4), (5) and (39), can be calculated: 

k1
ex

=
L3 cos

16z0 m
2 cf +

1
2

sin2 R3 A2
+ B2

  (40) 

k2
ex

=
L3 sin

16z0 m
2 cf

1
2

sin2 R3 A2
+ B2

  (41) 

 Considering the relations (4), (5) and (40), (41), a 

correction factors f1,2  can be calculated [21]: 

f1,2 =
k1,2

ex

k1,2

  (42) 

V. ESTIMATION OF THE STRESSES IJ 

 On the horizontal plane nn at a distance x0  from the apex 

of the wedge, the Cartesian stress components at any point 

M (Fig. 1) are calculated from the polar stress component 

rr  : 

xx = rr cos2
= PA

cos3

r
+ PB

sin cos2

r

= k1

cos4

x0

+ k2

sin cos3

x0

  (43) 

yy = rr sin2
= PA

cos sin2

r
+ PB

sin3

r

= k1

cos2 sin2

x0

+ k2

sin3 cos

x0

  (44) 

xy = rr sin cos = PA
sin cos2

r
+ PB

sin2 cos

r

= k1

sin cos3

x0

+ k2

sin2 cos2

x0

  (45) 

 

 

 

with: 

r = x0 / cos = r0 / cos   (46) 

 For a horizontal plane nn close to the apex of the wedge 

at a distance equals to the radius of the initial curve of the 

caustic, x0 = r0 , and by substituting relations (21), (36) and 

(38) into equations (43)-(45), the components of stress are 

obtained from the opening displacement of the caustic: 

xx =
L2

8z0d mcf R
2 A2

+ B2
Acos4 Bsin cos3

( )   (47) 

yy =
L2

8z0d mcf R
2 A2

+ B2
Acos2 sin2 Bsin3 cos( )   (48) 

xy =
L2

8z0d mcf R
2 A2

+ B2
Asin cos3 Bsin2 cos2

( )   (49) 

for values of  between  and + . 

 Fig. (8) illustrates the distribution of the non-dimensional 
components of stress, (Eqs (47)-(49)): 

ij

M

L2 = f ( ) with M = 8z0d mcf R
2 A2

+ B2   (50) 

on the horizontal plane at distance r0  (singular region of 

concentrated load) from the wedge apex, (Fig. 1), for wedges 

of angle up to = 3 / 4  and of angle of loading a) = 0o , 

b) = 45o  and c) = 90o . 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

 In order to verify the theoretical results of the 

concentrated load and the concentration factors evaluation at 

the apex of the wedges by the experimental method of 

caustics, specimens made of Plexiglas (PMMA) and the 

experimental set-up of Fig. (5) were used. Figs. (6, 7) 

illustrate the reflected caustics (f) and (r) which were formed 

at the apex of the wedges. From the opening displacement 

(L) of the caustics (f) (Fig. 3b) the concentred load P (or 

Q=Pd) and the concentrations factors k1
ex

 and k2
ex

 were 

calculated by the Eqs (38)-(41). 

 Fig. (9) illustrates the experimentally calculated load Q 

(by Eq. (39)) from the opening displacements L of the 

caustics (f), (Fig. 6), for wedges angles =45 , 90  and 120  

and loading angle =0  (vertical concentrated load). As it 

can be observed that the calculated load Q depends on the 

opening displacement (L) of the caustic. The opening 

displacement (L) of the caustic depends on the wedge angles 

and the size of the initial curve (r0 ) . The size of the initial 

curve is smaller than the theoretical one because of the 

boundary deformation of the specimen. The variation of the 

load with the theoretical opening displacement is parabolic  
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(Rel. (39)). We can see a good agreement between the 

theoretical variation and experimentally calculated values 

based on the caustics (Fig. 9). 

 Fig. (10) illustrates the variation of the experimental 

concentration factor k1
ex

 which was calculated from the 

 

(a) 

 

(b) 

 

(c) 

Fig. (8). The stress components variation versus  for wedge angles up to = 3 / 4  and for loading angle a) = 0o , b) = 45o  and c) 

= 90o . 
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experimental caustics of Fig. (6). As it can be observed that 

the concentration factor increases as the wedge angles 

decrease. The variation of the theoretical stress concentration 

k1  (Rel. (4)) is linear with the load. We can see a good 

agreement between the theoretical variation and 

experimentally calculated values based on the caustics (Fig. 

10). 

 

Fig. (9). Variation of the experimentally calculated load Q vs the 

caustics opening displacement L for wedge angles =45 , 90  and 

120  and loading angle =0 . 

 

Fig. (10). Variation of the concentration factor k1
ex

vs the load Q for 

wedge angles =45 , 90  and 120  and loading angle =0 . 

 Fig. (11) illustrates the variation of the experimental 

concentration factors k1
ex

, k2
ex

 and the ratio of concentration 

factors = k2
ex / k1

ex
 which were calculated from the 

experimental caustics of Fig. (7b) (wedge angle =135  and 

loading angle =25
 

). As it can be observed that the 

concentration factors increase as the load increases, while the 

concentration factors ratio is remain constant. The 

concentration factors k1
ex

, k2
ex

are depend on the load P  

(Rels (4) and (5)), while the ratio = k2
ex / k1

ex
 is independent 

on the load (Rel. (26)). We can see good agreement between 

the theoretical variation and the experimental values based 

on the caustics (Fig. 11). 

VII. CONCLUSIONS 

 An experimental method of caustics has been proposed to 
calculate experimentally the load and the concentration 
factor at the apex of the wedges. A detail analysis of the 
reflected caustics is proved for the study the contact 

problems. Using this experimental analysis of the caustics, 
stress information may be obtained in singular points of the 
contact problems. It can be concluded that: 

 The concentrated load, the concentration factors and the 
stress variation at the singular apex of the wedges may be 
experimentally calculated by the experimental method of the 
caustics. The experimental method of caustics which is a 
powerful tool for discussing fields around a crack, is also a 
powerful method for the contact problems and wedges with 
concentration loads. Using this experimental method the 
existing wedge theory may be reviewed with measurements 
and taking into consideration other influential parameters 
such as the wedge angles and the loading angles. 

 

Fig. (11). Variation of concentration factors k1
ex

, k2
ex

 and the ratio 

= k2
ex / k1

ex
 vs the load Q for wedge angle =135  and loading 

angle =25 . 
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