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Abstract: Through an example of rotor system which has multi-degree of freedom mounted on the nonlinear fluid film 
bearings, this paper analyzes the precise integration algorithm, a new numerical solution for high–dimensional nonlinear 
dynamics system. The precise integration method has advantages of long step, high precision and absolute stability for 
solving nonlinear dynamics equations. To make good use of the method, firstly, the precise integral iterative formula is 
given and then the mechanism of controlling high precision and efficiency is discussed. The evolution of precise 
integration method is an algorithm with explicit, simple form, self-start, and fast to solve nonlinear dynamics equations. 
High power of athwart of Hamiltonian matrix is not needed, so it is convenient in this case. The stability of period 
response of nonlinear rotor-bearing system is analyzed by employing the precise integration method. The bifurcation rules 
of the period response of the elastic rotor system with multi-degree of freedom are obtained and the chaos of the system is 
determined according to the fractal dimension of Poincare mapping of phase space at a certain speed. 
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1. INTRODUCTION 

 There are two kinds of classical numerical integration 
methods, implicit and explicit. The explicit calculation 
method has character of simple calculation and high 
efficiency, but it is often at the expense of some accuracy 
and stability, and the size of time step is limited by the 
selected stability criteria. The implicit calculation method 
has the features of good stability and easy selection of time 
step but every step forward requires solving a large set of 
linear algebraic equations. Especially, for non-linear 
problems a recalculation of damping and stiffness matrices 
and triangular decomposition has to be done. This will cause 
great difficulties for analysis of a large multi-degree of 
freedom engineering problems and their computational time 
and expense is very considerable. 
 The precise integration method (PIM) discussed in this 
article is an important explicit method, which is developed in 
recent years and applied in more and more numerical 
solutions of dynamics problem. It is used to solve the time 
step integration for the time-invariant system first. For such a 
problem, precise integration gives a highly precise numerical 
result, which approaches the full computer precision [1]. 

2. PRECISE INTEGRATION 

 Consider the following nonlinear vibration systems 

   M!!x +G!x + Kx = f (t)   (1) 

where,    x(0), !x(0)  is known, M, G and K are matrices of n and 
n, x is n dimensional vector, and f(t) is the centrifugal force. 
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 Let 

   p = M!x +Gx / 2 .  (2) 

 The equation (1) can be expressed as follows 

  !v = Hv + r   (3) 

where, 
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 The precise integration method is suitable for processing 
a first-order differential equation, so the Hamiltonian system 
is used commonly for those problems [2, 3]. The v in 
equation (3) is the unknown 2n dimensional vector to be 
solved, and H is called Hamiltonian matrix. 

2.1. Addition Theorem of Matrix Exponential Function 

 Addition Theorem 

exp(Ｈ·! )=[exp(Ｈ· ! /n)]n  (4) 

 Let n= 2N. When N= 20, that Δt = ! /n =9.54E-08 is very 
small if ! =0.1, so the following equation is obtained for 
small Δt. 

exp(Ｈ·Δt) ≈ I +Ｈ·Δt + (Ｈ·Δt)2/2 = I + Ta  (5) 

where, 

Ta=Ｈ·Δt+(Ｈ·Δt)2/2  (6) 

 It is a very small amount. 
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 Rewrite the equation (4) as follows for calculation of 
matrix T. 

  T = [I + Ta ]2N

= [I + Ta ]2N !1

" [I + Ta ]2N !1

 (7) 

(I+Tb)×(I+Tc)=I+Tb+Tc+Tb×Tc  (8) 
 The matrix T will be obtained by iteration with equation 
(8) as the following computer algorithm. 
Ta =Ｈ·Δt + (Ｈ·Δt)2/2; 
for (i=0; i<=N; i++) 
Ta = 2Ta +Ta×Ta; T = I + Ta; 
 This algorithm can significantly reduce the accumulated 
error of computer iterative solver. 

2.2. Precise Integration of Homogeneous Equation 

 Known from the theory of ordinary differential 
equations, the homogeneous equation (9) of equation (3) 
should be solved firstly. 

  !v = Hv   (9) 
 Rewrite equation (9) as follows: 

 

dv
v
= Hdt   (10) 

 And then the solution of equation (9) is 

ν＝exp(Ｈ·ｔ)·ν０  (11) 

 If the time step is ! , then 

ν( ! ) ＝exp(Ｈ·! )·ν０= T·ν０  (12) 

where, 

T= exp(Ｈ·! )  (13) 

2.3. Accuracy Analysis 

 The main step of precise integration is the calculation of 
matrix T [4, 5]. Therefore the calculation error comes from 
the expansion equation (5) in addition to error of matrix 
multiplication. In the calculation of 2N matrix Ta is 
calculated with iterative algorithm, and its main item in the 
beginning is   (H ! "t) , so the calculation error must be 
compared with it [6, 7]. Because the next item of expansion 
equation (5) is   (H ! "t)3 / 3! , the relative calculation error 

can be roughly estimated to be   (H ! "t)3 / 3! . 

 Suppose Eigen solution of matrix H is obtained, then 

  H = Y[!]Y "1   (14) 

where, Y is the matrix which is formed by Eigen-vectors and 
λ is the vector of eigenvalues. Then equation (15) is 
obtained. 

  

exp(H ! "t) = Y exp([#] ! "t)Y $1

= Y[exp(# ! "t)]Y $1
  (15) 

 So the equation (9) corresponds approximately to 
equation (16). 

  exp(! " #t) $ 1+ ! " #t + (! " #t)2 / 2   (16) 

 The above calculation error analysis separates the relative 
error of   (H ! "t)3 / 3!  of every different eigenvalue solution 

out. Therefore, the value of   [ABS(!) " #t]3  of each 
eigenvalue is very important to the relative calculation error. 
Because the double precision number is 16 bits in decimal, 
that   ABS(!) "# / 2N < 10$4  must be satisfied for a double 

precision number. When N=20, that   ABS(!) "# / 2N < 10$4  is 
satisfied, in which λ is iω for the un-damped free vibration 
problem where ω is the angular frequency. This suggests that 
even if the integration step is 16 cycles, it does not bring 
error of expansion equation (9). Of course, a high-frequency 
vibration ω should be considered. The fact is that the actual 
vibration damping exists, so high frequency vibration itself 
has become insignificant after several cycles of vibration. 
Therefore, even for high-frequency vibration the error 
estimate with   (H ! "t)3 / 3!  is too conservative. That is, the 
accuracy of precise integration method is very high. 

2.4. Precise Integration for Nonlinear Dynamic Equation 

 Reference [8] established a nonlinear dynamic system, 
and then used an improved precise integration method to 
solve the nonlinear dynamic system. The nonlinear dynamic 
system was converted into an augmented Lie type dynamic 
system and then the precise integration method is improved 
for solving the above augmented equation and preserving its 
group structure in the meantime. 
 The final numerical solution formula for equation (2) can 
be drawn with precise integration method [9] as follows: 
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 The above iterative formula has matrix H with higher 
power, so a further derived form for the solution vector v at 
time t is obtained as follows [2]. 
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 In practical calculation the series only take limited items. 
For convenience, when the number j of Taylor polynomials 
is 1 and 2 and so on, the corresponding solution formula is 
called the first approximation formula and the second 
approximation formula and so on as follows: 

  
v = eH! (v(k ) + H "1 f(k ) ) " H "1 f(k )   (19) 
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v = eH! (v(k ) + H "1 f(k ) + H "2 f(k ) )
.

"

(H "1 f(k ) + (!H "1 + H "2 ) f
.

(k ) )
  (20) 

 Formula (19) uses 
  
v(k )  and 

  
f(k )  which have been 

obtained, so it is a convenient self-starting formula. When f 
is a constant, the first approximation formula is equivalent to 
a numeric expression of exact solution, i.e., the accuracy of 
the first approximation formula (19) is unrelated to the size 
of time step, ! . 

 Precise integration method is unconditionally stable in 
numerical methods. 

2.5. Dynamic Characteristic Analysis of a Rotor-Bearing 
System 

 Nonlinear dynamics and stability of the rotor-bearing 
system, which is simplified as the Jeffcott rotor, are 
investigated both theoretically and experimentally. The 
nonlinear oil-film forces are obtained under the short bearing 
theory. The precise integration is utilized to solve the 
nonlinear governing equations. Bifurcation diagrams, 
waterfall plots, Poincare maps, spectrum plots and rotor 
orbits are drawn to analyze various nonlinear phenomena 
and system unstable processes [10]. 
 In this paper, Capone nonlinear oil film force model of 
cylindrical bearing is given [11]. In 1991 Capone made 
Nonlinear Oil Film Force Modeled under the assumption of 
short bearing, as shown in Fig. (1). The model has better 
accuracy and convergence, and some scholars have proved 
the reliability of the model [12]. 
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Fig. (1). Calculation coordinates of bearing. 

 Dimensionless Reynolds equation under the assumption 
of short bearing is as follows: 
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 The press force from equation (21) is as follows: 
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 The formula of dimensionless nonlinear oil film force is 
as follows: 
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where, 
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 Fig. (2) shows a mathematical model of nonlinear rotor-
bearing system [13], where   m1  is mass quality focused on 

the rotor bearings,   c1 is rotor structural damping at the 

bearings, 
 
kp is the shaft stiffness, 

  
fx , f y  are nonlinear oil 

film force components,   m2  is mass quality of rotor disc,   c2  
is damping of rotor disc. When the rotor angular velocity is 
!  and dimensionless eccentricity,   !1 = e1 / c,!2 = e2 / c . 
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Fig. (2). Model of an elastic rotor-bearing system. 

 The system dimensionless equation under the assumption 
of symmetry is as follows: 

  M!!x + C !x + Kx = F +Q   (24) 

where, M, C and K are respectively mass, damping and 
stiffness matrices of 8 and 8 dimensions, and x is 
displacement matrix of 8 and 1 dimensions, and F is 
nonlinear oil film force matrix of 8 and 1 dimensions, Q is 
force matrix of 8 and 1 dimensions changing with time 
which may be an unbalanced force or other incentives. 
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where, 
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c
 are dimensionless displacements, 
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, f y =
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!
 are dimensionless nonlinear oil film force 

components, µ  is lubricant viscosity, 
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dimensionless force, 
 
! = " t  is dimensionless time,   e1,e2  

are amount of eccentricity, c is bearing radial clearance, L is 
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Sommerfeld amendment number, and 
  
m11 =

! 2c
"g

, 
  
a1 =

c1

!
, 

  
a2 =

kp
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!
, and 

  
fxi , f yi (i = 1,4)  are determined by 

equation (23). 

 Let m1=50kg, m1=210kg, D=114mm, L=56.5mm, 
c=0.2mm, µ=0.018Pa·s, kp=165200kN/m, c1=4.3kN·s/m, 
c2=9.3kN·s/m, e1=0.06mm and e2=0.08mm. Precise 
integration method is used to analyze the response of this 
rotor-bearing system. 
 Fig. (3) shows the bearing center displacement of 
Poincare map when the rotational speed is 400rad/s, and it 
can be seen that the system has the characteristics of chaos. 

 

 
Fig. (3). Poincare map of bearing center for rotational speed of 
400rad/s. 

 Fig. (4) shows the orbit of bearing and disk center when 
the rotational speed is 680rad/s, and it can be seen that the 
axis movement of rotor and bearing is periodic motion under 
current rotational speed. 

 Fig. (5) shows the bearing center displacement of 
Poincare map when the rotational speed is 845rad/s, and it 
can be seen that they present discrete points within a certain 
range and indicate that the bearing center produces a chaotic 
motion in the current rotational speed. 

 Fig. (6) shows the bearing center displacement of 
Poincare map when the rotational speed is 1040rad/s, and it 
can be seen that they present torus and indicate that the 
bearing center produces a quasi-periodic motion or almost 
periodic motion in the current rotational speed. 

 As it can be seen from the above results, the movement 
of the rotor-bearing system is a complex dynamic behavior 
that shows bifurcation, chaos and other nonlinear dynamical 
phenomena due to the rotor unbalance of eccentric mass and 
bearing oil film force of nonlinear effects, which may lead to 
system instability [14]. 
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Fig. (4). Orbit of bearing and disk center for rotational speed of 
680rad/s. 

 

 
Fig. (5). Poincare map of bearing center for rotational speed of 
845rad/s. 

 

 
Fig. (6). Poincare map of bearing center for rotational speed of 
1040rad/s. 

CONCLUSION 

 Precise integration method is proposed by academician 
Wanxie Zhong in recent years and it has higher accuracy 
within numerical integration methods. In order to better 
apply the precise integration to solve nonlinear dynamics 
problem, this paper analyzes the accuracy and stability of the 
precise integration method. It explores the internal 
mechanism of the algorithm and how to achieve its fine 
precision and high efficiency. Through an example of 
continuous rotor-bearing system it is proved that precise 
integration method can be used with a larger time step and it 
has the advantages of absolute stability of calculation. For 
differential equations with constant coefficients the state at 
any time can be obtained by iteration with high 
computational accuracy, efficiency and numerical stability. 
Numerical results for the example show that when the rotor-  
bearing system is running, the movement of the rotor-
bearing axis has a complex dynamic behavior that 
sequentially shows periodic response, doubling bifurcation 
and chaotic motions and other dynamic phenomena because 
of the role of imbalance eccentric mass quality and nonlinear 
oil film force and other factors with the change of rotation 
angular velocity. The kinetic behavior of the system with 
speed changes may lead to system instability. Therefore, the 
design of the rotor system must make the working speed to 
avoid these changes in the dynamic behavior of the system. 
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