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Abstract: The vibration characteristics of a high-speed planetary gear transmission (PGT) are studied in this paper. A 
transverse-torsional coupling dynamic model is developed using lumped parameter method. In order to ensure the 
accuracy of the analysis model, the mesh stiffness, support stiffness and the influence of eccentric masses on system are 
also considered. By solving the eigenvalue of differential equations of motion, the natural frequencies and mode shapes 
are calculated. According to the vibration modes of this gear transmission, the characteristics of translational mode and 
torsional mode are described in details. The influence of mesh stiffness, support stiffness and modal modes are discussed 
by adopting strain and kinetic energy. 

Keywords: Mesh stiffness, Modal analysis, Strain energy, Planetary gear transmission, Vibration characteristics. 

1. INTRODUCTION 

 Planetary gear transmission (PGT) is widely used in the 
automobiles, helicopters and marine applications. PGT is 
more advanced than counter-shaft drive because of its higher 
torque-to-weight ratio, compactness and reduced noise. 
Despite the distinguishing advantages, how to reduce the 
noise and vibration of planetary gear transmission remains to 
be key concern in these applications. Accurate dynamics 
model is the first work to acquire and improve performance 
of transmission [1]. 
 The free vibration characterization can be predicted by 
studying the eigenvalue problems for various lumped 
parameter models [2]. Lin and Parker developed an 
analytical model which admitted a three degrees of freedom 
for each of the sun, ring, carrier and planets [3, 4]. 
Ambarisha [5] established a non-linear dynamics model of 
planetary gear system by coupling lumped parameter method 
and FEM-Contact model which considered backlash in 
circular tooth. The vibration modes of PGT with helical 
gears were also simulated using a three-dimensional 
dynamic model including all six rigid body motions of the 
carrier and the gears [6, 7]. According to A. Fernandez del 
Rincon [8], the deformation at each gear contact point is 
formulated as a combination of a global and a local term. 
The former was obtained by means of a finite element model 
and the latter was described by an analytical approach which 
is derived from Hertzian contact theory. Z. Yang built a 
nonlinear torsional dynamic model and performed analysis 
about the influences of different design parameters [9].  
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M. Rashidi built a linear dynamic model to search the effects 
of shaft location and mesh stiffness on the gear mesh forces 
[10]. Lehao Chang and Geng Liu analyzed influence of key 
parameters on vibration of planetary gear system, and these 
parameters included mesh stiffness, structure stiffness, 
moment of inertia and mass of structure [11]. 
 In this paper, a transverse-torsional coupling dynamic 
model for a planetary gear transmission is established. And 
the mesh stiffness, support stiffness and the eccentric masses 
are considered in this model. The free vibration 
characteristics of the PGT are investigated in the following 
analysis. Then the formulations to acquire the modal kinetic 
energy, support strain energy and mesh strain energy for 
different vibration modes are derived. 

2. DYNAMIC MODELING 

 A 2K-H PGT to be investigated is used in an aircraft 
engine, it is made of sun wheel, carrier, ring gear and four 
planets. And its structure is shown in Fig. (1). The sun S 
transfers the input torque to the planets P. Then the torque is 
outputted by the carrier C. And R is the ring gear of the 
PGT. The lumped parameter model of the system is shown 
in Fig. (2). In this system, main components are considered 
to be rigid and the gear tooth flexibilities are modeled as 
linear springs on the meshing action plane. The deflections 
of carrier, sun, ring and planets are described by local 
rotational and translational coordinates. The axial deflection 
is not considered due to spur-gear. 
 OXY is the moving coordinate system of the center gear, 
and its origin locates in the theoretical center of the wheel. 
OiXiYi (i=1, 2,…, N, N is the number of the planets) is the 
local moving coordinate of planet, and its origin Oi coincides 
with the center of planet i. The transitional and torsional 
displacement of each parts are represented by xj, yj and  
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Fig. (1). A 2K-H PGT structure. 

θj (j=s, r, c, pi,…, pN), which occurred due to vibration of 
the system. And Ej means the eccentric distance. For each 
gear pair, the translational gear mesh displacements uj=Rjθj 
can be replaced by θj, where Rj is the base circle radius for 
each gear or the assembly radius of the planets for the 
carrier. According the dynamics model in Fig. (2), the mesh 
stiffness between the sun and the planet is described by 
spring element ksp, and the mesh stiffness between the ring 
gear and the planet is denoted by krp. The support stiffness 
and torsional stiffness are represented by kjx, kjy and kju (j=s, 
r, c, p) respectively. 

 
Fig. (2). The dynamic model of the system. 

 The generalized coupled transverse-torsion dynamic 
model is established, when the friction on tooth surfaces is 
neglected. The relative gear mesh displacement of a sun-
planet pair can be denoted as: 

! sp = xs sin"spi ys cos"spi + us xpi sin#
          ypi cos# upi Esp (t)

  (1) 

 The relative gear mesh displacement of a ring-planet pair 
is given as: 

!rp = xr sin"rpi yr cos"rpi + ur + xpi sin#
          ypi cos# upi Erp (t)

  (2) 

 And the relative displacement of carrier-planet is 
represented as: 

!cpxi = x c cos"pi + y c sin"pi xpi
!cpyi = x c sin"pi y c cos"pi ypi + uc

  (3) 

where, α is the transverse pressure angle, and φspi=α+φni, 
φrpi=α-φni, in which φni is the fixed angle. Esp  and Erp  are 
the transmission error of sun-planet and ring-planet pairs 
respectively. According to Newton’s second law, the un-
damped differential equations of motion of the sun gear can 
be derived as: 

 

ms!!xs + ksxs + ksp! spi sin"spi
i=1

N

= kspEsp (t)
i=1

N

+msEs# s
2 cos(# st)

ms!!ys + ksys ksp! spi cos"spi
i=1

N

= msg kspEsp (t)
i=1

N

+msEs# s
2 sin(# st) 

Is
Rs

2 !!us + ksuus + ksp! spi
i=1

N

=
Tp
Rs

+ kspEsp (t)
i=1

N

 (4) 

where, mj and Ij (j=s, r, c, pi,…, pN) is the mass and the 
moment of inertia of each parts, Tp and Tg denote the input 
and output torque, respectively. The equations of motion for 
the ring, carrier and each planet can be obtained similarly. 
 The differential equations of motion of each planet are 
given as: 

 

mp!!xpi kcp!cpxi ksp! spi sin" + krp!rpi sin"

= mpEp# p
2 cos(# pt)+mpgcos$pi kspEsp (t)+ krpErp (t)

mp!!ypi kcp!cpyi ksp! spi cos" krp!rpi cos"   

= mpEp# p
2 sin(# pt)+mpgsin$pi kspEsp (t) krpErp (t)

I pi
Rp

2 !!upi krp!rpi + ksp! spi

= mpEpgcos(# pt)+ kspEsp (t) krpErp (t)

 (5) 

 For ring gear: 

 

mr !!xr + krxr + krp!rpi sin"rpi
i=1

N

= krpErp (t)
i=1

N

+mrEr# r
2 cos(# rt)

mr!!yr + kryr krp!rpi cos"rpi
i=1

N

= mrg krpErp (t)
i=1

N

+mrEr# r
2 sin(# rt)

Ir
Rr
2 !!ur + kruur + krp!rpi

i=1

N

=
Tg
Rr

+ krpErp (t)
i=1

N

 (6) 

 The differential equations of carrier can be derived as: 

 

mc!!xc + kcxc + kcp!cpxi cos"pi
i=1

N

+ kcp!cpyi sin"pi
i=1

N

= mcEc# c
2 cos(# ct)

mc!!yc + kcyc + kcp!cpxi sin"pi
i=1

N

kcp!cpyi cos"pi
i=1

N

= mcg +mcEc# c
2 cos(# ct)

Ic
Rc
2 !!uc + kcuuc + kcp!cpyi

i=1

N

= mcEcgcos(# ct)

  (7) 
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 The system equations can be obtained by assembling the 
un-damped motion differential equation of each rigid body 
and derived in matrix form as: 

 M!!X + KX = F   (8) 
where, M is the mass matrix, K represents the stiffness 
matrix, F denotes exciting force vector, and X is the vector 
of the degrees of freedom of the system. 

3. MODAL ANALYSIS 

 The parameters of the investigated PGT are given in 
Table 1. The planets are assumed identical and equally 
spaced. For each part, the support have equal stiffness in x 
and y directions. And all planet support stiffness are equal 
(kcpxi= kcpyi=kp), all sun-planet meshing stiffness ksp are equal, 
all ring-planet meshing stiffness krp are same. The carrier-
planet support stiffness adopts the same value. The sun and 
ring gear have the same transverse pressure angle. 
Table 1. Parameters of the PGT. 
 

Parameter Sun Planet Ring Carrier 

Mass (kg) 5.0167 3.2128 20.6353 22.4077 

Moment of Inertia (kg·m2) 0.014122 0.01689 0.60441 0.80 

Base Radius (m) 0.05993 0.0531 0.20117 0.15267 

Support Stiffness (N/m) 7.24×108 1.56×108 7.38×109 1.25×107 

Torsion Stiffness (N/m) 0 - 4.63×107 0 

Transverse Pressure Angle (°) α=28 

 
 The natural frequencies and mode shapes can be 
calculated by solving the associated eigenvalue problem of 
equation, which is: 

  ! i
2 M"i = K"i   (9) 

where, ωi is the j-th natural frequency, φi is the 
corresponding mode shape. 

3.1. Natural Frequencies and Vibration Modes 

 By computing the natural characteristics, the different 
natural frequencies of the PGT system are acquired, and the 
mode shapes can be classified into three types: translational 
mode, torsional modes and planetary vibration mode. The 
natural frequencies and the corresponding vibration modes 
are shown in Table 2. The system is positive semi-definite 
and therefore has a rigid body mode, with the frequency of 

0Hz. For the investigated model, there are six translational 
modes, five torsional modes and three planetary modes. 
 In Fig. (3), the normalized modal deflections for the three 
vibration modes are shown. The planetary vibration mode 
means that all planets have translational and rotational 
movements, see Fig. (3a). According to Fig. (3b), the center 
parts have pure rotational movements, and the translational 
deflections are zero. For translational mode, see Fig. (3c), 
the center parts (sun, ring and carrier) have pure translational 
movements, and the torsional deflections are zero. 

3.2. Influence of Mesh Stiffness on Natural 
Characteristics 

 According to the findings of J. Lin and R. G. Parker, the 
natural frequency sensitivity to certain stiffness is uniquely 
associated with the modal strain energy stored in that spring 
element [3]. The mesh strain energy is generated due to gear 
distortion, and for the each stage it is defined as: 

Ujpi =
1
2

kmi! jp
2

i=1

4

" ( j = s,r)   (10) 

where Ujpi is the mesh strain energy of each stage for 
external or internal gearing, kmi is the mean mesh stiffness, 
δsp and δrp are the relative deflection as expressed in Eq. (1) 
to Eq. (3). The derivative of eigenvalue with respect to mesh 
stiffness kmi is expressed as: 

!"i
!kmi

= # jp
2 =

2Ujpi

kmi
( j = s,r)   (11) 

 Therefore, the mesh strain energy can intuitively reflect 
the effects of mesh stiffness on the concerned natural 
frequency. Fig. (4) shows the mesh strain energy of all 
natural frequencies for external and internal gearing. As the 
modal deflection has been normalized, the mesh strain 
energy calculated here is also dimensionless. The x-axis is 
the stage number of each frequency, and y-axis is the relative 
value of mesh strain energy. It can be clearly seen from Fig. 
(4a) that the mesh stiffness has greater influence on the first, 
fourth, tenth, eleventh, fourteenth, eighteenth, nineteenth, 
twentieth, and twenty-first frequencies than other stages. For 
internal gearing, the effect on the twelfth, thirteenth stages 
are more obvious, see Fig. (4b). 

3.3. Influence of Support Stiffness on Natural 
Characteristics 

 Similar to the mesh strain energy, the support strain 
energies for support stiffness are defined as: 

Table 2. Natural frequencies and mode types. 
 

Vibration Mode Frequency Vibration Mode Frequency Vibration Mode Frequency 

Torsion 

535.61 

Translation 

351.13 

Planetary Vibration 

666.28 
696.92 772.00 

1167.10 1584.21 
4033.64 

5051.55 2778.36 

6863.23 4738.37 
5148.59 

-- 5890.25 
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Ui =Uix +Uiy =
1
2

(kixxi
2 + kiyyi

2 )   

 (i = p1, p2..., p4,s,r,c)
 (12) 

where, Ui is the total support strain energies in the bearing of 
gear i, Uix, Uiy are the strain energies in the support springs 
of bearing, respectively. And for planets, kix=kcpx, kiy=kcpy. 

(a) Planetary vibration mode 

 
(b) Torsional vibration mode 

 
(c) Translational vibration mode 

 
Fig. (3). Modal deflection for the three modes. 

(a) Mesh strain energy for external gearing 
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(b) Mesh strain energy for internal gearing 
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Fig. (4). Mesh strain energy for all mode shapes. 

 The derivative of eigenvalue with respect to bearing 
stiffness is: 

  

!"i

!ki

= 2(xi
2 + yi

2 ) = 4(
Uix

kix

+
Uiy

kiy

)  (13) 

 Fig. (6) shows the distribution of strain energies for all 
bearings at 1584.21Hz and 4738.37Hz. As the description in 
Fig. (5), the y support stiffness of the sun gear is the most 
sensitive when the natural frequency equals to 1584.21Hz. 
And the natural frequency 4738.37Hz is most sensitive to the 
bearing stiffness of the ring gear. It can be also seen that the 
translational mode (4738.37Hz) is almost independent of the 
bearing stiffness of the carrier because there are very small 
deflections for them in this mode. 

3.4. Influence of Mass Property on Natural 
Characteristics 

 The modal kinetic energy of the system is defined as: 

  
Ui =

1
2
! j

2mi (xi
2 + yi

2 )  (14) 
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Ti =

1
2
! j

2meq,iui
2   

 (15) 
where Ui (i=s,r,c,p) is the translational kinetic energy of 
different gears, Ti(i=s,r,c,p) is the kinetic energy associated 
with a certain moment of inertia. 

(a) Supoort strain energy for 1584.21Hz 

 
(b) Support strain energy for 4738.37Hz 

 
Fig. (5). Support strain energy for different frequencies. 

 The derivative of eigenvalue with respect to mass is 
expressed as: 

  

!" j

!mi

= #" j (xi
2 + yi

2 ) = #
2Ui

mi

 (16) 

  

!" j

!mi

= #"iui
2 = #

2Ti

meq,i

 (17) 

 Therefore, the kinetic energies can be used to estimate 
the impact of mass properties on different frequencies. Fig. 
(6) shows the distribution of kinetic energies in 1584.21Hz 
and 6863.23Hz. As can be seen in Fig. (6a), the moments of 
inertia of sun and ring have significant effect on the natural 
frequency 1584.21Hz. It can be concluded that the torsional 
deflections of sun and planets may be the principal 
deflections when the natural frequency equals to 6863.23Hz. 
According to the mode shapes of 1584.21Hz, the torsional 

deflection of all center gears approaches to zero and the 
conclusion agrees with Fig. (4c). 

(a) Translational mode for 1584.21Hz 

 
(b) Torsional mode for 6863.23Hz 

 
Fig. (6). Distribution of kinetic energies. 

CONCLUSION 

 A dynamic model of a planetary gear transmission has 
been developed in order to investigate the free vibration 
characteristics of the system. The influence of several key 
design parameters have been discussed in this paper. Three 
types of vibration modes are acquired, which include 
translational mode, torsional mode and planetary vibration 
mode. The simplified formulae for mesh strain energy and 
support strain energy can directly reflect the influences of 
mesh stiffness and support stiffness on a certain vibration 
mode. The support stiffness has no effect on the center gears 
in torsional mode and the mode shape is independent of the 
masses of the center wheels, while the translational mode is 
independent of the moments of inertia of the center gears. 
The dynamic response and vibration influence of the PGT 
will become the focus of the future work. 
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