CATIA-Based Urban Mini EV Design

Tian Pengfei*, Luo Yiping, Zhou Feng and Yuan Shu

Faculty of Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201600, P.R. China

Abstract: This article introduces a mini EV for urban single driving, the car intended to work as conveyance for city workers, thereby relieving urban traffic pressure, improving traffic congestion, reducing urban pollution. The paper primarily designs a electric reversed tricycle and determines its motor and battery parameters, fixes the cockpit installation location by ergonomics, and finally completes vehicle arrangement. CATIA is mainly used for modeling and ergonomics analysis during the design process.

Keywords: CATIA, ergonomics, mini EV, reversed tricycle.

1. INTRODUCTION

With the global energy shortage and environmental pollution is worsening, governments and the auto industry is widely recognized that energy conservation is the main direction of the future development of automotive technology. Energy and environmental issues have become the biggest obstacle to the development of conventional cars, finding and developing new, clean power source become a hot research field in the automotive sector of today. EV has unparalleled advantages in terms of environmental protection and energy saving compared to conventional fuel vehicles because of its notable features of high efficiency, low noise, zero emissions [1]. Meanwhile, the development of modern high-tech, the birth of new materials and the widely used of electronics, motors and computer technology have greatly contributed to the renewal and development of electric vehicles own technology [2]. Therefore, EV has potential to be the mainstream transport in 21st century.

In addition, due to the rapid growth in the number of private cars, city traffic became very busy and crowded. But when people driving to work, the vehicle's interior space has not been used effectively, 4-5 people could sit inside but only one driver, resulting in vehicle flow increasing but not passenger flow increasing. In order to alleviate this urban traffic congestion, electric bikes become an popular means of transport, However, the electric bike has its inherent flaws such as its poor importance when coping with bad weather, poor security, etc. Therefore, we hope to design a product that can both have the advantages of cars and electric bikes, that is, a tiny, inexpensive, easy maintenance, security, and energy-efficient electric cars.

2. WHOLE SCHEME DESIGN

2.1. General Design Requirements

The mini EV designed in this paper is in order to achieve the electric drive and reduce vehicle weight, reduce drag and improve transmission under certain conditions (for a given performance requirement, the apparent size, etc.), so that maximize endurance mileage. Here are some basic requirements for vehicle design in Table 1.

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seats</td>
<td>1</td>
</tr>
<tr>
<td>Vehicle quality/kg</td>
<td>240</td>
</tr>
<tr>
<td>Maximum mileage/km</td>
<td>75</td>
</tr>
<tr>
<td>Maximum speed/km/h</td>
<td>40</td>
</tr>
<tr>
<td>Maximum gradeability</td>
<td>≥15%</td>
</tr>
<tr>
<td>Total length/mm</td>
<td>≤2200</td>
</tr>
<tr>
<td>Total width/mm</td>
<td>≤1200</td>
</tr>
<tr>
<td>Total height/mm</td>
<td>≤1500</td>
</tr>
</tbody>
</table>

2.2. Traveling System

2.2.1. Wheels

Cars are generally have four wheels, but for mini EV, Tricycle is the best choice whether consider of the practical application or the ease of design and power steering. There are two main forms of tricycle arrangement, one front two rear and two front one rear [3]. Tricycles with one front two rear have poor steering stability and easily rollover when turning with fast speed, this will greatly reduce the driving safety of mini EV. Tricycles with two front one rear are widely used in all kinds of energy-saving racing cars, this arrangement ensure cars can obtain good handling stability and ride comfort even having small running resistance. What’s more, tricycles with this arrangement don’t need axle shaft, differential and some other structures, reduce the complexity of the mechanism and vehicle quality. And when vehicle is decelerating before a curve, the load assigned to two front wheels, cornering stability can easily be guaranteed. Therefore, the arrangement of two front one rear (two front steering wheels, one rear driving wheel) is selected for mini EV.
2.2.2. Frame

As an important part of mini EV, frame must have lower quality and sufficient strength and rigidity to ensure that it is not destroyed by stress and deformation. Generally, the quality of the frame itself should be controlled less than 10 percent of vehicle curb mass [4]. Considering the requirements of strength and rigidity of mini EV, vehicle arrangement and ease of manufacture, Pipe-type frame which is often used in energy-saving racing cars is selected for mini EV. Pipe-type frame is a lot of steel welded into a skeleton, then the various components fixed on the frame [5]. The frame materials should cost lower when meet the requirements of strength and stiffness. Aluminum alloy that have high specific strength and specific stiffness, low density and price should be the most appropriate selection [6].

2.2.3. Suspension

For city driving, independent suspension often used to obtain lower vehicle centroid height, better ride comfort and handling stability. Single wishbone, double wishbone, single trailing arm, double trailing arm, single oblique arm, McPherson and torsion bar, etc. are the most common types. Considering with the wheels of two front one rear, rear-wheel drive and Pipe-type frame, double-wishbone independent suspension is used for front suspension, single trailing arm independent suspension is used for rear suspension.

2.3. Steering System

The steering wheel is arranged according to the position of hands which is designed by ergonomics. Steering shaft axis and steering wheel center disposed within the vehicle longitudinal vertical plane. The position and tilt angle of steering wheel should make driver manipulate portable [7]. In addition, the location of steering column should not hinder the driver's normal needs of leg movement. Steering rod and steering gear is disposed between the upper and lower wishbones of double wishbone suspension and the front of frame, and check whether interference will occur between the various components.

2.4. Cockpit

The cockpit disposed in the back of the battery, in the rearward part of the EV, that is making steering system arrangement easily, also can increase the load applied on the rear axle, and increase the adhesion between the rear wheel and the ground.

2.5. Battery

Taking into account the use of rear-wheel drive, in order to increase the adhesion between the rear wheel and the ground, to shorten the distance between the battery and the motor, the battery is arranged in the back of the seat, before the top of the rear wheel.

2.6. Cargo Box

Cargo box is arranged above the rear wheel, making the car more compact layout.

3. DRIVE SYSTEM PARAMETER CALCULATION

3.1. Motor Parameter Calculation

The rated power and rated torque are the main parameters for motor. The rated power is determined by the maximum speed of EV to ensure the efficiency of the motor. Meanwhile, the power consumption of the vehicle increases with the speed of the vehicle, and the velocity of the vehicle in normal driving are generally lower than the maximum speed, so the rated power of the motor should be higher than or equal to all the running resistance power when the vehicle running with the maximum speed [8].

The rated power of motor can be given by:

\[P_r \geq \frac{1}{\eta} \left(\frac{mgf u_{\text{max}}}{3600} + \frac{C_D A u_{\text{max}}^2}{76140} \right) \] \hspace{1cm} (1)

Where \(m \) is the vehicle quality, \(A \) is the frontal area, \(\eta \) is the transmission efficiency, \(f \) is the rolling resistance coefficient, \(C_D \) is the air resistance coefficient, \(u_{\text{max}} \) is the maximum speed.

Rated torque can be calculated by the rated power and motor speed:

\[T_s = \frac{9550 \cdot P_r}{n} \] \hspace{1cm} (2)

When vehicle is in the climbing conditions, the instantaneous power needed that overload power is higher than rated power, that can be given by:

\[P_{\text{max}} \geq \frac{1}{\eta} \left(\frac{mgf \cos \alpha u_s}{3600} + \frac{mg i}{3600} u_s + \frac{C_D A u_s^2}{76140} \right) \] \hspace{1cm} (3)

Where \(r \) is the tyre rolling radius, \(i \) is the max slope, \(\alpha \) is the max slope angle, \(u_s \) is the climbing speed.

Also in the climbing conditions, the maximum torque of mini EV can be calculated by:

\[T_{\text{max}} \geq \frac{r}{\eta_0} \left(\frac{mgf \cos \alpha + mg \sin \alpha}{21.15} + \frac{C_D A}{21.15} u_s^2 \right) \] \hspace{1cm} (4)

3.2. Battery Pack Parameter Calculation

3.2.1. Battery Effective Capacity

According to the design index of 75 km vehicle mileage, battery effective capacity can be given by:

\[M_s = \frac{N \cdot S}{V \cdot u} \] \hspace{1cm} (5)

Where \(N \) is the motor rated power, \(V \) is the motor rated voltage, \(S \) is the vehicle mileage, \(u \) is the vehicle speed.

3.2.2. Battery Rated Capacity

At present, new power battery calibrate its rated capacity by 5 h discharge rate, and the above calculations show that the battery is actually working on 2 h discharge rate, however, Lead-acid battery discharge characteristics test data shows: the effective capacity of the battery with 2 h discharge rate is only 70% of the rated capacity of the battery with 5 h discharge rate.
The battery rated capacity can be written by:
\[M = M_r / 0.7 \]
\(\text{(6)} \)

3.3. Dynamic Parameter Calculation

Depending on design specification and refer to the relevant information to draw basic parameters of mini EV in Table 2.

Table 2. Basic parameters.

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle quality/kg</td>
<td>240</td>
</tr>
<tr>
<td>Maximum speed/km·h⁻¹</td>
<td>40</td>
</tr>
<tr>
<td>Maximum gradeability/%</td>
<td>20</td>
</tr>
<tr>
<td>Rolling resistance coefficient</td>
<td>0.01</td>
</tr>
<tr>
<td>Air resistance coefficient</td>
<td>0.3</td>
</tr>
<tr>
<td>Frontal area/m²</td>
<td>2.1</td>
</tr>
<tr>
<td>Transmission efficiency</td>
<td>0.98</td>
</tr>
<tr>
<td>Tire rolling radius/m</td>
<td>0.226</td>
</tr>
<tr>
<td>Vehicle mileage/km</td>
<td>75</td>
</tr>
</tbody>
</table>

According to the basic parameters above, drive system parameters are calculated by the basic dynamic equation of drive system, the results are shown in Table 3.

Table 3. Drive system parameters.

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor rated power/kW</td>
<td>0.807</td>
</tr>
<tr>
<td>Battery pack rated output voltage/V</td>
<td>48</td>
</tr>
<tr>
<td>Battery pack rated capacity/Ah</td>
<td>55.71</td>
</tr>
</tbody>
</table>

Taking care of both calculation results and actual situation, select 48 V/1 kW motor and select four 12V/15Ah maintenance-free lead-acid motive battery in series as the power source.

4. COCKPIT DESIGN

In this part, Ergonomics and will be used for aided design. First, establish a human model in Human Builder module in CATIA [9], then select the 95th percentile of the human dimensions of Chinese adults and adjust the joint angle of human model as shown in Table 4.

<table>
<thead>
<tr>
<th>Human Joint</th>
<th>Angle(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>neck joint</td>
<td>165</td>
</tr>
<tr>
<td>Shoulder joint</td>
<td>25</td>
</tr>
<tr>
<td>Elbow joint</td>
<td>110</td>
</tr>
<tr>
<td>Hip joint</td>
<td>105</td>
</tr>
<tr>
<td>Knee joint</td>
<td>115</td>
</tr>
<tr>
<td>Foot joint</td>
<td>100</td>
</tr>
</tbody>
</table>

Firstly, draw a two-dimensional human model as described above, and determine the H-point according to the requirements of the cockpit arrangement, then paint a slash that 8 degree to the vertical direction from H-point, get point F at 765 mm upward along the slash from H-point. Point F is equivalent to the highest point of the head of the 50th percentile driver. next, take point at 100~135 mm vertically upward from point F, that point is the highest point of the roof trim lines. The roof above the roof trim lines including steel sheet, skin and isolation layer, the total thickness is about 15~25 mm. Furthermore, the highest point on the cross-section of the car roof need to add 20~40 mm from that point because the cap is generally upwardly convex contour surface and is symmetrical to the longitudinal plane of the car. As shown in Fig. (1).

Fig. (1). The highest point of the roof contour.

The distance from H-point to the highest point of the roof is calculated as:
\[h = 765 \times \cos 8° + 100 + 15 + 25 = 898 \text{mm} \]
\(\text{(7)} \)

Corresponding 2D drawings and 3D model is drawn as follows according to the related parameters determined by ergonomics as shown in Figs. (2, 3).

5. VEHICLE PARAMETERS

The other relevant parameters of mini EV are calculated in the tables below according to design specification (Tables 5-7).
CONCLUSION

1. This urban mini EV is only 240 kg weight and has a small vehicle size. It is convenient to drive in the city roads, alleys, streets, communities, squares, parks, etc. It is also easy to park and ease the traffic pressure.

2. The mini EV is energy efficient, environmentally friendly and low noise. And compared to the normal two wheels electric bicycles safe, min EV is safer and stronger to adapt to harsh weather. It also meet people’s normal demand of the car’s dynamic performance by using high-performance hub motor and lead-acid battery.

3. The mini EV is cheap. It is expected that the market price will be less than 10,000 RMB. It will be bound to get a good economic and social benefits after the car putting on the market.

ABOUT THE AUTHORS

First Author Tian Pengfei, Bachelor degree in engineering, Studying for Master Degree in Shanghai University of Engineering Science. The author’s major is Vehicle Engineering.

Second Author Luo Yiping, University professor of Shanghai University of Engineering Science, Senior Engineer. The author’s major is Automobile Manufacturing and Testing

Third Author Zhou Feng, Studying for Master Degree in Shanghai University of Engineering Science.

Fourth Author Yuan Shu, Studying for Master Degree in Shanghai University of Engineering Science.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

This research was supported by An urban micro-electric car design (14KY0609).

REFERENCES

