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Abstract: Antimicrobial resistance is one of the greatest global threats to human health in recent times and it limits the achievement of several of
the  Sustainable  Development  Goals.  Methicillin-Resistant  Staphylococcus  aureus  (MRSA)  and  Extended-Spectrum Beta-Lactamase  (ESBL)
producing  Enterobacteriaceae  are  among  the  most  important  multidrug  resistant  bacterial  pathogens.  MRSA  and  ESBL-producing
Enterobacteriaceae have evolved significantly over the last few decades with important clinical and epidemiological implications. Given the slow
progress of development of new antibiotics in recent times, it is likely that these multidrug resistant pathogens will have a greater impact on public
health in the 21st  Century, unless other effective control measures are instituted. Effective infection control strategies coupled with antibiotic
stewardship programs are required to limit the spread and burden of MRSA and ESBL-producing Enterobacteriacae.
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1. INTRODUCTION

The  World  Health  Organization  (WHO)  considers
Antimicrobial  Resistance  (AMR)  to  be  one  of  the  greatest
threats to human health in the 21st Century. It is estimated that
by 2050 if the AMR threat were not properly tackled, it would
lead to 10 million people dying every year and a reduction of
2-3.5% in Gross Domestic Product (GDP) with an overall cost
of 100 trillion USD [1]. This burden is expected to be relatively
higher in sub-Saharan Africa with a drop in GDP of US $2895
billion, representing 20% of the region’s total economic output
[1]. Antimicrobial resistance limits the achievement of several
of the Sustainable Development Goals (SDGs). In particular,
SDG3 (Ensure healthy lives and promote well-being for all at
all  ages)  is  severely  impacted  by  AMR,  as  several  of  the
adopted targets in this health-dedicated SDG will be impossible
to achieve  without  the  availability  of  effective  antibiotics
[2, 3].

Antibiotic resistance, which is the most important aspect of
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AMR,  has  been  attributed  to  the  misuse  and  overuse  of
antibiotics which puts selective pressure on bacterial pathogens
leading to the emergence of resistance [3 - 6]. Multidrug Re-
sistance  (MDR),  the  phenomenon  where  microbes  become
resistant  to  several  drugs,  is  now  common  among  many
bacterial  pathogens.  Multidrug  resistance  is  of  particular
concern as it limits treatment options, can be transferred among
bacterial  pathogens and enhances morbidity  and mortality  of
the superbugs [3 - 6]. Generally, MDR may occur by one of the
two mechanisms. Firstly, the bacteria involved may accumulate
multiple resistance genes on plasmids, and each of these genes
code for resistance to a single drug [6, 7]. Secondly, multidrug
resistance  may  occur  by  increased  expression  of  genes  that
encode  multidrug  efflux  pumps,  thereby  extruding  different
types  of  drugs  [6,  7].  In  the  last  few  decades,  several
epidemiologically  significant  MDR bacterial  pathogens  have
emerged including Methicillin-resistant Staphylococcus aureus
(MRSA)  and  Extended-Spectrum  β-lactamase  (ESBL)-pro-
ducing  Enterobacteriaceae.  MRSA  is  resistant  to  all  beta-
lactam antibiotics and many commonly used antibiotic groups
including, aminoglycosides, macrolides, fluoroquinolones, ch-
loramphenicol  and  tetracyclines  [8  -  10].  ESBL-producing
Enterobacteriaceae  are  resistant  to  third  generation  cepha-
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losporins and monobactams [11]. Together MRSA and ESBL-
producing  Enterobacteriaceae  constitute  a  serious  emerging
therapeutic challenge in the management of bacterial infections
in  the  21st  century.  Though,  there  is  a  plethora  of  review
articles  on  antibiotic  resistance,  relatively  few  of  them  have
focused on MDR organisms in recent times; MRSA and ESBL-
producing  Enterobacteriaceae  seem  to  have  received  some
attention, but in many cases, these are covered to limited scope
[12 - 14]. To help address some of these gaps, in this paper, we
aimed to review the problem of MRSA and ESBL-producing
Enterobacteriaceae  with  emphasis  on  the  clinical  and
epidemiological aspects. This review covers selected relevant
articles  on  antibiotic  resistance  spanning  the  period  from
1963-2019.

2.  METHICILLIN  RESISTANT  STAPHYLOCOCCUS
AUREUS

Staphylococcus aureus is considered as both a commensal
and a human pathogen. As a pathogen, S. aureus is implicated
in  several  infections  including  meningitis,  septicaemia,
pneumonia,  endocarditis  and osteomyelitis  [15].  Although S.
aureus can be carried to several body sites as part of the normal
flora (commensal), its ecological niche is the anterior nares of
the nose [16 - 18]. S. aureus occurs principally in the anterior
nares because it tends to thrive in conditions of high osmotic
pressure and low moisture [19]. It is known that about 50% of
the general population are rarely colonized by S. aureus, 20%
are persistent carriers, while the other 30% carry the organisms
intermittently [20 - 22]. S. aureus colonization is a major risk
factor for the development of invasive disease of the organism
in humans [18, 23].

Methicillin  was  introduced  in  1959  to  treat  infections
caused by penicillin-resistant S. aureus. However, in the early
1960s,  MRSA  was  observed  in several European countries
[24  -  28].  MRSA  now  has  a  worldwide  distribution  and  is
endemic in many hospitals particularly, in Asia, Europe and the
United States [29 - 31]. A systematic review of MRSA carriage
among healthcare workers in the United States and Europe in
2014  reported  a  prevalence  of  4.6%  [32].  In  MRSA,  the
methicillin  resistance  gene  encodes  a  methicillin-resistant
penicillin-binding  protein,  which  is  carried  on  the
staphylococcal cassette chromosome mec, of which more than
ten  types  have  been  described  so  far  [33].  In  addition  to  its

extensive resistance to antibiotics, MRSA is of serious concern
due to the high prevalence of its infections and association with
persistent outbreaks, which have serious economic implications
[34]. The annual incidence of invasive MRSA infections in the
United  States  is  estimated  to  be  94,360,  with  18,650  deaths
[35]. Additionally, hospital stays for MRSA infections in the
United States cost $14,000, in comparison with $7,600 for all
other  stays,  with  twice  the  length  of  hospitalization  [36].  In
Europe,  data  from  thirty-one  countries  reported  27,711
episodes  of  MRSA  blood  stream  infections,  which  were
associated  with  5,503  deaths  and  255,683  days  of
hospitalization  between  July  2007  and  June  2008.  The
estimated  cost  of  this  length  of  hospital  stay  was  44  million
Euros  [37].  Relatively,  there  is  a  scarcity  of  MRSA  data  in
developing  countries,  especially  on  economic  costs.  In  a
hospital-based study involving nine African countries, MRSA
was  detected  in  213  (15%)  of  the  1440  S.  aureus  isolates
screened;  the  prevalence  was  relatively  higher  in  Cameroon,
Kenya  and  Nigeria  (21-30%),  and  below  10%  in  Tunisia,
Malta,  and  Algeria  [38].  In  Asia,  the  MRSA  prevalence  is
much higher and countries such as Taiwan, Korea and Japan
have recorded Healthcare-Associated HA-MRSA prevalence of
>40% [39].

Traditionally,  MRSA  is  regarded  as  a  major  nosocomial
pathogen  in  healthcare  facilities,  and  is  referred  to  as
healthcare-associated  MRSA  (HA-MRSA)  [40,  41].  Only  a
few  of  the  known  HA-MRSA  clones  are  responsible  for  the
majority  of  infections,  and  different  clones  dominate  in
different  geographical  regions.  For  example,  the  ST239-
SCCmecIII  clone  predominates  in  South  America,  Asia,  and
Africa [42, 43]. The predominant clone in the United States is
CC5-SCCmecII  (USA100)  [44,  45],  while  in  Europe  it  is
CC22-SCCmecIV  (EMRSA-15)  [46  -  50].  It  is  important  to
note  that  the  replacement  of  these  clones  keep  occurring  in
several geographical regions [51 - 53]. Studies on the evolution
of the major HA-MRSA clones indicate strong evidence for a
wide range of antibiotic-resistant mutations and mobile genetic
elements that are associated with the emergence of these clones
in hospital epidemics [54, 55]. Though MRSA is considered a
nosocomial  pathogen  traditionally,  it  has  emerged  in  the
community in the last two decades and is responsible for sev-
eral types of community-acquired  infections  [56 - 59]. Epide-

Table  1.  Some  differences  between  healthcare-associated  MRSA  (HA-MRSA)  and  community-associated  MRSA  (CA-
MRSA).

Parameter HA-MRSA CA-MRSA

Genetic traits Various staphylococcal cassette chromosome (most common—
USA100, USA200)

Panton Valentine gene, staphylococcal Cassette
chromosome IV

(most common—USA300, USA400)
Part of body affected Blood stream; Surgical site; Site of implant Skin; Lungs

Resistance gene SCC mec Types I, II, III SCC mec Type IV, V
Panton–Valentine Leukocidin

producer Rare (5%) Frequent (almost 100%)

Risk population Immunocompromised individuals; residency in long term care
facilities; recent hospitalizations; dialysis patients; recent surgery

Young, otherwise healthy patients (most
common); no recent hospitalizations; anyone

Antibiotic used in management First-line antibiotics used include vancomycin. Additional newer
antimicrobial agents: daptomycin, linezolid and tigecycline.

Doxycycline, clindamycin and cotrimoxazole
often used.

Adapted from Popovich et al. [29] and Bassetti et al [30].
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miologically, CA-MRSA and HA-MRSA are considered to be
different  from each  other  [60,  61],  and  Table  1  shows  some
clinical and genetic differences between them. However, this
epidemiological distinction can be blurred by the fact that CA-
MRSA  and  HA-MRSA  genotypes  are  being  observed  in
healthcare  and  community  infections  respectively  [62].  CA-
MRSA infections could also be caused by livestock-associated
MRSA  (LA-MRSA)  [63].  LA-MRSA  is  initially  associated
with  livestock  (such  as  pigs,  cattle,  and  chicken)  and  differs
genotypically from HA-MRSA and CA-MRSA [63]. Globally,
among the  known LA-MRSA strains,  CC398 is  most  widely
disseminated, followed by CC9 [63].

The  advent  of  Whole  Genome  Sequencing  Analysis
(WGSA)  has  provided  us  the  opportunity  of  better
understanding  some  of  the  important  MRSA  clones.  Using
WGSA, Strauß et al.  [64] recently provided insights into the
evolution  and  global  dissemination  of  the  ST8  clone  (USA
300). The study showed that the ancestor of all ST8 S. aureus
emerged in Central Europe in the mid-19th century, and then
appeared in North America in the early 20th century where it
progressively  acquired  the  USA300  features.  Starting  from
North  America,  USA300  then  spread  globally,  including
Africa.  In  a  phylogenetic  analysis,  Strauß  et  al.  [64]  de-
monstrated  that  the  African  USA300  isolates  formed  a  mo-
nophyletic group within the clade of North American USA300,
indicating a single introduction event to the African continent,
followed  by  a  spread  in  the  local  population  [64].  These
observations highlight the role international travel may play in
the dissemination of antibiotic resistance.

3.  EXTENDED  SPECTRUM  β-LACTAMASE  PRO-
DUCING ENTEROBACTERIACEAE

Gram-negative bacteria including Enterobacteriaceae have
a  relatively  higher  tendency  to  become  antibiotic-resistant

partly  due  to  the  presence  of  an  outer  membrane  which  ex-
cludes antibiotics from penetrating the cell [65]. Addi-tionally,
these  organisms  have  a  great  facility  for  exchanging  genetic
material  (DNA)  that  may  contain  antibiotic-resistant  genes
among strains  of  the same species  and even among different
species [66].  The discovery of antibiotic resistance in Gram-
negative bacteria became apparent soon after ampicillin (first
semisynthetic penicillin) was clinically introduced in 1961. The
first plasmid-mediated β-lactamase in gram-negative bacteria,
TEM-1, was detected in Escherichia coli isolated from a blood
culture from a patient in Greece in 1963 [66]. Over the years,
diverse resistance mechanisms have changed the distribution of
plasmids  and  new  mobile  genetic  features  have  been
contributory in the horizontal transmission of resistance genes,
with  these  multiple  genes  conferring  resis-tance  to  many
antimicrobials.  Among  the  Enterobacteriaceae,  TEM-1  and
sulfhydryl  variable-1  (SHV-1)  β-lactamases  were  the  most
prevalent  plasmid-mediated  enzymes  frequently  found
spreading in countries worldwide [67]. In the 1970s, resistant
Gram-negative  bacteria  had  become  more  common  in  most
hospital-acquired pathogens with TEM-1 and SHV-1 enzymes.
Most of these bacteria carried multiple β-lactamases as well as
other multidrug-resistant genes. In the early part of the 1980s, a
number of new antimicrobials were clinically introduced in the
health-care  delivery  systems,  including  the  third-generation
cephalosporins.  Due  to  misuse  of  these  agents,  Germany  in
1983  experienced  the  first  Extended-Spectrum  β-Lactamase
(ESBL)  in  a  species  of  Klebsiella.  Extended-spectrum  β-
lactamases  are  resistance  enzymes  that  usually  confer
resistance  in  most  Gram-negative  bacterial  pathogens  as  a
result  of  more-selective  pressure  from  the  use  of  β-lactams:
oxyimino-cephalosporins  (such  as  cefotaxime,  ceftriaxone,
ceftazidime,  or  cefepime) and monobactams (aztreonam) but
not carbapenems, which had undergone hydrolysis and further
mutations  [68, 69]. The  ESBL  enzymes  result  from  a  point

Table 2. Beta lactamases classifications, ESBL activity and representative enzymes.

Molecular Class Functional Group ESBL Activityc Representative Enzymes

A

2a N PC1
2b N TEM-1, SHV-1
2be Y CTX-M-14, -15
2br N TEM-30, SHV-10
2ber Y TEM-50, TEM-121
2c N PSE-4, CARB-3
2ce Ne RTG-4
2e Y SFO-1, FEC-1, L2
2f Y KPC-2, SME-1f

B
3ag Y IMP, VIM, NDM, L1
3b N CphA

C
1 N AmpC, ACT-1
1e Y GC1, CMY-37

D
2d N OXA-1, OXA-10
2de V OXA-11, OXA-15
2df Y OXA-23, OXA-48

Adapted and modified from Bush [68].
c= Based on hydrolysis of cefotaxime, ceftazidime, or cefepime. e= In spite of kcat values generally B1 s-1, resistance to cefepime and cefpirome is seen in producing
organisms. g= Includes subclasses B1 and B3. Y= kcat >5 s-1, N= kcat <5 s-1, V= variable within the functional group.
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mutation in the parent β-lactamases, TEM-1 and SHV-1 by one
to four amino acid changes which form the basis of resistance
presumably due to evolutionary selective pressure from the use
of β-lactams, such as oxyimino-cephalosporins and aztreonam.
To  date,  the  number  of  known  β-lactamases  have  increased,
and  there  are  now  over  1000  that  have  been  identified.  The
most  recognizable  among  the  mutants  of  SHV-1,  named
SHV-2,  deactivated  the  extended-spectrum  cephalosporin
drugs  and  often  carried  many  other  resistance  genes  on  its
parent  plasmid  that  conferred  reduced  susceptibility  to  other
unrelated classes of antimicrobials [70, 71].

Equally important  ESBLs of  clinical  significance are the
CTX-M and AmpC β-lactamases families, as indicated in Table
2.  The  CTX-M  family  is  classified  under  classes  of  β-
lactamases as class A ESBLs for the past decade, CTX-M–type
ESBL  enzymes  have  become  most,  prevalent  in  clinical
isolates, mostly in Escherichia coli isolates in Asia, Europe and
South America [72]. Earlier, there were confusions as to where
MEN-1  and  Tolo-1  enzymes  belong.  CTX-M-1  was
subsequently found to be similar to the MEN-1 enzyme; while
CTX-M-44  and  CTX-M-45  were  known  to  be  the  same  as
Toho-1  and  Toho-2  respectively  [68,  73].  Since  CTX-M-1
recognition in clinical circles in the 1980s, over 130 variants
have been identified and genetically classified based on amino
acid differences into 5 major divisions, CTX-M-1, -2, -8, -9, or
-25  mostly  identified  in  Escherichia  coli  and  Klebsiella
pneumoniae isolates from varying geographical locations [74,
75]. In 1999, a CTX-M-15 variant was recovered from India;
belonging  to  the  CTX-M-1  group,  it  was  shown  to  have
dominance  in  the  clinical  setting  and  also  shown  to  have
worldwide  distribution.  Thus,  more  allelic  variants  were
subsequently recovered from different Gram-negative bacterial
isolates in both clinical and community settings and those yet
to  arrive  are  a  threat  to  patients'  conditions  in  the  clinical
environment [72, 76].

AmpC  β-lactamases  are  also  of  importance  and  the
enzymes  can  be  chromosome  or  plasmid-mediated.  After
sequencing  of  the  AmpC  gene  from  Escherichia  coli  K-12
strain,  it  was  designated  as  class  C  according  to  Ambler's
structural  classification  of  β-lactamases  (Table  2).  Thus,
differences  in  molecular  structures  between  β-lactamases
classes A and B actually determined AmpC gene classification
[77].  AmpC-like β-lactamases mainly from Enterobacter  and
Pseudomonas  with  ESBLs  hydrolyse  both  penicillins  and
cephalosporins.  Of  clinical  importance,  plasmid-mediated
AmpC  enzymes  occurring  in  Gram-negative  bacteria  have
detection  problems  with  the  phenotypic  methods,  therefore,
dissemination  associated  with  ESBLs  pose  a  serious  risk  of
treatment  failures  [78].  AmpC  enzymes  are  inducible,
unaffected  by  EDTA  and  clavulanic  acid  inhibitors,  usually
produced in low quantities and often suppress detection ability.
The  main  mechanisms  that  initiate  acquisition  of  plasmid-
mediated AmpC genes and overexpression in bacterial strains
are  largely  due  to  mutation  at  the  AmpC  attenuator  and
promotor  regions  [79,  80].

A  study  by  [81]  earlier  reported  selective  pressure  of
broad-spectrum  cephalosporins  such  as  cefotaxime  and
ceftazidime as the main cause of production for AmpC types of

β-lactamases [81]. This suggestion has been entirely modified
following  a  careful  re-evaluation  on  a  number  of  plasmid-
mediated bacteria by the same group of investigators recently,
that  selective  pressure  of  antimicrobials  only  increase  the
number  of  antimicrobial  resistance  isolates,  and  that  pro-
duction of AmpC β-lactamases largely depend on; suitability of
plasmid, stability of bacterial strain interactions, complexity of
the plasmids, ability to conjugate freely and survival of plasmid
at different conditions [82].

Epidemiological  evidence  from  the  SMART  study  on
urinary  isolates  between  2009  and  2010  showed  that  ESBL
prevalence  among  E.  coli  and  K.  pneumoniae  was  17.6  and
38.9% respectively in Europe, and 8.5 and 8.8% respectively in
North America [83]. In both continents, the class A ESBL gene
CTX-M-15 was the most prevalent gene (found in >90% of E.
coli isolates and in 35–65.5% of K. pneumoniae), though SHV-
and TEM-type genes were also common [83].  Data from the
SENTRY  Asia  Pacific  surveillance  program  reported  that
CTX-M genes occurred in 38.2–55.5% of K. pneumoniae and
E.  coli  isolates,  and  the  prevalence  of  SHV-  and  TEM-type
genes was higher (between 34.3 and 85.3%) [84]. In Africa, a
recent review reported ESBL prevalence ranging from 17.7%
in Algeria to 82.8% in Cameroon; ESBLs (classes A and D) are
common on the continent with the CTX-M-15 gene being most
prevalent [85]. The available data on ESBLs show considerable
geographical differences in prevalence. For example, a study
involving 100 European Intensive Care Units (ICUs) reported
that the prevalence of ESBLs in Klebsiella ranged from 3% in
Sweden to 34% in Portugal [86].

CONCLUSION AND RECOMMENDATIONS

Methicillin-resistant  S.  aureus  and  ESBL  producing
Enterobacteriaceae  have  evolved  significantly  over  the  last
few  decades  with  important  clinical  and  epidemiological
implications. Given the slow progress of development of new
antibiotics in recent times, it is likely that these MDR bacterial
pathogens will have a greater impact on public health in the 21st

Century unless other effective control measures are instituted.
Effective  infection  control  strategies  coupled  with  antibiotic
stewardship  programs  are  required  to  limit  the  spread  and
burden  of  MRSA  and  ESBL-producing  Enterobacteriaceae.
Additionally, further studies on the transmission mechanisms
and local epidemiology of these two MDR bacterial pathogens
are  needed.  In  particular,  there  is  a  need  for  surveillance
including molecular epidemiology data on MRSA and ESBL-
producing Enterobacteriaceae in the developing world, where
such efforts  have focused mainly on microbes with a greater
mortality burden such as Streptococcus pneumoniae, Rotavirus
and Mycobacterium tuberculosis [87 - 91].
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