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Abstract: Background: Venoms of two cobras, four vipers, a standard antibiotic and an antimycotic, were evaluated 

comparatively, as antimicrobials. Methods: Six venom concentrations and three of the standard antibiotic and the antimy-

cotic were run in micro-dilution and diffusion plates against the microorganisms. Results: Echis pyramidum, Echis colora-

tus and Cerastes cerastes gasperettii highest venom concentrations gave significant growth inhibition zones (GIZ) with 

respect to a negative control, except Bitis arietans, whose concentrations were significant. The cobra Walterinnesia ae-

gyptia had significant venom concentrations more than Naja haje arabica. The Staphylococcus aureus Methicillin Resis-

tant (MRSA) bacterium was the most susceptible, with a highly (P < 0.001) significant GIZ mean difference followed by 

the Gram positive Staphylococcus aureus, (P < 0.001), Escherichia coli (P < 0.001), Enterococcus faecalis (P < 0.001) 

and Pseudomonas aeruginosa which, had the least significance (P < 0.05). The fungus Candida albicans was resistant to 

both viper and cobra venoms (P > 0.05). The antibiotic Vancomycin was more effective than snake venoms though, they 

were more efficient in inhibiting growth of the resistant Pseudomonas aeruginosa. This antibiotic was also inactive 

against the fungus, whilst its specific antifungal Fungizone was highly efficient with no antibacterial activity. Conclu-

sions: These findings showed that snake venoms had antibacterial activity comparable to antibiotics, with a directly pro-

portional relationship of venom concentration and GIZ, though, they were more efficient in combatting resistant types of 

bacteria. Both venoms and the standard antibiotic, showed no antifungal benefits.  
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INTRODUCTION 

Bacterial infections involving the multidrug resistant 
strains are among the top leading causes of death throughout 
the world. Healthcare system across the globe has been suf-
fering from an extra-ordinary burden in terms of looking for 
the new and more potent antimicrobial compounds [1]. The 
majority of bacteria such as Pseudomonas, Klebsiella, En-
terobacter, Acinetobacter, Salmonella, Staphylococcus, Me-
thicillin Resistant S. aureus (MRSA), Enterococcus and 
penicillin-resistant Streptococcus pneumoniae (PRSP) van-
comycin-resistant enterococci have developed several ways 
to resist antibiotics. Such bacteria are becoming a serious 
clinical problem throughout the world [2-6]. 

Natural products are important sources of medicinal 
compounds. A wide variety of organisms produce such bio-
active compounds and some of these natural substances have 
been shown to be able to kill bacteria [6-10]. Snake venoms 
contain a great variety of biologically active proteins respon-
sible for various pathological effects. Venoms include toxins 
which are highly potent compounds with selective and spe-
cific activities. They can be useful and valuable as pharma-
cological tools in drug research, as potential drug 
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design templates and as therapeutic agents [11, 12]. In recent 
years, venoms and venom components from different ven-
omous animals have shown potential antibacterial activity. 
This includes snake [13-15] and scorpion venoms [16-19].  

To date, only a few studies have been made on the antim-

icrobial activities of snake venoms [9]. In 1948, Glaser in-
vestigated antibacterial activity of Crotalus venom [20] and 

then in 1968 Aloof Hirsch and his colleagues reported an 

antibacterial lytic factor from the venom of the cobra He-
machatus haemachatus [21]. Now it is fully documented that 

the snake venoms have a number of cytotoxic factors along 

with potent killing effect on bacteria as well as viruses [22-
25]. Rideiro et al., [15] reported the presence of L-amino 

acid oxidase present in snake venom and displayed many 

important biological properties that included the bactericidal 
and virucidal activities. A new antibiotic vejovine has been 

discovered from the Vaejovis mexicanus scorpion venom and 

this agent has been proved to be highly effective on patho-
genic bacteria [19]. Captopril, anti-hypertensive drug was 

designed based on the peptide inhibitor of angiotensin-

converting enzyme from the venom of Bothrops jararaca 
snakes [26]. Echistatin and Ecarin are two bioactive mole-

cules, isolated from Echis carinatus snake venom. Echistatin 

is one of the most potent disintegrin polypeptide which has 
platelet aggregation inhibitor activity and used as an antico-

agulant while Ecarin is an enzyme used in the ecarin clotting 
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time (ECT) test to monitor anticoagulation during treatment 

with hirudin [27-30].  

In a recent study it was demonstrated that the venom 
from one of the world's most venomous snakes Mamba 
could be the key to a new breed of painkillers, may be more 
potent then morphine [31]. Several naturally occurring pep-
tides have shown their promise towards the antimicrobial 
activity however the family Viperidae snake venoms have 
not been explored thoroughly, although they are a major 
source of so many active peptides [13, 32]. The antimicro-
bial peptides are electrically attracted to the negative charged 
groups of the cell surface, where they develop an - helical 
conformation and these charged groups get accumulated on 
the membrane. This can result in the formation of transient 
pores, membrane perturbation and ultimately the cell lysis 
[33].  

In this study we employed 4 crude venoms of the snakes 
of Viperidae and 2 crude venoms of Elapidae family for their 
effects on the growth of pathogenic microorganisms. Similar 
screening focusing on antimicrobial property has not been 
attempted previously among indigenous Saudi Arabian 
snakes. 

MATERIALS AND METHODOLOGY 

Materials  

Snake venoms of two snake groups that belong to two 
families (Viperidae and Elapidae) were obtained from the 
Research Center, Prince Sultan Military Medical City 
(PSMMC), Riyadh, Saudi Arabia. The initial stocks of ven-
oms were prepared in normal saline at a concentration of 
10mg/mL and purified by passing through 0.22 m mem-
brane filter. Further dilutions were made in sterile saline and 
used in this study. Freeze dried microbial cultures of S. 
aureus (S. aureus) ATCC 25923, E. faecalis (E. faecalis) 
ATCC 29212, E. coli (E. coli) ATCC 25922, P. aeruginosa 
(P. aeruginosa) ATCC 27853 and Candida albicans (C. al-
bicans) ATCC 66027 were purchased from Microbiologics, 
Inc. (St. Cloud, MN. USA). The laboratory strain of methi-
cillin resistant S. aureus (MRSA) 12498 was obtained from 
the Department of Microbiology in PSMMC. Brain Heart 
Infusion broth (BHIB), Sabouraud Dextrose broth (SDB), 
Brain Heart Infusion agar (BHIA), Sabouraud Dextrose agar 
(SDA) were purchased from local company agents in Ri-
yadh, Saudi Arabia. The antifungal (Fungizone) was origi-
nally bought from Gibco Life Technology, U.K. and the an-
tibiotic (Vancomycin) was from Sigma, USA and were used 
accordingly. 

Venoms 

The initial stocks of venoms were prepared in normal sa-
line at a concentration of 10mg/mL and sterilized by 0.22 m 
membrane filter and stored in -20º C until use. 

Growth Media  

All of the bacterial cultures with the exception of C. albi-
cans were grown in BHIB and the stocks prepared in 50% 
glycerol were stored at -40º C. C. albicans culture was 
grown in SDB and stored at -40º C as glycerol stock culture. 
The enumeration of C. albicans colonies and the growth in-

hibition were determined on SDA-plates prepared in the 
laboratory. 

Microbial Inoculum 

Microbial inoculum that would be used for antibacterial 
screening assays was prepared using the standard method of 
log-phase growth and were standardized to 0.5 McFarland 
unit and log dilutions were made in phosphate buffer saline 
(PBS) for each microorganism.  

Agar Diffusion Procedure 

Antimicrobial susceptibility tests were performed by the 
agar-diffusion method, which was based on Ouchterlony 
technique and slightly modified according to Barry and 
Brown [34]. Sterilized BHIA was melted in a microwave 
oven and then placed in a water bath set at 45ºC. Once the 
temperature was stable, bottles containing agar were re-
moved and 0.1mL of overnight grown bacterial cultures 
were added. Two to three Petri plates were poured for each 
microbe and once the agar was solidified, plates were trans-
ferred to the refrigeration temperature for 2-3 hours. A dedi-
cated agar punch was used to cut holes in agar and 0.05 mL 
of various dilutions of venom (0.25, 0.5, 1, 2.5, 5, 10 
mg/mL) was added to each well. Normal saline, used as a 
diluent was employed as a negative control. After leaving 
plates on the bench for an hour, they were transferred to the 
incubator. The zones of microbial growth inhibition were 
recorded after 48h of incubation.  

Determination of Colony Forming Units (CFU) and 
Minimum Inhibitory Concentration (MIC) 

24h microbial colony cultures were standardized to 0.5 
McFarland unit and log dilutions were made in phosphate 
buffer saline (PBS) for each microorganism. Several dilu-
tions of the crude venom (0.0625, 0.125, 0.25, 0.5, 1, 2.5, 5, 
10 mg/mL) in triplicate were mixed with the microbial in-
oculum and incubated at 37ºC incubator. The PBS was used 
as negative control. At 24h of incubation, aliquots of sam-
ples were removed and log dilutions were prepared in sterile 
PBS. Petri plates containing BHIA were inoculated with 
100 L of inoculum in triplicate and this inoculum was 
spread using a sterile glass rod bent at 90ºC and a plate rota-
tor (Sensoturn). The Petri plates were incubated for 48h and 
the CFU were counted either with naked eye or using a col-
ony counter. 

Statistics 

Means and standard deviations of the zone inhibition data 
were collected and calculated using Microsoft Excel. Statis-
tical significance was determined by t-test and one-way 
ANOVA, employing GraphPad Prism, GraphPad Instat and 
SPSS packages. 

RESULTS 

Table 1 shows mean zones of microbial growth inhibition 
(in mm), which were obtained by reading the agar diffusion 
plates. Out of eight concentrations ((0.0625, 0.125, 0.25, 0.5, 
1, 2.5, 5, 10 mg/mL) that gave the minimum inhibitory con-
centrations (MIC), six most effective venom concentrations 
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Table 1.  Mean zones of microbial growth inhibition (in mm), which were caused by the six most effective venom concentrations of 

six snakes. 

Family Viperidae 

E. pyramidum venom concentration - zone of Growth Inhibition (in mm) 

 0.25 mg/mL 0.5 mg/mL 1 mg/mL 2.5mg/mL 5.0mg/mL 10mg/mL 

S. aureus 7.25 9.25 9.75 12.25 13.5 15 

S. aureus (MRSA) 11 12 12.25 13 14 15.25 

E. faecalis 0 0 0 6.25 8 9 

E. coli 6 8.25 8 10.5 12 13.25 

P. aeruginosa 0 0 0 6 7.5 8.5 

E. coloratus venom concentration - zone of Growth Inhibition (in mm) 

S. aureus 7 10 11 12 12 13 

S. aureus (MRSA) 12 14 15.5 16.25 17.25 18.25 

E. faecalis 0 6.75 8 10.25 12.5 13 

E. coli 0 7 9 10.25 11 12.5 

P. aeruginosa 0 0 0 7 8 8.75 

C. gasperettii venom concentration - zone of Growth Inhibition (in mm) 

S. aureus 6.75 7.25 8.75 10 11 12 

S. aureus (MRSA) 14.25 10 11.5 13.25 14.5 15 

E. faecalis 0 0 0 0 8 10 

E. coli 0 0 0 6 6.5 7 

P. aeruginosa 0 0 0 0 0 6.25 

Bitis arietans venom concentration - zone of Growth Inhibition (in mm) 

S. aureus 0 0 6.5 7 7 7.5 

S. aureus (MRSA) 0 0 7 8.5 9.25 10 

E. faecalis 0 0 0 0 0 0 

E. coli 0 0 0 0 0 0 

P. aeruginosa 0 0 0 0 0 0 

Family Elapidae 

N. arabica venom concentration - zone of Growth Inhibition (in mm) 

S. aureus 0 6 7.25 9.25 10 11 

S. aureus (MRSA) 6.5 9.25 9.5 11.25 12.5 14.4 

E. faecalis 0 0 6 7 8 10.5 

E. coli 0 6 6 7 9.5 11.5 

P. aeruginosa 0 0 0 6.5 7 7 

W. aegyptia venom concentration - zone of Growth Inhibition (in mm) 

S. aureus 6.75 9.5 10 11.25 12 13.75 

S. aureus (MRSA) 13 14 15.75 16.5 18.5 20.5 

E. faecalis 0 7 8 10.5 12.5 13.25 

E. coli 0 7.25 9 10 11 12.25 

P. aeruginosa 0 6 6.75 7 7 8.25 



Assessment of the Antimicrobial Activity The Open Microbiology Journal, 2015, Volume 9    21 

Table 2.  Paired T-test analysis of viper snake venoms concentration mean microbial zone of growth inhibition against control 

(Normal Saline). 

Viper snake venom concentration Mean Std. Error Mean t Significance (2-tailed) 

E. pyramidum Veonm 0.25mg 4.00 1.915 2.089 0.091 

E. pyramidum Veonm 0.5mg 4.83 2.227 2.170 0.082 

E. pyramidum Veonm 1mg 5.00 2.295 2.179 0.081 

E. pyramidum Veonm 2.5mg 7.83 1.973 3.969 0.011 

E. pyramidum Veonm 5.0mg 9.33 2.171 4.300 0.008 

E. pyramidum Veonm 10mg 10.00 2.338 4.277 0.008 

E. coloratus Venom 0.25mg 3.17 2.104 1.505 0.193 

E. coloratus Venom 0.5mg 6.33 2.261 2.801 0.038 

E. coloratus Venom 1mg 7.33 2.578 2.845 0.036 

E. coloratus Venom 2.5mg 9.17 2.197 4.172 0.009 

E. coloratus Venom 5.0mg 10.00 2.324 4.303 0.008 

E. coloratus Venom 10mg 10.83 2.469 4.388 0.007 

Cerastes gasperettii Venom 0.25mg 3.50 2.391 1.464 0.203 

Cerastes gasperettii Venom 0.5mg 2.83 1.833 1.545 0.183 

Cerastes gasperettii Venom 1mg 3.50 2.247 1.557 0.180 

Cerastes gasperettii Venom 2.5mg 4.83 2.344 2.062 0.094 

Cerastes gasperettii Venom 5.0mg 6.50 2.335 2.784 0.039 

Cerastes gasperettii Venom 10mg 8.33 2.140 3.895 0.011 

Bitis arietans Venom 1mg 2.17 1.376 1.574 0.176 

Bitis arietans Venom 2.5mg 2.50 1.586 1.576 0.176 

Bitis arietans Venom 5.0mg 2.67 1.706 1.563 0.179 

Bitis arietans Venom 10mg 3.00 1.915 1.567 0.178 

 
were found to be the most relevant ranges of the six snake 
venoms, applicable for statistical analyses. The paired T-test 
was employed to verify the significance of venom concentra-
tion effect of all snake species with respect to control (sa-
line). For the first viper snake E. pyramidum, the venom 
concentration range (0.25mg - 10mg) gave 4.00 mm - 10.00 
mm mean growth inhibition zones (GIZ) for all five micro-
bial species (Table 2).  

Only concentration 2.5mg, 5.0mg and 10mg gave signifi-
cant (P  0.011, P  0.008 and P  0.008, respectively) GIZ 
with respect to controls (Table 2). 

For the second viper snake E. coloratus, the venom con-
centration range (0.25mg - 10mg) gave 3.17 mm - 10.83 mm 
mean GIZ for all five microbial species. The concentration 
0.5mg, 1mg, 2.5mg, 5.0mg and 10mg gave significant (P  
0.038, P  0.036, P  0.009, P  0.008 and P  0.007, respec-
tively) GIZ with respect to controls (Table 2). 

For the third viper snake C. gasperettii, the venom con-
centration range (0.25mg - 10mg) gave 3.50 mm - 8.33 mm 

mean GIZ for all five microbial species. The concentration 
5.0mg and 10mg gave significant (P  0.039 and P  0.011, 
respectively) GIZ with respect to controls (Table 2). 

For the fourth viper snake Bitis arietans, the only con-
centration range of its venom (1mg - 10mg) gave 2.17 mm - 
3.00 mm mean GIZ for all five microbial species. All these 
concentrations (1mg 2.5mg, 5.0mg and 10mg) gave insig-
nificant (P  0.176, P  0.176, P  0.179 and P  0.178, respec-
tively) GIZ with respect to controls (Table 2).  

With respect to the effect of elapid snake venom concen-
trations, the first one N. arabica venom concentration range 
(0.25mg - 10mg) gave 1.00 mm - 9.00 mm mean GIZ for all 
five microbial species. Out of six, only the concentrations 
1mg, 2.5mg, 5.0mg and 10mg gave significant (P  0.032, P  
0.007, P  0.006 and P  0.007, respectively) GIZ with re-
spect to controls (Table 3). 

The second elapid snake W. aegyptia venom concentra-
tion range (0.25mg - 10mg) gave 3.33 mm - 11.17 mm mean 
GIZ for all five microbial species. All six venom concentrations, 
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Table 3.  Paired T-test analysis of elapid snake venoms concentration mean microbial zone of growth inhibition against control 

(Normal Saline). 

Elapid (Cobra) snake venom concentration Mean Std. Error Mean t Significance (2-tailed) 

Naja arabica Venom 0.25mg 1.00 1.000 1.000 0.363 

Naja arabica Venom 0.5mg 3.50 1.628 2.150 0.084 

Naja arabica Venom 1mg 4.83 1.641 2.945 0.032 

Naja arabica Venom 2.5mg 6.67 1.520 4.385 0.007 

Naja arabica Venom 5.0mg 7.83 1.721 4.552 0.006 

Naja arabica Venom 10mg 9.00 2.033 4.427 0.007 

W. aegyptia Venom 0.25mg 3.33 2.246 1.484 0.198 

W. aegyptia Venom 0.5mg 7.33 1.892 3.877 0.012 

W. aegyptia Venom 1mg 8.33 2.108 3.953 0.011 

W. aegyptia Venom 2.5mg 9.00 2.160 4.166 0.009 

W. aegyptia Venom 5.0mg 10.00 2.463 4.060 0.010 

W. aegyptia Venom 10mg 11.17 2.738 4.079 0.010 

 
Table 4.  Tukey's Multiple Comparison Test of microbial growth inhibition level caused by various snake venom concentrations 

and a control (Normal saline). 

Tukey's Multiple Comparison Test Mean Difference q P value 95% CI of diff 

S. aureus vs Control 8.958 14.80 P < 0.001 6.393 to 11.52 

S. aureus (MRSA) vs Control 12.38 20.45 P < 0.001 9.814 to 14.94 

E. faecalis vs Control 4.847 8.008 P < 0.001 2.282 to 7.413 

E. coli vs Control 6.021 9.946 P < 0.001 3.455 to 8.586 

P. aeruginosa vs Control 2.986 4.933 P < 0.05 0.4208 to 5.551 

 
except the first (0.25mg) gave significant (P  0.012, P  
0.011, P  0.009, P  0.010 and P  0.010, respectively) GIZ 
with respect to controls (Table 3). 

 It was observed that GIZ had a directly proportional re-
lationship with venom concentration for all experimental 
venom groups.  

The Tukey's Multiple Comparison Test was employed to 
determine the susceptibility of each microorganism com-
pared to control (Normal saline) based on the GIZ (Table 4). 
S. aureus (MRSA) bacterium was the one with the largest 
(12.38 mm) Mean Difference and the highest (20.45) q level 
and a highly (P < 0.001) significant probability value. Next 
susceptible bacterium was S. aureus with 8.958 mm Mean 
Difference, q level of 14.80 and a highly (P < 0.001) signifi-
cant probability value. Next were E. coli and E. faecalis bac-
terial species, with the same highly (P < 0.001) significant 
probability values. The least susceptible bacterium was P. 
aeruginosa with 2.986 mm Mean Difference, q level of 
4.933 and a significant (P < 0.05) probability value.  

Fig. (1) shows the comparative differences between ef-
fects of the elapid and viperid snake venoms, one antibiotic 

(Vancomycin), one antimycotic (Fungizone) and a negative 
control (normal saline) on growth of five pathogenic bacte-
rial species and a fungus shown GIZ (in mm). The standard 
antibiotic (Vancomycin) was the most effective antibacterial 
agent in inhibiting the growth of four bacterial species (S. 
aureus (MRSA), E. faecalis, S. aureus and E. coli), in that 
order. All venoms were next to it in activity, though they 
were more efficient in inhibiting the growth of P. aeruginosa 
except the venom of the viper C. gasperettii. Both Vanco-
mycin and venoms were unable to inhibit the fungal Candida 
albicans growth whilst its specific antifungal Fungizone 
(Amphotericin B) highly efficient with no antibacterial activ-
ity. 

DISCUSSION 

Venoms, especially those of snakes are a mixture of pro-
teins and peptides including the nucleotides, free lipids and 
carbohydrates, which are bound to proteins [35]. They have 
consistently shown high levels of heterogeneity and intra and 
interspecies variation and this could be due to local adapta-
tion for feeding on different prey [36]. The venoms obtained 
from the Viperidae family had long been recognized for their 
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Fig. (1). Comparative differences between effects of snake venoms, antibiotics, antimycotics and normal saline (control). Inhibition of 

microbial growing of six pathogenic bacterial species and a fungus shown as mean growth inhibition zone (in mm). 

 
complexity of molecular composition [36]. Several studies 
had described the antimicrobial effect of snake venoms, 
which enlightened the emergence of bio-active peptides as 
therapeutic alternatives to combat the antibiotic resistant 
microorganisms [37]. 

Six venom concentrations were chosen out of eight that 
showed the least concentrations that represented the MIC 
but, this choice was applied according to the analysis of the 
GIZ. Paired T-test analysis of the selected concentration 
ranges of the six snake venoms has clearly shown significant 
GIZ, with varying degrees. With respect to venoms of the 
vipers, E. coloratus was the most effective against the five 
microorganisms, reflecting the largest mean of GIZ and a 
significance of five rising venom concentrations. Venoms of 
E. pyramidum and C. gasperettii have got medium effects, 
presenting only three and two significant venom concentra-
tions, respectively. The puff adder Bitis arietans venom has 
got the least effect and none of the six venom concentrations 
showed any significant GIZ. Previous studies have reported 
comparable results [5, 38]. 

On the other hand, venoms of the cobras showed to be 
very effective against the five microorganisms, with compa-
rable significance to viper venoms and though the cobra W. 
aegyptia showed five significant rising venom concentra-
tions, similar to that of E. coloratus (the first most effective 
viper venom) but, it exceeded it (the cobra exceeded the vi-
per) in GIZ value. The second was the cobra N. arabica and 
though it had got a slightly less GIZ value than the second 
viper (E. pyramidum, with three significant venom concen-
trations), but, it got more significant venom concentrations 
(four) which, showed that this cobra venom was more effec-
tive than the second viper. One more venom concentration in 
the serial range presented a more dilute concentration that 
implies a more effective venom type, according to the MIC 
criteria and the directly proportional relationship between 
venom concentration and GIZ. This put the second cobra as 
a the third in effectiveness of the whole list of venoms. The 
group of cobra venoms appeared to be relatively more effi-

cient as antimicrobial agents than viper venoms. Some pre-
vious studies [39] reported contradictory conclusions to our 
results though, some cobra venoms (Ophiophagus hannah) 
were also more active than those of the vipers. It was sug-
gested that snake venom antimicrobial activity was due to 
enzymes such as PLA2 [9, 40, 41], which is also available in 
the venoms of cobras. 

With respect to microorganism susceptibility, The Gram 
positive cocci S. aureus (MRSA) bacterium appeared to be 
the most sensitive to venoms, as having the largest mean 
difference and a highly significant probability value. Close 
to it was the second Gram positive cocci S. aureus in sensi-
tivity to venoms, with the same highly significant probability 
value. Venom sensitivity of these Gram positive bacteria and 
other species has been reported before [42]. The Gram nega-
tive E. coli and the positive E. faecalis bacterial species, 
have also got the same highly significant probability but, 
their mean difference GIZ values were less, thus showing 
some relative resistance to venom action. The least suscepti-
ble bacterium was also the Gram negative P. aeruginosa 
which, had got a minimum of mean difference with a rela-
tively significant value. Resistance of the Gram negative 
bacteria had been attributed to the outer membrane of the 
bacteria formed of lipopolysaccharides (LPS) which affected 
the uptake of antimicrobial peptides [43].  

Levels of elapid and viperid snake venoms presented a 
fair pattern of effectiveness in comparative differences with 
the two standard treatment agents, the antibiotic (Vancomy-
cin), and the antimycotic (Fungizone), employing GIZ pa-
rameters of selected three concentrations. Vancomycin as a 
specifically effective antibacterial agent, was the best in in-
hibiting the growth of S. aureus (MRSA), E. faecalis, S. 
aureus and E. coli, in that order, whilst all the venoms 
closely came next, with varying levels. Venoms showed to 
be more efficient than Vancomycin in inhibiting the growth 
of the more resistant P. aeruginosa, excepting the venom of 
C. gasperettii. Several works concerning comparisons of 
venoms and venom fraction with antibiotics had been re-
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ported [14, 40]. With respect to the fungus Candida albi-
cans, results were negative, hence they were removed from 
the analysis tables.  

CONCLUSION 

It was concluded here that snake venoms have compara-
ble activity, if not more efficient than antibiotics, whilst co-
bra venoms appear to be relatively more efficient as antimi-
crobial agents than viper venoms. Until furthermore studies, 
the selected six snake venoms, within the employed ranges 
of concentrations, cannot be a suitable solution in treatment 
of fungi like Candida albicans. 
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