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Abstract: Although the use of iterative algorithms for image reconstruction in 3D Positron Emission Tomography (PET) 
has shown to produce images with better quality than analytical methods, they are computationally expensive. New 
Graphic Processor Units (GPUs) provide high performance at low cost and programming tools that make it possible to 
execute parallel algorithms in scientific applications. In this work, a GPU parallel implementation of the iterative 
reconstruction algorithm MLEM 3D has been developed using CUDA, a parallel model from NVIDIA. The Siddon 
algorithm was used as Projector and Backprojector. Acceleration factors up to 85 times were achieved, with respect to a 
single thread CPU implementation. The performance in GPU with Tesla and Fermi, which are respectively the first and 
the last generation of CUDA compatible architectures, has been compared. The image quality in each platform has been 
analyzed, showing a higher level of noise in GPU, due to race condition problems. The new features of Fermi architecture 
permitted to solve this problem using atomic operations.  
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1. INTRODUCTION 

 In Positron Emission Tomography (PET) an Image 
Reconstruction Algorithm is needed in order to generate an 
image from the measured projections, which quantifies the 
distribution of the radiotracer in the patient’s body. Iterative 
Algorithms have shown better results [1, 2], regarding image 
quality and resolution, than the traditional methods based on 
Radon transform. On the other hand, iterative algorithms are 
computationally expensive; besides, the amount of involved 
data in 3D PET increased considerably with the improvements 
in scanner’s spatial resolution. For this reason, multi-core 
processors, clusters and graphics processor units (GPUs) are 
currently used to attain reconstructed images in a practical 
time. Different parallelization strategies were proposed for 
those platforms [3-5]. 
 First generation GPUs were a potential solution to 
provide high performance at low cost, but limited by their 
fixed function architecture. New Graphic Processor Units 
have rapidly evolved from a fixed-function processor, 
designed to satisfy graphic pipeline requirements, to a 
parallel programmable processor with a unified architecture. 
In addition, the introduction of CUDA in 2006 has provided 
an easier way to exploit the computational horsepower of  
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GPUs and use them for general purpose applications [6, 7], 
thus allowing to replace traditional reconstruction 
architectures. First implementations of iterative 
reconstruction algorithms for GPU, developed before CUDA 
release, had shown promising results [8-11]. The use of 
CUDA [12], NVIDIA parallel processing architecture for 
general processing, in PET image reconstruction algorithms, 
has already proved to be an efficient tool to achieve speed 
ups of the computing times at low cost of hardware and 
development [13, 14]. 
 A CUDA implementation of MLEM algorithm is 
presented in this work. Its performance was evaluated in two 
different GPUs: GTX-285, with the first CUDA architecture, 
Tesla [15]; and GTX-480, a board with Fermi architecture 
[16]. This comparison allows to verify the scalability of 
CUDA architecture and tests some of Fermi’s innovations. 
All the GPU results, including time performance and image 
quality, were compared with a single core CPU 
implementation. 

1.1. MLEM Algorithm 

 Iterative methods estimate the reconstructed image 
progressively, in order to reach the best solution according to 
a proposed model of the acquisition system. The best-known 
and most used algorithms are the Maximum-Likelihood 
Expectation-Maximization (MLEM) [1, 17] and its acceler-
ated version Ordered Subsets Expectation Maximization 
(OSEM) [18]. 
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 In OSEM, the projections data set is divided into groups 
in order to accelerate the convergence of the MLEM 
algorithm. The strategy of this division depends on the kind 
of projection data being used and could affect the 
convergence of EM process. As the objective of this work is 
to evaluate the performance of GPU against CPU, a MLEM 
implementation, which could be considered as an OSEM 
with one subset, has been programmed. 
 MLEM algorithm uses the Maximum Likelihood as 
estimator and the Expectation Maximization as optimization 
algorithm. In MLEM the Poisson nature of the positron 
emission process is taken into account and a System 
Response Matrix (SRM) is needed to model the acquisition 
process. The iteration algorithm is formulated as: 
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where k

jx is the pixel j of x image at the kth iteration; bi is the 
bin i of the measured projection (input projection), and aij is 
(i,j) coefficient of the SRM. This coefficient represents the 
probability that an emission in pixel j is detected in the line-
of-response (LOR) i. This probability can consider 
geometrical as well as physical factors. 
 Three stages could be identified for each iteration: 
forward projection, backprojection and normalization. The 
first one is represented by the term  
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which projects the kth volume image into an estimated 
projection, using the SRM. The backprojection stage 
generates an image with adjust coefficients from the 
projection generated dividing bin to bin the measured 
projections by the estimated projections: 
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 Finally, in the normalization process, the actual image 
pixels (

 
x

j

k ) is multiplied pixel to pixel with the image of 
adjust coefficients (
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k ) and then divided by a sensitivity 
image, setting up the new iteration image: 
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 The sensitivity image is generated before starting the 
iterative process, making a forward projection of all aij 
coefficients: 
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1.1.1. Projector 

 In our implementation, aij coefficients are calculated 
using only geometrical information. The projector used was 
the Siddons algorithm [19] in its Jacob’s fast version [20]. 
We selected this projector as it can be used in histogram and 
list-mode projection. This algorithm is very efficient 

programmed in a CPU, but it is not the best solution for GPU 
platforms because of its many conditional branches. 
However, we demonstrated that significant acceleration 
factors can be achieved utilizing this algorithm dividing the 
whole projection of the sinogram by one thread per bin. 
 Siddons algorithm consists of doing a ray tracing of a 
line of response (LOR) then obtaining the length of the 
segment generated by the intersection between the LOR and 
the pixels of the image. Each segment length is called the aij 
Siddon’s coefficient (Fig. 1). In order to accomplish this 
operation, it is necessary to calculate the line equation of the 
LOR from the coordinates of the corresponding sinogram’s 
bin. The starting and final points are obtained by calculating 
the intersection point between the LOR and the scanner Field 
of View (FOV). Afterwards, the ray tracing is done by going 
from the starting to the final point. (Fig. 1) 

1.2. CUDA 

 CUDA [12] is a general purpose parallel architecture, 
with a programming model and software environment that 
allows developers to use C-CUDA, a high level 
programming language, in applications with fine-grained 
parallelism and execute them in massive parallel threads. 
 A CUDA kernel is a function that is executed N times in 
N parallel CUDA threads. The programmer organizes these 
threads in thread blocks and grids of thread blocks. A kernel 
is launched in a grid of parallels thread blocks, each thread 
having a thread and block ID. Threads within a thread block 
execute an instance of the kernel with its own resources and 
can cooperate among themselves through barrier 
synchronization and shared memory. Thread blocks are 
executed independently and are scheduled in any order in the 
available processors. Grids of thread blocks share results in 
Global Memory space after kernel-wide global 
synchronization. 
 In CUDA graphic processors, threads within a block are 
executed and scheduled in groups of 32 called warps. 
Threads of a warp start in the same program address and 
execute simultaneously thanks to SIMT (Single Instruction 
Multiple Thread) Architecture. When threads in a warp are 
affected by flow control operations and follow different 
execution paths, their execution diverge and each execution 
path is serialized. This increases the total number of 
instructions executed per warp. 
 CUDA devices use several memory spaces. Each thread 
has its own private local memory and registers space. 
Threads within a block have a common shared memory, 
visible for all of them. All threads of every block have access 
to a large global memory space. Finally, constant and texture 
memories define two read-only and cached memory spaces. 
Shared memory is a low latency and fast memory, because 
its on-chip location. Global memory loads and stores of a 
half warp (Tesla) or a warp (Fermi) can be coalesced into 
one transaction when certain requirements are met. This is 
achieved when threads of the same warp access memory that 
fits into a segment size of 128 bytes for 32-bits words. For 
Compute Capability 1.2 or more, any access pattern within a 
segment is coalesced. 
 CUDA GPUs have a compute capability that describes 
the features of the hardware and establish the set of 
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instructions supported by the device. It also specifies 
hardware parameters, such as the maximum number of 
threads per block or registers available per multiprocessor. 
 Tesla [15] was the first NVIDIA architecture to use 
CUDA model. These GPUs have a scalable number of 
multithreaded Streaming Multiprocessors (SM), which are 
provided of 8 streaming processor (SP), 16 kB of shared 
memory, two Special Function Units (SFUs) for single-
precision transcendental function and a warp scheduler with 
a SIMT unit to execute one or more CUDA thread blocks. 
Each SM is hardware multithreaded and can execute up to 
768 concurrent threads with zero scheduling overhead. The 
SM’s SIMT multithreaded instruction unit creates, manages, 
schedules, and executes threads in warps of 32 parallel 
threads. Tesla devices have compute capabilities 1.x. 

 Each SM has its own register space with thousands of 32-
bit registers. However, register pressure occurs when there 
are not enough registers available for a block of threads. For 
this reason, the amount of registers that a kernel uses must be 
taken into account, to run as many threads as possible within a 
SM. 
 Fermi [16] represents an evolution of Tesla architecture 
and counts with several innovations [21]. In Fermi, the SMs 
have 32 streaming processors, 4 SFUs, 64 kB of shared 
memory, dual warp scheduler and incorporate a configurable 
first-level cache. In addition, a 768 kB second-level cache 

was added to hide latency of DRAM in applications that 
have not enough data parallelism. Fermi GPUs have 
compute capabilities 2.x, with a new instruction set that 
includes atomic operations for floating points that were not 
available in devices with lower compute capabilities. 
Furthermore, floating-point units were updated from IEEE 
754-1985 to IEEE 754-2008. 

2. MATERIALS AND METHODS 

 Fully 3D MLEM reconstruction algorithm using Siddon 
as projector was implemented in CPU and GPU. In CPU a 
single thread implementation has been developed and 
compiled with optimization flags. Its performance was 
evaluated in different processors: AMD Phenom 955 BE and 
Intel i7 860. Different versions of the algorithm, with 
different levels of optimization for Tesla and Fermi 
Architecture, were programmed with CUDA for GPU. They 
were executed in GPUs GTX285 and GTX480, two High-
end Nvidia Boards of Tesla T10 Series and Fermi GF100 
Series, respectively. We selected those CPUs and GPUs 
because they were the high end processors in commodity 
hardware at the time this work was being carried out.  
 The reconstruction library works with projections stored 
as a Michelogram [22]. All input data sets were pre-
corrected for attenuation, normalization and arc corrections. 
For this reason, the MLEM implementation presented uses 
an exclusive geometrical projector.  

 
Fig. (1). Siddon Algorithm. Line equation of a LOR is calculated and intersection points with field of view are obtained. From the starting 
point, line path is covered, and the length of every intersected pixel is computed. 
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2.1. Input Datasets 

 Three Michelograms of a GE Discovery STE scanner 
were used. Two of them are real data michelograms of a 
brain study and a measurement of cylinder phantom. The 
remaining was simulated with STIR library [24] using an 
approximated Nema Image Quality Phantom [23]. They are 
arranged in 553 direct and oblique two dimensional 
sinograms, each of them with 280 bins for Φ angle and 329 
bins for r distance. The Field of View (FOV) of the scanner 
has a radius of 350 mm and an axial length of 156.96 mm. 

2.2. GPUsç 

 The GTX-285 is a Tesla T10 board with compute 
capabilities 1.3, 240 CUDA cores with 1476 MHz of 
processor clock and 1 GB of DDR3 RAM. On the other 
hand, GTX-480 is a Fermi board with compute capabilities 
2.0, 480 cores with 1401 MHz of Processor Clock and 1.5 
GB of DDR5 RAM Table 1. 

2.3. Algorithm Implementation 

 Our implementation of MLEM algorithm computes each 
coefficient of the System Matrix on-the-fly, because the 
amount of coefficients of the SMR is much larger than the 
memory available in both CPU and GPU. Forward 
projection and backprojection are bin-driven computed. This 
means that for each bin of the Michelogram, Siddon’s 
coefficients are calculated for every intersected voxel of the 
image. In forward projection the contribution of each pixel is 
added to the michelogram’s bin corresponding to that LOR, 
whereas in backprojection each bin contributes to the pixels 
being intersected by the LOR. (Fig. 2) 
 In each iteration Siddon’s algorihtm is computed for each 
LOR in both forward projection and backprojection 
operation, which sums a total of around 100 millons 
Siddon’s computations per iteration. This makes this kind of 
algorithm suitable for massively parallel architectures like 
GPUs. Each Siddon computation takes different quantity of 
instructions, depending on the amount of pixels intersected 
by the processed LOR. 

2.4. GPU Implementations 

 Parallelization of MLEM algorithm has been performed 
for each stage of EM iteration: forward projection, 
backprojection and normalization. One kernel was developed 
for each of them. The two first operations were parallelized 
splitting them by bin. Each thread computes Siddon’s 
coefficients for each bin of the Michelogram. The 
Normalization kernel is parallelized pixel-wise, so each 
thread works with a single pixel of k

jx , x_estj, Sj and 
1+k

jx images.  

 The code was optimized taking into account the CUDA 
best practice guide [26]. In addition, NVIDIA CUDA Visual 
Profiler was used to evaluate the performance and find 
bottlenecks in GPU execution. 
 Forward projection and backprojection kernels are 
similar, the difference lies in the storage of the results. The 
forward projection adds, in a kernel’s internal loop, all the 
Siddon’s coefficients multiplied by its corresponding pixel 
value to the same output bin of the projected Michelogram. 
Whereas the backprojection adds each Siddon’s coefficients, 
multiplied by the michelogram’s bin value, to the intersected 
pixels. Since different threads can write on the same pixel 
memory address, race condition (race hazard) problems can 
occur in this last case (Fig. 3). The probability of race 
condition events in the sum and store operation depends on 
the order that each michelogram’s bin is processed and the 
pixels being intersected by each LOR. 
 Atomic sum is used in Fermi architecture, in order to 
avoid race conditions problems. This kind of operation is 
computationally expensive, as it is shown in the results.  

2.4.1. Performance Optimization 

 A general implementation that included most of the 
optimizations recommendations [26] and executable on any 
CUDA capable GPU has been carried out. Projection kernels 
compute the operation for each bin. Using ThreadID and 

Fig. (2). Projection and backprojection implementation schemes. 
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BlockID CUDA’s structures, each thread gets the bin index 
of the michelogram represented by (ir, iΦ, ring1, ring2). These 
indexes are converted to real (r,Φ,z1,z2) values using a table 
in Constant Memory, and finally (x,y,z) coordinates of the 
two points on the detector cylinder that define the LOR are 
calculated. Both points determine the line equation of the 
LOR and Siddon algorithm can be executed, which is a 
straightforward implementation of CPU Siddon function.  
 Shared memory permits low latency access but its size is 
very limited. For this reason, image data could not be placed 
into this memory. Instead, michelogram data was stored in 
shared memory inside the kernels, since each thread accesses 
just one bin. All the parameters needed in the kernels were 
stored in Constant Memory, as it is cacheable (e.g., r and Φ 
values to convert Sinogram’s bins indexes in respective 
geometrical values). 
 Each kernel is launched with a predefined size of threads 
per block. This parameter is important to have the GPU fully 
occupied, and is usually limited by the amount of registers 
used in a kernel, that for Projection kernels was 25 registers 
per thread. The number of threads per block was optimized 
for each of the GPUs, taking into consideration that threads 
per block should be multiples of 32, in order to have fully 
populated warps and facilitate coalescing [26]. Cuda 
Occupancy Calculator tool allows finding out the theoretical 
size of threads per block that used most of the GPU 
resources, which was 192 for GTX285 and 320 for GTX480. 
A full occupied GPU doesn’t necessary translate to a better 
performance [26], so this parameters were verified running 
kernels with different size of threads per block.  

 Linear addressing was employed in each thread for bin 
indexing (Fig. 4). The use of linear indexes in the same order 
than bins stored in global memory makes that each warp 
reads bins in a coalesced access. The order in which the bins 
are accessed was also chosen to avoid race condition 
problems. The strategy selected makes that threads within a 
block process mostly parallel LORs, which would reduce the 
amount of pixels simultaneously intersected by different 
threads of a block. This is depicted in Fig. (4). 

2.4.2. Atomic Sum in Fermi 

 We implemented a modified version of the algorithm for 
GPU that uses atomic sum in backprojection, avoiding the 
potential race condition problem in this operation. This 
version is only executable in Fermi GPUs with CUDA 
Compute Capabilities 2.0, as the GTX 480, since atomic sum 
for floating point is required.  
 CUDA implementations were compiled for compute 
capabilities 1.3 using the “arch” nvcc compiler flag option 
[25]. Modified version with atomic operations were 
compiled for 2.0 compute capability, since atomic sum for 
floating point is only available for that feature. To get 
information about the resource usage, the “ptxas” flag option 
was added.  

2.5. Image Quality Evaluation 

 The image quality should be quantitatively evaluated. 
Visual inspection can be useful when comparing two or 
more images, but it is clearly insufficient for a good 
comparison when the differences between them are not 

 
Fig. (3). Race condition problem in backprojection kernel. N threads running in parallel can have a race condition problem when a pixel 
value is updated simultaneously (top). A numerical example of error inserted by this problem is shown on bottom. Red highlighted value is 
the computed result; the right value is in green. 
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easily recognized. Thus, the standard deviation in an 
expected uniform Region of Interest (ROI) was used for 
quantifying the noise of each GPU version. A circle of 25 
mm radius was selected as ROI in the central slice of the 
cylinder image. In Simulated IQ Nema, eight circular ROIs 
of 15 mm radius were used in the uniform background of the 
phantom, and then the standard deviation inside them was 
calculated. (Fig. 5). The noise to signal ratio (NSR) was 
obtained by calculating the rate between standard deviation 
and mean values in the background ROIs.  
 Moreover, we obtained recovery contrast for hot and cold 
spheres in reconstructed images of simulated IQ Nema. We 
drew a circular ROI with a diameter equal to 80% of the 
sphere radius for each of them. Hot spheres in the phantom 
had an activity concentration of four times the background, 
so that recovery contrast is defined as: 
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Where QH,j is the recovery contrast for hot spheres, CH,j is the 
average counts in the ROI for sphere j and CBJ is the average 
counts in the background ROIs. Recovery contrast for cold 
spheres is calculated by:  
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3. RESULTS 

 MLEM algorithm was executed in each platform for each 
of the input michelograms. Images of 128x128x47 and 
256x256x47 pixels were reconstructed, with 40 iterations 
and using full scanner FOV. In addition, images of 
256x256x47 pixels with a FOV of 20 cm radius were 
reconstructed. The latter were used for evaluating the image 
quality parameters mentioned above. 
 Total reconstruction, iteration and operation times were 
recorded. An average time per iteration and operation was 
calculated to compare and compute the performance of each 
processor and implementation. A comparison of iteration  

 
Fig. (4). Parallelization strategy regarding threads per block inside each 2D sinogram. A linear index for the whole sinogram is used and 
threads per block are a multiple of Warp’s size (left). Most of the threads of a block belong to a same row of the sinogram, which correspond 
to parallel LORs. 

 
Fig. (5). Regions of Interest used to compute noise to signal ratio in uniform areas and recovery contrast in hot and cold spheres. In cylinder 
phantom a central circle was utilized (left). In Simulated IQ Nema phantom, a ROI for each hot and cold sphere was used to evaluate 
recovery contrast (middle) and eight circular ROIs were used to analyze the background (right). 

NR

n.NWarp Threads

Block 2

Block 1

indexSino2D = threadIdx.x + (blockIdx.x*N )TB

indexR = % NRindexSino2D

index = floor(� indexSino2D / N )R

Parallel LORs

FOV



114    The Open Medical Imaging Journal, 2012, Volume 6 Belzunce et al. 

Table 1. Comparison of the GPUs used in this Work 

 GTX-285 GTX-480 

CUDA Cores 240 480 

Processor Clock 1476 MHz 1401 MHz 

Memory Interface GDDR3 GDDR5 

Memory Bandwidth (GB/sec) 159 GB/sec 177.4 GB/sec 

Total Memory 1 GB 1.5 GB 

Compute Capabilities 1.3 2.0 

Table 2. Iteration Time for each GPU and CPU Implementation 

 AMD Phenom 955BE Intel i7 860 GTX285 GTX480 GTX480 with Atomics 

128x128 FullFOV 254.6 sec 238.2 sec 6.2 sec 2.8 sec 13.6 sec 

256x256 Full FOV 435.1 sec 395.5 sec 21.7 sec 8.5 sec 16.7 sec 

256x256 20 cm radius FOV 249.7 sec 309.3 sec 12.4 sec 6.9 sec 23.3 sec 

Table 3. Speed up Factors for each GPU Implementation and Hardware 

 AMD Phenom 955BE Intel i7 860 GTX285 V1 GTX480 V1 GTX480 V3 

128x128x47 FullFOV 254.6 238.2 38.4 85.1 17.5 

256x256x47 Full FOV 435.1 395.5 18.2 46.5 23.7 

256x256x47 20 mm radius FOV 249.7 309.3 25.0 44.8 13.3 

Table 4. Processing Times by Stage, in one Iteration. Results for Reconstructed Image of Simulated IQ Nema Phantom of 256x256x47 
Pixels and Full FOV 

 AMD Phenom 955BE Intel i7 860 GTX285 GTX485 GTX485 with Atomics 

Forward projection 187 sec 211 sec 5.1 sec 3.8 sec 6.1 sec 

Backprojection 248 sec 183 sec 15.5 sec 4.0 sec 17.2 sec 

Normalization 0.01 sec 0.04 sec 0.0005 sec 0.0005 sec 0.0005 sec 
 

times for every reconstructed image can be seen in Table 2. 
Speed up factors were compared with the CPU Intel i7 860, 
which had the best performance between the processors 
evaluated. They are shown in Table 3. Speed up factors of 38 
and 85 were respectively achieved in GTX285 and GTX480 
for images of 128x128x47 pixels, but with higher noise, due 
to race condition problems. When atomic sum was used, 
speed up factors were reduced to 20, in average. For images 
of 256x256x47, GPU performance was not as good as it was 
for smaller images.  
 Execution times were also recorded by stage; they are 
indicated in Table 4 for the case of Simulated IQ Nema 
phantom and reconstructed images of 256x256x47 pixels 
with Full FOV. The distribution of time per operation can be 
observed in Fig. (6); GPU backprojection operation is the 
more demanding operation, while in CPU there are no 
relevant differences between both operations. Normalization 
takes insignificant time compared with the other two stages. 
 A set of reconstructed images can be seen in Fig. (7) and 
Fig. (8), where central slices of reconstructed cylinder 
phantom and IQ Nema Phantom for each platform are 
shown. By visual inspection, different noise levels can be 

distinguished. In order to quantify the noise level, an 
evaluation of the standard deviation of pixel intensity in 
uniform ROIs has been made in Simulated IQ Phantom and 
Uniform Cylinder images, as described before Table 5. The 
noise to signal ratio is higher in GTX285 than in GTX480, 
and both are higher than in CPU. When using atomic add in 
Fermi the NSR is equivalent to the CPU version. The 
additional noise present when atomic operations are not used 
is, in fact, a consequence of race conditions problems. In Fig. 
(3) we showed that, in backprojection operation, pixel values 
are underestimated when a race condition occurs. This was 
verified measuring the mean value of the cylinder, that it was 
2% lower when atomic operations were not used.  
 Recovery contrast was evaluated for all the spheres of IQ 
Nema Phantom. Its values are presented in Table 6. In this 
case, there was not significant difference between the 
different versions. This was an expected result since race 
conditions affects regions with cold and hot spheres, as well 
as the background region. In GTX285, recovery contrast 
values are slightly higher because the background mean 
value is lower as a consequence of the many events with race 
conditions that take place during backprojection operation. 
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Fig. (6). Distribution of processing times per stage for 256x256x47 and full FOV reconstructed image. 

Fig. (7). Central slices of cylinder phantom reconstructed images for all platforms, each having 256x256 pixels. 

Fig. (8). Central slices of Simulated IQ Nema reconstructed images for all platforms, each having 256x256 pixels. 
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GTX480 GTX480 with Atomics
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Table 5. Noise to Singal Ratio in Uniform ROIs of Phantoms 

 GTX285 GTX480 GTX480 with Atomics CPU 

Cylinder 16.8% 10.6% 4.9% 4.9% 

Simulated IQ Nema 256 14.9% 9.3% 1.8% 1.2% 

Table 6. Recovery Contrast Values for each Sphere of Reconstructed iq Nema Phantom with Size of 256x256x47 Pixels and 20 cm 
Radius Fov 

 GTX285 GTX480 GTX480 with Atomics Intel i7 860 

10 mm 46.3% 46.0% 44.7% 44.6% 

13 mm 69.1% 67.4% 68.6% 68.5% 

17 mm 76.5% 74.7% 74.9% 74.9% 

22 mm 83.0% 80.7% 80.4% 80.2% 

28 mm 66.9% 64.7% 64.4% 64.1% 

37 mm 73.3% 70.9% 71.1% 71.0% 

 
Fig. (9). Number of divergent branches in thread execution in Forward Projection operation. 
 

4. DISCUSSION 

 Different speed up factors were achieved for each GPU 
and image size. Such as it was expected, larger images 
presented lower acceleration rates; in a bin-wise projector, 
the amount of issued threads is independent of the image 
size, thus a larger image means more instructions per thread 
instead of the execution of more threads. The latter would be 
advantageous in a massive parallel architecture as GPUs. 
Moreover, threads that execute Siddon’s algorithm in larger 
paths increase the chance of branch divergence within a 
warp. This can be observed in Fig. (9).  
 A maximum speed up factor of 85 times was achieved 
for GTX480 without atomic operations, but with images 
with higher noise to signal ratio. GTX480 doubled the 
performance of GTX285, this is mostly justified by the 
number of thread processors of each GPU and the 
introduction of the L1 cache in Fermi. 

 The images reconstructed with GPU, without atomic 
operations, showed worse NSR than CPU, due to the error 
introduced by race condition problems. On the other hand, 
recovery contrast values didn´t show any significant 
difference between both platforms. When using atomic add, 
read-modify-write process is executed without interference 
from other threads, thus ensuring that no other thread can 
access that memory address until the write operation has 
finished. As a consequence, noise levels are equivalent to 
CPU images at a cost of a reduction of speed up factors 
between 3 and 4 times. 
 As was stated above, GPU backprojection takes most of 
the iteration time. On the other hand, in CPU it takes 
approximately the same time than forward projection. Both 
operations have the same computing load, but differ in 
memory access patterns. In GPU, the only difference 
between both kernels arises when writing the results. In 
forward projection the result in each thread is written in the 
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same memory address, accessing contiguous addresses 
inside a thread warp. In contrast, backprojection writes the 
different memory addresses of intersected pixels, so threads 
in a warp hardly access contiguous memory locations. 
Because of that, backprojection has much less coalesced 
memory accesses; therefore, serialization of memory access 
and instruction execution occurs inside a warp. In GPU 
image data is in global memory which access is expensive, 
especially when it is not coalesced, as in the case of 
backprojection. The presence of a L1 cache in GTX480 could 
reduce this problem, and is verified by the fact that in this 
graphic processor backprojection has an acceleration factor 
close to the one obtained in forward projection (Table 7).  

5. CONCLUSION 

 Acceleration rates between 15 and 85 have been achieved 
with a GPU implementation of MLEM image reconstruction 
algorithm, despite of the use of a projector that best adapts to 
CPU architecture. The problems existing in Tesla archit-
ecture to generate similar results to CPU, regarding image 
quality, were solved with the introduction of atomic 
operations for floating points. In Fermi, unlike Tesla, an 
acceptable noise level is achieved even when atomic 
operations are not employed, and speed up factors of 85 
times are possible. With the use of atomic operations the 
execution times are slowed down up to 4 times, but noise 
levels equivalent to CPU are observed. (Fig. 10)  
 Due to the scalability of CUDA model and the fact that 
graphics processors are permanently increasing their parallel 
computing power, higher acceleration rates are expected to 
be obtained with the launch of new GPUs in the market, 
without needing to rewrite the code. In addition, new 

features, such as cache memories and atomic operations 
introduced in Fermi, can improve the performance of 
algorithms both in speed and quality. Moreover, CUDA 
permits to run multi-GPU applications with low 
programming effort, and it would be expected to achieve a 
scaled performance when using a rack of GPU boards. 
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