
Send Orders of Reprints at reprints@benthamscience.org

108 The Open Medical Imaging Journal, 2012, 6, 108-118

 1874-3471/12 2012 Bentham Open

Open Access

Cuda Parallel Implementation of Image Reconstruction Algorithm for
Positron Emission Tomography

Belzunce MA1,2,*, Verrastro CA1,2, Venialgo E1,2 and Cohen IM1,3

1Departamento de Electrónica, Facultad Regional Buenos Aires, Universidad Tecnológica Nacional. Medrano 951,
(C1179AAQ) Ciudad Autónoma de Buenos Aires, Argentina
2Instrumentación y Control, Comisión Nacional de Energía Atómica. Presbítero Luis González y Aragón Nro.15,
(B1802AYA) Ezeiza, Buenos Aires, Argentina
3Facultad Regional Avellaneda, Universidad Tecnológica Nacional. Av Mitre 750, (B1870AAU) Avellaneda, Buenos
Aires, Argentina

Abstract: Although the use of iterative algorithms for image reconstruction in 3D Positron Emission Tomography (PET)
has shown to produce images with better quality than analytical methods, they are computationally expensive. New
Graphic Processor Units (GPUs) provide high performance at low cost and programming tools that make it possible to
execute parallel algorithms in scientific applications. In this work, a GPU parallel implementation of the iterative
reconstruction algorithm MLEM 3D has been developed using CUDA, a parallel model from NVIDIA. The Siddon
algorithm was used as Projector and Backprojector. Acceleration factors up to 85 times were achieved, with respect to a
single thread CPU implementation. The performance in GPU with Tesla and Fermi, which are respectively the first and
the last generation of CUDA compatible architectures, has been compared. The image quality in each platform has been
analyzed, showing a higher level of noise in GPU, due to race condition problems. The new features of Fermi architecture
permitted to solve this problem using atomic operations.

Keywords: PET, Iterative image reconstruction, Graphics Processing Units, parallelization, CUDA.

1. INTRODUCTION

 In Positron Emission Tomography (PET) an Image
Reconstruction Algorithm is needed in order to generate an
image from the measured projections, which quantifies the
distribution of the radiotracer in the patient’s body. Iterative
Algorithms have shown better results [1, 2], regarding image
quality and resolution, than the traditional methods based on
Radon transform. On the other hand, iterative algorithms are
computationally expensive; besides, the amount of involved
data in 3D PET increased considerably with the improvements
in scanner’s spatial resolution. For this reason, multi-core
processors, clusters and graphics processor units (GPUs) are
currently used to attain reconstructed images in a practical
time. Different parallelization strategies were proposed for
those platforms [3-5].
 First generation GPUs were a potential solution to
provide high performance at low cost, but limited by their
fixed function architecture. New Graphic Processor Units
have rapidly evolved from a fixed-function processor,
designed to satisfy graphic pipeline requirements, to a
parallel programmable processor with a unified architecture.
In addition, the introduction of CUDA in 2006 has provided
an easier way to exploit the computational horsepower of

*Address correspondence to this author at the Centro Atómico Ezeiza,
Comisión Nacional de Energía Atómica; Tel: (+54) (11) 6779 8277.
Fax: (+54) (11) 6779 8433. E-mail: martin.a.belzunce@gmail.com

GPUs and use them for general purpose applications [6, 7],
thus allowing to replace traditional reconstruction
architectures. First implementations of iterative
reconstruction algorithms for GPU, developed before CUDA
release, had shown promising results [8-11]. The use of
CUDA [12], NVIDIA parallel processing architecture for
general processing, in PET image reconstruction algorithms,
has already proved to be an efficient tool to achieve speed
ups of the computing times at low cost of hardware and
development [13, 14].
 A CUDA implementation of MLEM algorithm is
presented in this work. Its performance was evaluated in two
different GPUs: GTX-285, with the first CUDA architecture,
Tesla [15]; and GTX-480, a board with Fermi architecture
[16]. This comparison allows to verify the scalability of
CUDA architecture and tests some of Fermi’s innovations.
All the GPU results, including time performance and image
quality, were compared with a single core CPU
implementation.

1.1. MLEM Algorithm

 Iterative methods estimate the reconstructed image
progressively, in order to reach the best solution according to
a proposed model of the acquisition system. The best-known
and most used algorithms are the Maximum-Likelihood
Expectation-Maximization (MLEM) [1, 17] and its acceler-
ated version Ordered Subsets Expectation Maximization
(OSEM) [18].

Cuda Parallel Implementation of Image Reconstruction Algorithm The Open Medical Imaging Journal, 2012, Volume 6 109

 In OSEM, the projections data set is divided into groups
in order to accelerate the convergence of the MLEM
algorithm. The strategy of this division depends on the kind
of projection data being used and could affect the
convergence of EM process. As the objective of this work is
to evaluate the performance of GPU against CPU, a MLEM
implementation, which could be considered as an OSEM
with one subset, has been programmed.
 MLEM algorithm uses the Maximum Likelihood as
estimator and the Expectation Maximization as optimization
algorithm. In MLEM the Poisson nature of the positron
emission process is taken into account and a System
Response Matrix (SRM) is needed to model the acquisition
process. The iteration algorithm is formulated as:

x
j

k+1 =
x

j

k

a
ij

i=1

m

!

.

a
ij
.b

i

ai ,xi=1

m

! (1)

where k

jx is the pixel j of x image at the kth iteration; bi is the
bin i of the measured projection (input projection), and aij is
(i,j) coefficient of the SRM. This coefficient represents the
probability that an emission in pixel j is detected in the line-
of-response (LOR) i. This probability can consider
geometrical as well as physical factors.
 Three stages could be identified for each iteration:
forward projection, backprojection and normalization. The
first one is represented by the term

p
i
= a

i
,x = a

ij
.x

j

j=1

n

! (2)

which projects the kth volume image into an estimated
projection, using the SRM. The backprojection stage
generates an image with adjust coefficients from the
projection generated dividing bin to bin the measured
projections by the estimated projections:

x _ adj
j
= a

ij
.
b

i

p
ii=1

m

! (3)

 Finally, in the normalization process, the actual image
pixels (

x

j

k) is multiplied pixel to pixel with the image of
adjust coefficients (

x _ adj

j

k) and then divided by a sensitivity
image, setting up the new iteration image:

x
j

k+1 =
x

j

k

a
ij

i=1

m

!

.x _ adj
j

 (4)

 The sensitivity image is generated before starting the
iterative process, making a forward projection of all aij
coefficients:

S
j
= a

ij
i=1

m

! (5)

1.1.1. Projector

 In our implementation, aij coefficients are calculated
using only geometrical information. The projector used was
the Siddons algorithm [19] in its Jacob’s fast version [20].
We selected this projector as it can be used in histogram and
list-mode projection. This algorithm is very efficient

programmed in a CPU, but it is not the best solution for GPU
platforms because of its many conditional branches.
However, we demonstrated that significant acceleration
factors can be achieved utilizing this algorithm dividing the
whole projection of the sinogram by one thread per bin.
 Siddons algorithm consists of doing a ray tracing of a
line of response (LOR) then obtaining the length of the
segment generated by the intersection between the LOR and
the pixels of the image. Each segment length is called the aij
Siddon’s coefficient (Fig. 1). In order to accomplish this
operation, it is necessary to calculate the line equation of the
LOR from the coordinates of the corresponding sinogram’s
bin. The starting and final points are obtained by calculating
the intersection point between the LOR and the scanner Field
of View (FOV). Afterwards, the ray tracing is done by going
from the starting to the final point. (Fig. 1)

1.2. CUDA

 CUDA [12] is a general purpose parallel architecture,
with a programming model and software environment that
allows developers to use C-CUDA, a high level
programming language, in applications with fine-grained
parallelism and execute them in massive parallel threads.
 A CUDA kernel is a function that is executed N times in
N parallel CUDA threads. The programmer organizes these
threads in thread blocks and grids of thread blocks. A kernel
is launched in a grid of parallels thread blocks, each thread
having a thread and block ID. Threads within a thread block
execute an instance of the kernel with its own resources and
can cooperate among themselves through barrier
synchronization and shared memory. Thread blocks are
executed independently and are scheduled in any order in the
available processors. Grids of thread blocks share results in
Global Memory space after kernel-wide global
synchronization.
 In CUDA graphic processors, threads within a block are
executed and scheduled in groups of 32 called warps.
Threads of a warp start in the same program address and
execute simultaneously thanks to SIMT (Single Instruction
Multiple Thread) Architecture. When threads in a warp are
affected by flow control operations and follow different
execution paths, their execution diverge and each execution
path is serialized. This increases the total number of
instructions executed per warp.
 CUDA devices use several memory spaces. Each thread
has its own private local memory and registers space.
Threads within a block have a common shared memory,
visible for all of them. All threads of every block have access
to a large global memory space. Finally, constant and texture
memories define two read-only and cached memory spaces.
Shared memory is a low latency and fast memory, because
its on-chip location. Global memory loads and stores of a
half warp (Tesla) or a warp (Fermi) can be coalesced into
one transaction when certain requirements are met. This is
achieved when threads of the same warp access memory that
fits into a segment size of 128 bytes for 32-bits words. For
Compute Capability 1.2 or more, any access pattern within a
segment is coalesced.
 CUDA GPUs have a compute capability that describes
the features of the hardware and establish the set of

110 The Open Medical Imaging Journal, 2012, Volume 6 Belzunce et al.

instructions supported by the device. It also specifies
hardware parameters, such as the maximum number of
threads per block or registers available per multiprocessor.
 Tesla [15] was the first NVIDIA architecture to use
CUDA model. These GPUs have a scalable number of
multithreaded Streaming Multiprocessors (SM), which are
provided of 8 streaming processor (SP), 16 kB of shared
memory, two Special Function Units (SFUs) for single-
precision transcendental function and a warp scheduler with
a SIMT unit to execute one or more CUDA thread blocks.
Each SM is hardware multithreaded and can execute up to
768 concurrent threads with zero scheduling overhead. The
SM’s SIMT multithreaded instruction unit creates, manages,
schedules, and executes threads in warps of 32 parallel
threads. Tesla devices have compute capabilities 1.x.

 Each SM has its own register space with thousands of 32-
bit registers. However, register pressure occurs when there
are not enough registers available for a block of threads. For
this reason, the amount of registers that a kernel uses must be
taken into account, to run as many threads as possible within a
SM.
 Fermi [16] represents an evolution of Tesla architecture
and counts with several innovations [21]. In Fermi, the SMs
have 32 streaming processors, 4 SFUs, 64 kB of shared
memory, dual warp scheduler and incorporate a configurable
first-level cache. In addition, a 768 kB second-level cache

was added to hide latency of DRAM in applications that
have not enough data parallelism. Fermi GPUs have
compute capabilities 2.x, with a new instruction set that
includes atomic operations for floating points that were not
available in devices with lower compute capabilities.
Furthermore, floating-point units were updated from IEEE
754-1985 to IEEE 754-2008.

2. MATERIALS AND METHODS

 Fully 3D MLEM reconstruction algorithm using Siddon
as projector was implemented in CPU and GPU. In CPU a
single thread implementation has been developed and
compiled with optimization flags. Its performance was
evaluated in different processors: AMD Phenom 955 BE and
Intel i7 860. Different versions of the algorithm, with
different levels of optimization for Tesla and Fermi
Architecture, were programmed with CUDA for GPU. They
were executed in GPUs GTX285 and GTX480, two High-
end Nvidia Boards of Tesla T10 Series and Fermi GF100
Series, respectively. We selected those CPUs and GPUs
because they were the high end processors in commodity
hardware at the time this work was being carried out.
 The reconstruction library works with projections stored
as a Michelogram [22]. All input data sets were pre-
corrected for attenuation, normalization and arc corrections.
For this reason, the MLEM implementation presented uses
an exclusive geometrical projector.

Fig. (1). Siddon Algorithm. Line equation of a LOR is calculated and intersection points with field of view are obtained. From the starting
point, line path is covered, and the length of every intersected pixel is computed.

LOR bi

Pixel xj

Siddon aij

FOV

Starting Point

Final Point

Cuda Parallel Implementation of Image Reconstruction Algorithm The Open Medical Imaging Journal, 2012, Volume 6 111

2.1. Input Datasets

 Three Michelograms of a GE Discovery STE scanner
were used. Two of them are real data michelograms of a
brain study and a measurement of cylinder phantom. The
remaining was simulated with STIR library [24] using an
approximated Nema Image Quality Phantom [23]. They are
arranged in 553 direct and oblique two dimensional
sinograms, each of them with 280 bins for Φ angle and 329
bins for r distance. The Field of View (FOV) of the scanner
has a radius of 350 mm and an axial length of 156.96 mm.

2.2. GPUsç

 The GTX-285 is a Tesla T10 board with compute
capabilities 1.3, 240 CUDA cores with 1476 MHz of
processor clock and 1 GB of DDR3 RAM. On the other
hand, GTX-480 is a Fermi board with compute capabilities
2.0, 480 cores with 1401 MHz of Processor Clock and 1.5
GB of DDR5 RAM Table 1.

2.3. Algorithm Implementation

 Our implementation of MLEM algorithm computes each
coefficient of the System Matrix on-the-fly, because the
amount of coefficients of the SMR is much larger than the
memory available in both CPU and GPU. Forward
projection and backprojection are bin-driven computed. This
means that for each bin of the Michelogram, Siddon’s
coefficients are calculated for every intersected voxel of the
image. In forward projection the contribution of each pixel is
added to the michelogram’s bin corresponding to that LOR,
whereas in backprojection each bin contributes to the pixels
being intersected by the LOR. (Fig. 2)
 In each iteration Siddon’s algorihtm is computed for each
LOR in both forward projection and backprojection
operation, which sums a total of around 100 millons
Siddon’s computations per iteration. This makes this kind of
algorithm suitable for massively parallel architectures like
GPUs. Each Siddon computation takes different quantity of
instructions, depending on the amount of pixels intersected
by the processed LOR.

2.4. GPU Implementations

 Parallelization of MLEM algorithm has been performed
for each stage of EM iteration: forward projection,
backprojection and normalization. One kernel was developed
for each of them. The two first operations were parallelized
splitting them by bin. Each thread computes Siddon’s
coefficients for each bin of the Michelogram. The
Normalization kernel is parallelized pixel-wise, so each
thread works with a single pixel of k

jx , x_estj, Sj and
1+k

jx images.

 The code was optimized taking into account the CUDA
best practice guide [26]. In addition, NVIDIA CUDA Visual
Profiler was used to evaluate the performance and find
bottlenecks in GPU execution.
 Forward projection and backprojection kernels are
similar, the difference lies in the storage of the results. The
forward projection adds, in a kernel’s internal loop, all the
Siddon’s coefficients multiplied by its corresponding pixel
value to the same output bin of the projected Michelogram.
Whereas the backprojection adds each Siddon’s coefficients,
multiplied by the michelogram’s bin value, to the intersected
pixels. Since different threads can write on the same pixel
memory address, race condition (race hazard) problems can
occur in this last case (Fig. 3). The probability of race
condition events in the sum and store operation depends on
the order that each michelogram’s bin is processed and the
pixels being intersected by each LOR.
 Atomic sum is used in Fermi architecture, in order to
avoid race conditions problems. This kind of operation is
computationally expensive, as it is shown in the results.

2.4.1. Performance Optimization

 A general implementation that included most of the
optimizations recommendations [26] and executable on any
CUDA capable GPU has been carried out. Projection kernels
compute the operation for each bin. Using ThreadID and

Fig. (2). Projection and backprojection implementation schemes.

Input
Michelogram

Siddon

Output
Imageb0

b1

bm

xn

x1

x0

+a
01. b

0+
a

.b
0
i

0

Intersected voxels by LOR b0

Siddon

Siddon

Backprojection

Siddonb0

b1

bm

xn

x1

x0

a01

a0i

Siddon

Siddon

Forward Projection

+a01.x1

+a0i.xi

Input
Image

Output
Michelogram

Intersected voxels by LOR b0

11 12
13(r, ,z ,z)Φ 1 2

11
12

13

(r, ,z ,z)Φ 1 2

112 The Open Medical Imaging Journal, 2012, Volume 6 Belzunce et al.

BlockID CUDA’s structures, each thread gets the bin index
of the michelogram represented by (ir, iΦ, ring1, ring2). These
indexes are converted to real (r,Φ,z1,z2) values using a table
in Constant Memory, and finally (x,y,z) coordinates of the
two points on the detector cylinder that define the LOR are
calculated. Both points determine the line equation of the
LOR and Siddon algorithm can be executed, which is a
straightforward implementation of CPU Siddon function.
 Shared memory permits low latency access but its size is
very limited. For this reason, image data could not be placed
into this memory. Instead, michelogram data was stored in
shared memory inside the kernels, since each thread accesses
just one bin. All the parameters needed in the kernels were
stored in Constant Memory, as it is cacheable (e.g., r and Φ
values to convert Sinogram’s bins indexes in respective
geometrical values).
 Each kernel is launched with a predefined size of threads
per block. This parameter is important to have the GPU fully
occupied, and is usually limited by the amount of registers
used in a kernel, that for Projection kernels was 25 registers
per thread. The number of threads per block was optimized
for each of the GPUs, taking into consideration that threads
per block should be multiples of 32, in order to have fully
populated warps and facilitate coalescing [26]. Cuda
Occupancy Calculator tool allows finding out the theoretical
size of threads per block that used most of the GPU
resources, which was 192 for GTX285 and 320 for GTX480.
A full occupied GPU doesn’t necessary translate to a better
performance [26], so this parameters were verified running
kernels with different size of threads per block.

 Linear addressing was employed in each thread for bin
indexing (Fig. 4). The use of linear indexes in the same order
than bins stored in global memory makes that each warp
reads bins in a coalesced access. The order in which the bins
are accessed was also chosen to avoid race condition
problems. The strategy selected makes that threads within a
block process mostly parallel LORs, which would reduce the
amount of pixels simultaneously intersected by different
threads of a block. This is depicted in Fig. (4).

2.4.2. Atomic Sum in Fermi

 We implemented a modified version of the algorithm for
GPU that uses atomic sum in backprojection, avoiding the
potential race condition problem in this operation. This
version is only executable in Fermi GPUs with CUDA
Compute Capabilities 2.0, as the GTX 480, since atomic sum
for floating point is required.
 CUDA implementations were compiled for compute
capabilities 1.3 using the “arch” nvcc compiler flag option
[25]. Modified version with atomic operations were
compiled for 2.0 compute capability, since atomic sum for
floating point is only available for that feature. To get
information about the resource usage, the “ptxas” flag option
was added.

2.5. Image Quality Evaluation

 The image quality should be quantitatively evaluated.
Visual inspection can be useful when comparing two or
more images, but it is clearly insufficient for a good
comparison when the differences between them are not

Fig. (3). Race condition problem in backprojection kernel. N threads running in parallel can have a race condition problem when a pixel
value is updated simultaneously (top). A numerical example of error inserted by this problem is shown on bottom. Red highlighted value is
the computed result; the right value is in green.

b =51

a =0.41j

FOV

Thread 1

(r, ,z ,z)=f(ThreadID,BlockID)Φ 1 2

Thread 2

(r, ,z ,z)=f(ThreadID,BlockID)Φ 1 2

Thread n

(r, ,z ,z)=f(ThreadID,BlockID)Φ 1 2

Siddon

for each IntersectedPixel
x += a .bj ij (r, ,z ,z)Φ 1 2

Siddon

for each IntersectedPixel
x += a .bj ij (r, ,z ,z)Φ 1 2

Siddon

for each IntersectedPixel
x += a .bj ij (r, ,z ,z)Φ 1 2

Xj
7.2

Thread 2

pixel = 7.2
Read

Thread 1

X = aux + a .b

X = 7.2 + 0.4 * 5 = 9.2
j 1j 1

j

Write
Xj

9.2

Xj
7.2

Thread 1

pixel = 7.2
Read

Thread 2

X = aux + a .b

X = 7.2 + 0.6 * 6 = 10.8
j 2j 2

j

Write
Xj

10.8

b =62

a =0.62j

Xj
10.812.8Race-condition error

Cuda Parallel Implementation of Image Reconstruction Algorithm The Open Medical Imaging Journal, 2012, Volume 6 113

easily recognized. Thus, the standard deviation in an
expected uniform Region of Interest (ROI) was used for
quantifying the noise of each GPU version. A circle of 25
mm radius was selected as ROI in the central slice of the
cylinder image. In Simulated IQ Nema, eight circular ROIs
of 15 mm radius were used in the uniform background of the
phantom, and then the standard deviation inside them was
calculated. (Fig. 5). The noise to signal ratio (NSR) was
obtained by calculating the rate between standard deviation
and mean values in the background ROIs.
 Moreover, we obtained recovery contrast for hot and cold
spheres in reconstructed images of simulated IQ Nema. We
drew a circular ROI with a diameter equal to 80% of the
sphere radius for each of them. Hot spheres in the phantom
had an activity concentration of four times the background,
so that recovery contrast is defined as:

Q
H , j

=

C
H , j

C
B, j

!1

4 !1
.100% (6)

Where QH,j is the recovery contrast for hot spheres, CH,j is the
average counts in the ROI for sphere j and CBJ is the average
counts in the background ROIs. Recovery contrast for cold
spheres is calculated by:

Q
C , j

= (1!
C

H , j

C
B, j

).100% (7)

3. RESULTS

 MLEM algorithm was executed in each platform for each
of the input michelograms. Images of 128x128x47 and
256x256x47 pixels were reconstructed, with 40 iterations
and using full scanner FOV. In addition, images of
256x256x47 pixels with a FOV of 20 cm radius were
reconstructed. The latter were used for evaluating the image
quality parameters mentioned above.
 Total reconstruction, iteration and operation times were
recorded. An average time per iteration and operation was
calculated to compare and compute the performance of each
processor and implementation. A comparison of iteration

Fig. (4). Parallelization strategy regarding threads per block inside each 2D sinogram. A linear index for the whole sinogram is used and
threads per block are a multiple of Warp’s size (left). Most of the threads of a block belong to a same row of the sinogram, which correspond
to parallel LORs.

Fig. (5). Regions of Interest used to compute noise to signal ratio in uniform areas and recovery contrast in hot and cold spheres. In cylinder
phantom a central circle was utilized (left). In Simulated IQ Nema phantom, a ROI for each hot and cold sphere was used to evaluate
recovery contrast (middle) and eight circular ROIs were used to analyze the background (right).

NR

n.NWarp Threads

Block 2

Block 1

indexSino2D = threadIdx.x + (blockIdx.x*N)TB

indexR = % NRindexSino2D

index = floor(� indexSino2D / N)R

Parallel LORs

FOV

114 The Open Medical Imaging Journal, 2012, Volume 6 Belzunce et al.

Table 1. Comparison of the GPUs used in this Work

 GTX-285 GTX-480

CUDA Cores 240 480

Processor Clock 1476 MHz 1401 MHz

Memory Interface GDDR3 GDDR5

Memory Bandwidth (GB/sec) 159 GB/sec 177.4 GB/sec

Total Memory 1 GB 1.5 GB

Compute Capabilities 1.3 2.0

Table 2. Iteration Time for each GPU and CPU Implementation

 AMD Phenom 955BE Intel i7 860 GTX285 GTX480 GTX480 with Atomics

128x128 FullFOV 254.6 sec 238.2 sec 6.2 sec 2.8 sec 13.6 sec

256x256 Full FOV 435.1 sec 395.5 sec 21.7 sec 8.5 sec 16.7 sec

256x256 20 cm radius FOV 249.7 sec 309.3 sec 12.4 sec 6.9 sec 23.3 sec

Table 3. Speed up Factors for each GPU Implementation and Hardware

 AMD Phenom 955BE Intel i7 860 GTX285 V1 GTX480 V1 GTX480 V3

128x128x47 FullFOV 254.6 238.2 38.4 85.1 17.5

256x256x47 Full FOV 435.1 395.5 18.2 46.5 23.7

256x256x47 20 mm radius FOV 249.7 309.3 25.0 44.8 13.3

Table 4. Processing Times by Stage, in one Iteration. Results for Reconstructed Image of Simulated IQ Nema Phantom of 256x256x47
Pixels and Full FOV

 AMD Phenom 955BE Intel i7 860 GTX285 GTX485 GTX485 with Atomics

Forward projection 187 sec 211 sec 5.1 sec 3.8 sec 6.1 sec

Backprojection 248 sec 183 sec 15.5 sec 4.0 sec 17.2 sec

Normalization 0.01 sec 0.04 sec 0.0005 sec 0.0005 sec 0.0005 sec

times for every reconstructed image can be seen in Table 2.
Speed up factors were compared with the CPU Intel i7 860,
which had the best performance between the processors
evaluated. They are shown in Table 3. Speed up factors of 38
and 85 were respectively achieved in GTX285 and GTX480
for images of 128x128x47 pixels, but with higher noise, due
to race condition problems. When atomic sum was used,
speed up factors were reduced to 20, in average. For images
of 256x256x47, GPU performance was not as good as it was
for smaller images.
 Execution times were also recorded by stage; they are
indicated in Table 4 for the case of Simulated IQ Nema
phantom and reconstructed images of 256x256x47 pixels
with Full FOV. The distribution of time per operation can be
observed in Fig. (6); GPU backprojection operation is the
more demanding operation, while in CPU there are no
relevant differences between both operations. Normalization
takes insignificant time compared with the other two stages.
 A set of reconstructed images can be seen in Fig. (7) and
Fig. (8), where central slices of reconstructed cylinder
phantom and IQ Nema Phantom for each platform are
shown. By visual inspection, different noise levels can be

distinguished. In order to quantify the noise level, an
evaluation of the standard deviation of pixel intensity in
uniform ROIs has been made in Simulated IQ Phantom and
Uniform Cylinder images, as described before Table 5. The
noise to signal ratio is higher in GTX285 than in GTX480,
and both are higher than in CPU. When using atomic add in
Fermi the NSR is equivalent to the CPU version. The
additional noise present when atomic operations are not used
is, in fact, a consequence of race conditions problems. In Fig.
(3) we showed that, in backprojection operation, pixel values
are underestimated when a race condition occurs. This was
verified measuring the mean value of the cylinder, that it was
2% lower when atomic operations were not used.
 Recovery contrast was evaluated for all the spheres of IQ
Nema Phantom. Its values are presented in Table 6. In this
case, there was not significant difference between the
different versions. This was an expected result since race
conditions affects regions with cold and hot spheres, as well
as the background region. In GTX285, recovery contrast
values are slightly higher because the background mean
value is lower as a consequence of the many events with race
conditions that take place during backprojection operation.

Cuda Parallel Implementation of Image Reconstruction Algorithm The Open Medical Imaging Journal, 2012, Volume 6 115

Fig. (6). Distribution of processing times per stage for 256x256x47 and full FOV reconstructed image.

Fig. (7). Central slices of cylinder phantom reconstructed images for all platforms, each having 256x256 pixels.

Fig. (8). Central slices of Simulated IQ Nema reconstructed images for all platforms, each having 256x256 pixels.

GTX285 CPU Phenom 955

GTX480 GTX480 with Atomics

GTX285 CPU Phenom 955

GTX480 GTX480 with Atomics

116 The Open Medical Imaging Journal, 2012, Volume 6 Belzunce et al.

Table 5. Noise to Singal Ratio in Uniform ROIs of Phantoms

 GTX285 GTX480 GTX480 with Atomics CPU

Cylinder 16.8% 10.6% 4.9% 4.9%

Simulated IQ Nema 256 14.9% 9.3% 1.8% 1.2%

Table 6. Recovery Contrast Values for each Sphere of Reconstructed iq Nema Phantom with Size of 256x256x47 Pixels and 20 cm
Radius Fov

 GTX285 GTX480 GTX480 with Atomics Intel i7 860

10 mm 46.3% 46.0% 44.7% 44.6%

13 mm 69.1% 67.4% 68.6% 68.5%

17 mm 76.5% 74.7% 74.9% 74.9%

22 mm 83.0% 80.7% 80.4% 80.2%

28 mm 66.9% 64.7% 64.4% 64.1%

37 mm 73.3% 70.9% 71.1% 71.0%

Fig. (9). Number of divergent branches in thread execution in Forward Projection operation.

4. DISCUSSION

 Different speed up factors were achieved for each GPU
and image size. Such as it was expected, larger images
presented lower acceleration rates; in a bin-wise projector,
the amount of issued threads is independent of the image
size, thus a larger image means more instructions per thread
instead of the execution of more threads. The latter would be
advantageous in a massive parallel architecture as GPUs.
Moreover, threads that execute Siddon’s algorithm in larger
paths increase the chance of branch divergence within a
warp. This can be observed in Fig. (9).
 A maximum speed up factor of 85 times was achieved
for GTX480 without atomic operations, but with images
with higher noise to signal ratio. GTX480 doubled the
performance of GTX285, this is mostly justified by the
number of thread processors of each GPU and the
introduction of the L1 cache in Fermi.

 The images reconstructed with GPU, without atomic
operations, showed worse NSR than CPU, due to the error
introduced by race condition problems. On the other hand,
recovery contrast values didn´t show any significant
difference between both platforms. When using atomic add,
read-modify-write process is executed without interference
from other threads, thus ensuring that no other thread can
access that memory address until the write operation has
finished. As a consequence, noise levels are equivalent to
CPU images at a cost of a reduction of speed up factors
between 3 and 4 times.
 As was stated above, GPU backprojection takes most of
the iteration time. On the other hand, in CPU it takes
approximately the same time than forward projection. Both
operations have the same computing load, but differ in
memory access patterns. In GPU, the only difference
between both kernels arises when writing the results. In
forward projection the result in each thread is written in the

Cuda Parallel Implementation of Image Reconstruction Algorithm The Open Medical Imaging Journal, 2012, Volume 6 117

same memory address, accessing contiguous addresses
inside a thread warp. In contrast, backprojection writes the
different memory addresses of intersected pixels, so threads
in a warp hardly access contiguous memory locations.
Because of that, backprojection has much less coalesced
memory accesses; therefore, serialization of memory access
and instruction execution occurs inside a warp. In GPU
image data is in global memory which access is expensive,
especially when it is not coalesced, as in the case of
backprojection. The presence of a L1 cache in GTX480 could
reduce this problem, and is verified by the fact that in this
graphic processor backprojection has an acceleration factor
close to the one obtained in forward projection (Table 7).

5. CONCLUSION

 Acceleration rates between 15 and 85 have been achieved
with a GPU implementation of MLEM image reconstruction
algorithm, despite of the use of a projector that best adapts to
CPU architecture. The problems existing in Tesla archit-
ecture to generate similar results to CPU, regarding image
quality, were solved with the introduction of atomic
operations for floating points. In Fermi, unlike Tesla, an
acceptable noise level is achieved even when atomic
operations are not employed, and speed up factors of 85
times are possible. With the use of atomic operations the
execution times are slowed down up to 4 times, but noise
levels equivalent to CPU are observed. (Fig. 10)
 Due to the scalability of CUDA model and the fact that
graphics processors are permanently increasing their parallel
computing power, higher acceleration rates are expected to
be obtained with the launch of new GPUs in the market,
without needing to rewrite the code. In addition, new

features, such as cache memories and atomic operations
introduced in Fermi, can improve the performance of
algorithms both in speed and quality. Moreover, CUDA
permits to run multi-GPU applications with low
programming effort, and it would be expected to achieve a
scaled performance when using a rack of GPU boards.

CONFLICT OF INTEREST

 The authors confirm that this article content has no
conflicts of interest.

ACKNOWLEDGEMENTS

 This work was partly funded by UTN PhD fellowship to
Martín Belzunce and by CNEA's AR-PET project. Authors
wish to acknowledge the Digital Processing Laboratory
(DPLab) of UTN-FRBA for providing the GTX-480 used in
the experiments presented in this paper.

REFERENCES
[1] Shepp LA, Vardi Y. Maximum likelihood reconstruction for

emission tomography. IEEE Trans Med Imaging 1982; 1:113-22.
[2] Reader JA, Visvikis A, Erlandsson K, et al. Intercomparison of

four reconstruction techniques for positron volume imaging with
rotating planar detectors. Phys Med Biol 1999; 43: 823-34.

[3] Chen C, Lee S. On Parallelizing the EM algorithm for PET image
reconstruction. IEEE Trans Parallel Distrib Syst 1994; 5: 860-73.

[4] ones JP, Jones WF, Keheren F. SPMD cluster-based parallel 3-D
OSEM. IEEE Trans Nucl Sci 2003; 50(5): 1498-502.

[5] Schellmann M, Voerding J, Gorlatch S, et al. Cost-effective
medical image reconstruction: from clusters to graphics processing
units. In: Proceedings of the 2008 conference on Computing
frontiers; 2008: New York; pp. 283-92.

[6] Nickolls J, Dally WJ. The GPU computing era. IEEE Micro 2010;
30(2): 56-69.

[7] Owens JD, Houston M, Luebke D, et al. GPU Computing. Proc
IEEE 2008; 96: 879-99.

Table 7. Speed up Factors Per Stage for 256x256x47 and Full FOV Images

 GTX285 GTX480 GTX480 with Atomics

Forward projection 41.4 55.5 34.6

Backprojection 11.8 45.8 10.6

Fig. (10). Central slice of brain study reconstructed image, each having 256x256 pixels.

GTX285 CPU Phenom 955

GTX480 GTX480 with Atomics

118 The Open Medical Imaging Journal, 2012, Volume 6 Belzunce et al.

[8] Bai B, Smith AM. Fast 3D iterative reconstruction of PET images
using PC graphics hardware. In: IEEE Nuclear Science Symposium
Conference Record; 2006 Oct 26: San Diego, USA; pp. 2787-90.

[9] Pratx G, Chinn G, Habte F, et al. Fully 3-D list-mode OSEM
accelerated by graphics processing units. In: IEEE Nuclear Science
Symposium Conference Record; 2006 Oct 26: San Diego, USA;
pp. 2196-202.

[10] Pratx G, Chinn G, Olcott P, et al. Fast accurate and shift-varying
line projections for Iterative reconstruction using the GPU. IEEE
Trans Med Imaging 2009; 28: 435-45.

[11] Xu F, Mueller K. Real-time 3D computed tomographic
reconstruction using commodity graphics hardware. Phys Med Biol
2007; 52: 3405-19.

[12] NVIDIA. CUDA Programming Guide 3.2. NVIDIA, 2010.
Available from: http://developer.down-load.nvidia.com/compute/-
cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
[cited 2012 Mar 1].

[13] Herraiz JL, España D, García D, et al. GPU acceleration of a fully
3D iterative reconstruction software for PET using CUDA. In:
IEEE Nuclear Science Symposium Conference Record; 2009 Oct
24: Orlando, USA; pp. 4064-7.

[14] Zhou J and Qi J. Fast and efficient fully 3D PET image
reconstruction using sparse system matrix factorization with GPU
acceleration. Phys Med Biol 2011; 56: 6739-57.

[15] Lindholm E, Nickolls J, Oberman S, et al. NVIDIA Tesla: A
Unified Graphics and Computing Architecture. IEEE Micro 2008;
28: 39-55.

[16] NVIDIA. Fermi: NVIDIA’s Next Generation CUDA Compute
Architecture. NVIDIA 2009. Available from: http://www.nvi-
dia.com/content/PDF/fermi_white_papers/NVIDIAFermi_Comput
e_Architecture_Whitepaper.pdf [cited 2012 Mar 1].

[17] Lange K, Carlson R. EM reconstruction algorithms for emission
and transmission tomography. J Comput Assist Tomogr 1984; 8:
306-16.

[18] Hudson HM, Larkin RS. Accelerated image reconstruction using
ordered subsets of projection data. IEEE Trans Med Imaging 1994;
13:601-9.

[19] Siddon RL. Fast calculation of the exact radiological path for a
three-dimensional CT. J Med Phys 1985; 12: 252-5.

[20] Jacobs F, Sundermann E, De Sutter B, et al. A fast algorithm to
calculate the exact radiological path through a pixel or voxel space.
Comput Inf Tech 1998; 6: 89-94.

[21] Patterson D. The top 10 innovations in the new NVIDIA Fermi
architecture, and the top 3 next challenges. Parallel Computing
Research Laboratory: U.C. Berkeley; 2009. Available from:
http://www.nvidia.com/content/PDF/fermi_-white_papers/D.Patter-
son_Top10InnovationsInNVIDIAFermi.pdf [cited 2012 Mar 1].

[22] Bendriem B, Townsend DW. The theory and practice of 3D PET.
1st ed. USA: Springer 1998.

[23] NEMA. Performance Measurements of Postiron Emisión
Tomoraphs. Nat. Elect. Manufact. Assoc., Washington, DC;
NEMA Standards Pub., NU2-2001; 2001.

[24] Thielemans K, Mustafovic S, Tsoumpas Ch. STIR: Software for
Tomographic Image Reconstruction Release 2. IEEE Nuclear
Science Symposium Conference Record; 2006 Oct 26: San Diego,
USA; pp. 2174-6.

[25] NVIDIA. The Cuda Compiler Driver NVCC. NVIDIA Cor-
poration 2010.

[26] NVIDIA. Cuda C Best Practices Guide. Version 3.2, NVIDIA
Corporation; 2010. Available from: http://developer.download.nvi-
dia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Best_Prac
tices_Guide.pdf [cited 2012 Mar 1].

Received: April 12, 2012 Revised: August 09, 2012 Accepted: August 25, 2012

© Belzunce et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

