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Abstract: In this paper, a combined Fractal and Wavelet (CFW) compression algorithm targeting x-ray angiogram 
images is proposed. Initially, the image is decomposed using wavelet transform. The smoothness of the low frequency 
part of the image appears as an approximation image with higher self similarities, therefore, it is coded using a fractal 
coding technique. However, the rest of the image is coded using an adaptive wavelet thresholding technique. This model 
is implemented and its performance is compared with best performances of the available published algorithms. A data set 
containing 1000 x-ray angiograms is used to study the performance of the algorithm. A minimum compression ratio of 30 
with a peak signal to noise ratio (PSNR) of 36 dB and percent diameter stenosis deviation of (<0.2%) was achieved. 
Results demonstrate the effectiveness of the proposed technique in obtaining a diagnostic quality of reconstructed images 
at very low bit rates. 
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1. INTRODUCTION 

 Advances in medical image generation made the demand 
to access, transfer, and interpret medical images in a faster, 
convenient, and accurate form a necessity. With the 
inevitable appearance of new medical commercial modalities 
such as x-ray angiography, CT imaging, MRI, and digital 
video; compression methods other than those currently 
utilized within DICOM standard will be necessary to meet 
requirements of remote medical facilities and to expedite 
data transmission among different medical centers. 
Presently, x-ray angiography is the mostly used non-invasive 
diagnostic and therapeutic technique for vascular diseases. 
Both diagnosis and therapy of vascular diseases require 
further processing and proper consultation with other 
medical centers. Therefore, an image compression that 
provides diagnostic quality at high compression ratio is vital. 
In recent decades, cardiologists and vascular surgeons have 
repaired the blood vessels and arteries of the heart using x-
ray angiography procedure. Recently, x-ray angiography is 
utilized for therapy. However, in third world countries 
conventional x-ray angiography still has the major role in the 
detection, diagnosis and treatment of heart disease, heart 
attack, acute stroke and vascular disease.  
 Due to the large size of population who are diagnosed on 
daily basis to have different types of vessel problems, the 
need for reliable remote medical centers is imperative, and 
also because Coronary artery disease is the major cause of 
premature death in the United Kingdom [1], reducing the 
amount of data necessary to be sent based on an on-line  
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scheme is necessary and requires an efficient medical image 
compression algorithm that is able to reduce the bit rate of 
transmission and to maintain the diagnostic quality of the 
images. On the other hand, dealing with the angiogam as it is 
requires higher storage memory or higher bandwidth for 
transmission. For example, a single patient digital angiogram 
video typically requires 7.5 Mbytes/s for 512 * 512 * 8-bit 
resolutions at 30 frames/s, resulting in 0.25 Mbytes/frame [2]. 
 There are several techniques that have been used for 
medical image compression, but those that maintain the 
diagnostic ability for an image with an increase in 
compression ratio are required. Bearing in mind, the aim is 
to achieve a better compression ratio with minimal distortion 
requires the existence of reliable metrics to measure the 
diagnostic distortion rather than quantitative distortion. It 
also requires knowledge of the standards of image quality 
and how the compression technique is handled in digital 
medical imaging device. The most prime measures to be 
taken into considerations and must be correctly satisfied are: 
Peak Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio 
(SNR), Peak Error (PE), Percent Root Mean Square 
Deviation (PRMSD), Normalized Sum Of Scores (NSOS), 
and Cross Correlation (CC). 
 Among compression techniques, recently two techniques 
are found to be the best in maintaining image quality and 
increasing compression ratio, these are Wavelet and Fractal 
techniques. 
 Wavelet analysis has generated much interest in both 
theoretical and applied mathematics over the past decade. It 
is a time-scale representation that has been used successfully 
in a wide range of applications. Wavelet transformation 
consolidates image energy in few coefficients with excellent 
localization characteristics in the spatial-frequency domain 
[3]. To compress the image, these coefficients will go 
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through a thresholding process depending on the criterion 
chosen to ignore the less significant coefficients. For 
reconstruction, an inverse Wavelet transform to the 
thresholded coefficients is applied. The result will lead to a 
compression ratio lower than 1.4 for an original angiogram 
image with different biorthogonal filters [4]. The problem 
with this transform is that it needs a very high threshold for 
the approximation coefficients; hence no compression is 
achieved for these coefficients, this is considered as a 
constrain point for this method. 
 Fractal Compression was first promoted by M. Barnsley 
[5]. Fractal encoding depends on the assumption that natural 
and most artificial objects contain similar redundant 
repeating patterns called fractals [6]. The basic idea of 
fractal transform was built on the self-similarity of the 
objects that allows saving a small portion of the object 
instead of the whole object. The problem in fractal 
compression is its time consumption, where it is very slow in 
analyzing the data for large images. 
 A combined ‘Fractal and Wavelet’ (CFW) compression 
algorithm is proposed in this paper. It maximizes the 
advantages of Fractal and Wavelet methods and gets rid of 
their disadvantages. However, combining wavelet and fractal 
is not new but it depends on utilized criteria for hybriding. 
One of these techniques is based on compressing high 
frequency wavelet coefficients by using a modified fractal-
coding algorithm and coding the low frequency wavelet 
coefficients by a lossless method called BTPC [7]. Another 
criterion is introduced in the Hybrid Fractal Zerotree 
Wavelet Image Coding which couples a zero tree-based 
encoder, such as the embedded zerotree wavelet (EZW) 
coder or set partitioning in hierarchical trees SPIHT and a 
fractal image coder [8]. The idea is based on applying a 
locally optimal distortion-rate calculation for trading in 
similar structures in EZW and tree-based fractal encoders. 
The coder that performs efficiently is adaptively selected. A 
fractal coder usually performs better with edges and texture 
areas of an image [9]. The best achieved PSNR ranged 
between 26.49dB and 39.28 dB [8]. 
 The rest of the paper is divided into five main sections: 
compression techniques, proposed approach, quality of 
decompressed images, achieved results, discussions and 
conclusions. Section 2 covers the recent developments in 
fractal and wavelet based image compression and coding 
techniques. Section 3 lays out the foundation for the 
proposed combined fractal wavelet compression approach 
and it is implementation. Section 4 introduces quality 
performance measures that will be used to validate the 
proposed approach. It discusses both subjective and 
objective quality measures. Implementation and results are 
covered in section 5. Manifestation and efficacy of the 
proposed technique are highlighted. Moreover, comparisons 
among medical image compression techniques are also 
studied. Section 6 explains the obtained results and 
concludes main achievements of this codec followed by 
references. 

2. IMAGE COMPRESSION TECHNIQUES 

 The era of advanced communication systems, satellite 
communications, and mobile telecommunication paced the 
birth of new research in image compression literature. 

Wavelet and fractal image compression techniques gained 
further momentum in its development for their ability in 
producing high compression rates with perceptually relevant 
quality. Advances in both compression areas are considered 
as the base for this current research. Therefore, background 
analysis of recent emerged compression techniques in 
wavelet and fractal domains will provide an insight to the 
proposed technique and strengthen its achievements. 

2.1. Image Compression in Wavelet Domain 

 Wavelet is the base of multiresolution image 
decomposition which allows efficient subband coding [10]. 
It reveals strong space-frequency localization where relevant 
features within each subband and similar features across 
subbands are clustered [11]. Wavelet subbands are 
statistically dependent making it very suitable for efficient 
coding [12]. The pyramidal, or dyadic wavelet 
decomposition, in particular, illustrated excellent energy 
compaction. EZW encoder is the first to utilize this property. 
It uses both bit-plane coding and the zerotree configuration 
[13]. Said and Pearlman partitioned the embedded tree and 
proposed the set partitioning in hierarchical trees (SPIHT) 
encoder [14]. EZW has excellent rate-distortion (R-D) 
performance and low computational complexity EZW coders 
are progressive coders in which data can be transmitted and 
encoded at any target bit rate. However, exploiting the 
wavelet tree in adaptive manner could improve the 
compression results and provide low rate at a higher 
computational costs. This Adaptive concept is employed 
non-progressively in Xiong et al. [15]. Although their 
algorithm provides better compression results compared with 
non-adaptive EZW coders its computational complexity is 
extremely high. It is worth mentioning that both types of 
coders are still focusing on the inter-subband correlation. 
Another type of coders that base their compression on a 
structure-like mechanism is recently evolved. The layered 
zero coding (LZC) algorithm proposed by Taubman and 
Zakhor [16] for still and video images represents a good 
example of structure-like compression approach that 
efficiently incorporates an adaptive arithmetic coding [17]. 
Other algorithms that exploit the wavelet domain do exist 
among these algorithms are those that concentrate on the 
morphological representation [18, 19], classification of 
image subbabands [20], and estimating the statistical 
properties of coefficients in the subbands [21, 22]. The latter 
are called backward adaptive techniques and demonstrated 
superior rate-distortion performance in comparison with 
forward adaptive ones. However, they still suffer from 
higher computational complexity at the decoder side. 

2.2. Fractal Image Compression and Wavelet Domain 

 Fractal image compression is based on exploiting the self 
similarity between different image patterns. Redundant 
information within the spatial image is effectively reduced 
using this technique [23, 24]. Recent results showed that 
applying fractal coding in wavelet domain using self 
similarities within and across wavelet trees gives better 
compression results compared to classic compression 
schemes as well as simple fractal coding schemes. This is 
due to its capabilities to eliminate blocking effect and to 
provide more efficient coding for the quantized coefficients. 
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On the other hand, the long time required to generate simple 
coding and codebook is considered inefficient when 
compared to wavelet methods. To reduce the encoding time, 
selected patterns are classified using different classification 
techniques in an attempt to rule out detected redundant 
blocks from the codebook.  
 Pentland and Horowitz [25] are the first who introduced 
the study of the self-similarity in a subband decomposition 
which is later compressed using fractal coding methods by 
Rinaldo and Calvagno [26]. A generalization of the previous 
method in wavelet domain is proposed by Davis [27]. In his 
work, Davis demonstrated that self similar zerotree-like 
structures and straight edges are efficiently encoded. Based 
on Davis work, Li and Kuo proposed a hybrid wavelet-
fractal image coder which has better quality and speed [28]. 
Zoukouski et el., depending on radiologist judgment, used 
Lossless compression in clinically relevant regions and lossy 
compression for other regions [29]. Recently several 
research articles combined wavelet compression with linear 
predictive coding to predict the behavior of compressed 
wavelet coefficients [30-33]. However, linearity in Wavelet 
domain is purely nonlinear in spatial domain. Singh et. el. 
proposed a hybrid technique involving both DWT and DCT 
to compress medical images [34]. This two-step algorithm is 
expensive and suffers coding problems. In summery, 
available wavelet based fractal coding methods depend on 
predicting blocks from the coarse levels to upper detail ones 
incorporating achievements of either EZW, SPIHT, or LZC 
coders. The same strategy for compression is still studied, 
applied, and narrowly verified. In this paper, we propose a 
combined fractal morphological wavelet coder (CFW) coder. 
The new coder aims at further exploiting the strengths of the 
fractal image compression and best utilization of the energy 
compaction property of the wavelet domain. 
 Fig. (1) illustrates the block diagram of the proposed 
compression scheme. Initially, the image is decomposed into 
its spatial-frequency domain using wavelet transform. Then 
the low frequency part of the decomposed image is coded 
using a variable-size fractal coding technique while the rest 
of the image is coded using an embedded zero wavelet 
(EZW) technique. Therefore, the proposed algorithm solves 
the inherited problems of both fractal and wavelet coders. 
Self similarity is emphasized at low frequencies and EZW 
coder works efficiently at higher frequencies. 

3. COMBINED FRACTAL WAVELET COMPRE-
SSION APPROACH 

 The proposed compression approach, as shown in Fig. 
(1), depends on maintaining the properties of wavelet 
transform coders in minimizing the bit quota for non-
significant coefficients and maintaining the most significant 
parts of the wavelet subbands at lower costs. Moreover, it is 
expected to utilize the efficiency of fractal image 
compression in detecting similarities and their efficient 
encoding. In the following subsections the wavelet 
decomposition procedure, fractal image compression, and 
proposed encoding scheme are further explained and 
clarified. 

3.1. Compression of the High-Resolution Subbands in 
Wavelet Domain 

 Natural images usually have smooth color variations, 
with the fine details appear as sharp edges in between the 
smooth variations. Technically, smooth objects in an image 
represent low frequency contents while fine details represent 
high frequency variations. Decomposing the image into its 
smooth variations and details can be obtained simply by 
using a Discrete Wavelet Transform (DWT) [10]. The 
decomposition process is divided into several levels. Each 
level will produce a two-dimensional array of coefficients 
contains four bands of data. These bands are labeled as LL 
(low-low), HL (high-low), LH (low-high) and HH (high-
high) respectively. The next level will decompose the LL 
band again in the same manner, thereby producing even 
more sub bands. This process can be repeated up to any 
level, thereby resulting in a pyramidal decomposition. Fig. 
(2) shows a five-levels wavelet decomposition of an 
angiogram image. 
 The LL band at the upper level of decomposition is 
classified as the highest energy band with smooth visitations, 
and the other 'detail' bands are classified as lower energy 
bands with sharp variations. As it is obvious from Fig. (2), 
the degree of energy compaction is decreasing from the top 
of the pyramid to the bands at the bottom [10]. Moreover, 
further decomposition will not reveal further information 
regarding the image. After decomposing the image into 
sublevels, a stream of coefficients will appear. A few of 
these coefficients contain the most energy of the image while 
others appear as less significant details. Hence, the aim is to 
extract the significant coefficients, which contain most of the 

 
Fig. (1). Outline of the Proposed CFW image compression approach. 
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energy, and ignore the others. Regardless of the adopted 
compression scheme in the wavelet domain, if used as is, the 
low-resolution subband which contains most of the energy of 
the image and characterized by its smooth variation will 
consume most of the bit quota. Therefore, to effectively 
utilize the properties of the fractal image compression this 
part is coded separately using fractal image coding. Other 
parts of the image that contain more coefficients but at low 
amplitude levels will be coded efficiently using the wavelet 
domain only. To achieve this, after decomposing the image 
signal into sublevels an appropriate threshold (thr) is needed 
to control the compression rate and the quality of the detailed 
sub images. Thresholding is a process that compares some 
given values to a reference value (thr). A hard thresholding 
concept is used in compressing the details of the image 
which is described as setting the values that are less than the 
reference value to zero, and keeping the other values, which 
are greater than this value, to their original value. Hard 
thresholding process is illustrated as follows, assume that 
x(n) is a detailed wavelet coefficient and x’(n) is the 
coefficient after thresholding: 

 

If   |x(n)|  >  thr

 x'(n) = x(n)

Else

x'(n) = 0
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 After defining the thresholding process, the criterion for 
finding the threshold value (thr) is the next step. Different 
techniques are used to calculate the threshold value. One of 
these techniques is based on the energy requirements. 
Therefore the way in choosing the threshold value depends 

on the total energy of the detailed sub images. In order to 
calculate a threshold based on a certain portion of the energy, 
the following steps are performed: 
 Calculate the total energy of each subband, ETi, using 

the wavelet coefficients x[n], as follows: 

  
ETi =  x
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 Calculate the desired energy in the thresholded 
coefficients, Epi, i.e.:  
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 To determine the value pi and the threshold, the 
following steps are conducted: 

a. Sort the wavelet coefficients in descending 
order based on its energy, xsort[n]. 

b. Apply the following procedure: 
Set the portion of the retained energy = Percentage of ET 

  

Ed =  Percentage of  E
T

 * E
T

energy =  0; p =  0;

while energy <  !
d

        energy =  energy +  (x
sort

[ p])^2;      

        p =  p + 1;

end

thr =  abs(x
sort

[ p])

"

#

$
$
$
$$

%

$
$
$
$
$

 (4) 

 
Fig. (2). Five Levels Pyramidal Decomposition of an Angiogram. 
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 If the overall distortion is within the accepted rate-
distortion criterion, significant coefficients will be separately 
encoded using adaptive differential run length and 
progressively transmitted. Otherwise, other percentage is 
used and the same procedure is repeated until the criterion is 
satisfied [35]. 

3.2. Compression of Low-Resolution Subband Using 
Fractal Image Compression 

 Efficiency of fractal transform coder is gained due to the 
availability of self-similarity of the objects allowing the 
coder to reduce the needed space for the whole object and 
only code a small portion of it. Self-similarity is not fully 
maintained in natural images, however, some portions of the 
image are self similar. Lena image, for example, does not 
contain the type of self-similarity which is found in the 
Sierpinski triangle [5]. However, self-similar portions of the 
image are clear in it. These detected parts are not exactly the 
same due to the affine transformation process applied to 
them. This means that the results of the encoding process 
will not be an identical copy of the original image. However 
exploiting self similarities within the whole image would 
effectively reduce its desired bit quota. On the other hand, if 
the image is decomposed using wavelet transform and lower 
resolution portion of it is utilized for fractal encoding, the 
encoder will be more efficient due to the maximized 
similarities within smooth objects and to their energy 
compaction dominance. Moreover, to resolve the non 
identical coding of similar objects due to transformations, a 
segmentation process is proposed. Segmentation will further 
enhance the performance of the fractal coder. Fractal 
compression for low resolution wavelet image is conducted 
as follows: 

3.2.1. Encoding Scheme 

3.2.1.1. Segmentation 

 An image is regularly segmented into blocks. Fig. (3) 
shows the segmentation of the image into range blocks. Each 
block is a two-dimensional array of BxB pixel. These blocks 
are called range blocks. Each range block is arranged in a 1-

D sequence of a row followed by another row order. The 
whole 2D array of range blocks is then represented by 1D 
sequence, i.e. 

  
! = {R

i
}[7]. 

3.2.1.2. Creating Domain Block Pool 

 The pool of the set of domain blocks contains 2Bx2B 
squares covering the whole of the original image. This pool 
is generated by sliding a 2Bx2B window within the original 
image and skipping !  pixels from left to right, top to 
bottom. Also each domain block is transformed in 8 different 
ways. So, this will produce a huge pool of domains. 

3.2.1.3. Affine Map 

 For each range block, a domain block and map need to be 
specified, so that range block and domain block become the 
best pair. To minimize the delay due to calculations, the 
domain block is down sampled to be equal to the range block 
size of BxB pixels. For each best pair of range and domain 
mapping coefficients are saved. These coefficients include 
the location of the domain, the transformation type of the 
domain, the contrast of the domain, and the offset of the 
range. 

3.2.1.4. Extracting the Non-Similar Part 

 In the case where a block is uniquely identified, each 
range block that does not pair with a domain block is marked 
as a non-similar part. To avoid losing such data, all of these 
ranges are losslessly coded and sent as is. This would 
introduce an overhead problem if the number of non similar 
blocks covers the whole image. Such situation is almost 
impossible. 

3.2.2. The Decoding Scheme 

 The contractive mapping theorem is utilized to decode 
the image. The decoding process starts by any image, for 
example rectangle. The decoder maps the mapping 
coefficients to the initial seed image iteratively. This process 
converges to fixed point of the mapping coefficients, once 
the compressor has found good mapping coefficients for the 
image. To perform an iteration of the mapping coefficients, 

 
Fig. (3). Segmenting an image into a set of range blocks. 
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the decoder takes the list of all affine maps and applies each 
one in turn. This converts a set of domains into a set of 
ranges. Since no overlapping is allowed between range 
blocks, the whole image will be covered. Therefore, a new 
complete image is produced as a result. The decoder will 
repeat the whole process until convergence is achieved. That 
is, until there are a little difference between the output of the 
current iteration and its input image. Convergence is usually 
very fast and is obtained by 3 to 6 iterations. 

4. QUALITY OF THE RECONSTRUCTED IMAGES 

 The quality of the reconstructed image and the 
compression ratio determine the performance of the 
compression scheme. Due to the reduction of the CFW 
coefficients the reconstructed signal will suffer a reduction in 
its quality. Therefore there must be some quality measures 
that evaluate the quality of the reconstructed image. Two 
types of evaluation mechanisms are found in the literature 
and utilized to validate the efficacy of the proposed 
algorithm [36]. 

4.1. Subjective Evaluation Technique 

 In this part, an observer is asked to evaluate the 
compression algorithm by following some rules. However, 
variations among different observers recommend applying 
objective measures that will rate the quality based on 
mathematical formula. 

4.2. Objective Quality Measures 

 Several measures can be incorporated to evaluate the 
performance of the proposed compression algorithm. In this 
paper the following measures are used: 

4.2.1. Calculating the Peak Signal to Noise Ratio (PSNR): 

 Calculating the PSNR gives a clear mathematical 
evaluation of the amount of destruction affected to the 
original signal. The calculation of the PSNR is as follows: 

 

PSNR = 10´ log
10
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!

"
##

$

%
&&

 (5) 

where x is the original signal, and xr is the reconstructed 
signal. The 255 represents the highest level of an 8 bit 
image. For other image format, it will be (2 Nb – 1), where 
Nb is the number of pits/pixel of the image. 

4.2.2. Calculating the Signal to Noise Ratio (SNR) 

 The SNR is an important measure for any system, it 
simply indicates the ratio of the input signal to the noise, 
which is always must be high enough. The calculation of the 
SNR is as follows: 
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4.2.3. Calculating the Peak Error (PE) 

 Peak error provides the maximum available error. A 
reduced value indicates that the distortion is reduced. 
Calculation of the PE is defined as follows: 

  
PE = max x ! x

r
( )  (7) 

4.2.4. Calculating the Partial Root Mean Square 
Difference (PRMSD) 

 The calculation of the PRMSD is as follows: 

  

PRMSD =
var iance(x ! x

r
)

var iance(x)
 (8) 

4.2.5. Calculating the Normalized Sum Of Scores (NSOS) 

 The calculation of the NSOS is done as follows: 

  

NSOS =
x-x

r
( )
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x
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!
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4.2.6. Calculating the Cross Correlation (CC) 

 It measures the amount of similarity between original and 
reconstructed signal. It is limited in absolute form between 
zero and one. When the value is very close to one it means 
that the two images are identical as it goes toward zero it 
means that images are dissimilar. The calculation of the CC 
is done as follows: 

  

CC =
x ! x
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5. IMPLEMENTATION AND RESULTS 

 In this section, the proposed simulation model used in 
computer implantation is described. The results obtained will 
also be presented. 

5.1. Implementation 

 The CFW algorithm is implemented on Matlab 7.0 where 
a graphical user interface GUI application is created. Fig. (4) 
shows the simulation model. The software initially calls the 
angiographic image to be compressed. Three compression 
approaches are available: wavelet, fractal, and combined 
fractal wavelet. The package enables the use of both 
orthogonal and bi-orthogonal wavelets. All the parameters in 
the package is either automatically selected to produce the 
best R-D or manually selected by the user. The package 
provides rate and objective quality measures for the 
reconstructed image and allows the generation of a report of 
the results.  

5.2. Results 

 To demonstrate the capability of the proposed CFW 
coder in providing proper compression ratio at an acceptable 
image quality, a randomly selected angiogram is used. The 
angiogram is compressed using the designed package. The 
user can either use a global threshold that is obtained using 
equation 4 or local thresholds per sub-band as clarified in 
section 3.1. Moreover, the package can decompose the image 
into any specified number of levels by using either available 
wavelet filters or specifically provided wavelet filters. For 
demonstration purposes a 4-level wavelet decomposition is 
performed using bior4.4 wavelet filters. The result of 
applying the CFW coder of this example is shown in  
Fig. (5). It is worth mentioning that the global threshold is 
the minimum maintained detailed wavelet coefficient. Other  
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Fig. (4). Graphical user interface of the CFW algorithm. 

 
Fig. (5). Demonstration of the CFW on an angiogram image. Both original and compressed images are shown. 

 
Fig. (6). Performance of CFW coder using different quality measures. 
 

coefficients are considered non-significant. To study the 
impact of the global threshold on the results obtained using 
the CFW coder. Fifty images are compressed using CFW 

coder. The wavelet coder uses the bior 4.4 wavelet filter with 
4 levels. The fractal coder uses range = 8, Domain = 16, step 
size = 16, and an acceptable error = 25. For each global 
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threshold all the objective quality measures of section 4 are 
calculated. Table 1 summarizes the results for different 
threshold values. As it can be noticed from the table higher 
compression ratios are found at acceptable reconstructed 
image qualities. Fig. (6) illustrates the functional 
performance of the coder using different quality measures. 
Performance is acceptable when compared with recently 
published results. The performance of the proposed 
algorithm is evaluated using a PC with AMD/Athlon 2.0 
GHz processor. To show the capability of the proposed 
algorithm in comparison with well known compression 
schemes, the algorithm is compared with SPIHT, JPEG2000, 
and DCT-CSPIHT respectively [14], [37, 38]. Table 2 shows 
the PSNR for different compression methods at various Bit 
rates. As it is clearly obvious from Table 2, the proposed 
algorithm performs better than all of the considered 
algorithms. Table 2 shows a comparison between the results 
of the proposed algorithm and those results achieved by 
other compression algorithms. As it can be depicted from 
table 2, the proposed algorithm provides better qualities for 
the same results. CFW outperforms SPIHT, JPEG2000, and 
DCT-CSPIHT respectively. The result clearly demonstrates 
that the incorporation of fractal compression provides a 
substantial performance improvement for the wavelet coder. 
Another important aspect of Image compression is the speed 
of encoding and decoding of the compression algorithm. 50 
images are used to study this parameter. Table 3 shows a 
comparison of the encoding/decoding speeds for different 
algorithms [39]. To study the impact of the wavelet filter on 
the performance of the algorithm, 100 images are used to test 
the performance of the algorithm at a compression rate of 40. 
Four different wavelet filters are used. The results are 
summarized in Table 4. As shown in Table 4, the Bior4.3 filter 
has the best PSNR at 32.76 dB. To study the effect of the 

compression scheme on the quality of x-ray angiograms, a 
1000 x-ray images are compressed using the compression 
algorithm such that a minimum PSNR is 36 dB. The minimum 
compression ratio achieved was 30. The reconstructed images 
are then evaluated using Quantitative coronary Analysis 
(QCA) to determine the effect of compression on stenosis. The 
maximum deviation between the original and compressed 
diameter was less than 0.2% [40]. 

6. DISCUSSION AND CONCLUSIONS 

 Wavelet-based coders are initially introduced, discussed 
and implemented. Fractal image compression techniques are 
also investigated and implemented. A combined fractal 
wavelet image coding algorithm is then proposed. It couples 
morphological wavelet and fractal image coding. The new 
coder represents the cream of the cream of fractal and 
wavelet coders with a superior rate distortion performance. 
The coder was purposely designed to compress x-ray 
angiograms to satisfy feasible medical requirements at lower 
bit rates. The coder doesn't suffer complex coding structure, 
on the contrary, it allows simple reconstruction and includes 
a developed rule to estimate the amount of overhead 
information and the amount of bit rate savings achieved by 
applying the fractal coding for the low resolution wavelet 
sub image. In case such overhead is high or no bit rate 
saving is achieved only lossless wavelet coder is used. 
Detailed wavelet coefficients in other regions are encoded 
directly with successive quantization and context-based 
variable run length encoders. It should be mentioned that a 
rate-distortion criterion is used to achieve maximum bit rate 
saving. The optimization provided the optimal fractal 
parameter that will produce best rate distortion trade off. 
CFW outperforms JPEG, typical fractal and wavelet coders.  

Table 1. Impact of Global Thresholds and Quality Measures of CFW Coder 

Threshold CR PSNR SNR PE PRMSD NSOS CC 

0.4 121.5247 28.6402 13.61514 245.0201 0.208566 0.011426 0.994271 

0.6 90.07224 30.97962 15.95456 209.7514 0.159321 0.006667 0.996661 

0.7 74.42251 32.26719 17.24213 210.0792 0.13737 0.004957 0.997519 

0.8 63.96291 34.0354 19.01034 156.3322 0.112068 0.003299 0.99835 

0.9 30.3451 36.91945 21.8944 82.10223 0.080404 0.001698 0.999151 

0.95 28.49391 39.56293 24.53788 33.91493 0.059307 0.000924 0.999539 

0.98 13.68077 42.50832 27.48327 22.90599 0.042251 0.000469 0.999766 

Table 2. The PSNR for Different Compression Method at Various Bit Rates 

Algorithm Method 
Image Type 

Bit Rate 

(pbb) SPIHT JPEG2K DCT-CSPIHT Proposed CFW 

0.025 33.4 36.1 39.5 40.3 

0.10 40.3 44.1 45.2 45.8 

0.24 45.4 47.6 48.4 48.9 
Angiogram 

0.50 49.8 50.5 52.0 52.7 
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Table 3. The Average Encoding/Decoding Time in Seconds 

Algorithm Method 

SPIHT JPEG2000 WCAP40 Proposed CFW 

2.3/2.7 1.1/1 5.4/2.9 1.0/0.87 

Table 4. The Average PSNR Values in dB Using Different Wavelet Filters at Compression Ratio of 40:1 

Wavelet Filter 
Image Type 

Symlets 5 Bior 4.3 Harr Daubechies 3 

100 Angiograms 32.68 32.76 31.24 32.37 

 

Results clearly demonstrate that the incorporation of fractal 
compression provides a substantial performance improv-
ement for the wavelet coder. 
 This new algorithm efficiently reduces the required bit 
rate to achieve the desired level of perceptual image quality. 
It also maintains advantages and properties of both types of 
coders. It allows online transmission, block mapping, and 
doesn't inherit the shortcomings of other HFW encoders that 
are computationally intensive in their encoding part. This is 
due to the down sampling process for the domain block. 
Furthermore it doesn't suffer from blocking artifacts 
produced in JPEG like coders. The proposed CFW uses a 
constant range-domain block size K. Using variable block 
size may improve the performance on the account of 
complexity. For practical applications, it is important to 
reduce the complexity of fractal search. This is achieved by 
reducing the size of the domain pool. Also it may be 
achieved by adopting fast fractal search schemes with little 
additional degradation. Our future work will concentrate on 
performing a thorough study on the trade of complexity 
reduction and the degradation of the R-D performance. 

CONFLICT OF INTEREST 

 The authors confirm that this article content has no 
conflicts of interest. 

ACKNOWLEDGEMENTS 

 Declared none. 

REFERENCES 
[1]  Grech ED, Ramsdale DR. Practical interventional cardiology. 

London, UK: Martin Dunitz Ltd 1997. 
[2]  Joonmi Oh, Sandra IW, Theodoros NA, John NT. A multistage 

perceptual quality assessment for compressed digital angiogram 
images, IEEE Trans Med Imaging 2001; 20: 1352-61. 

[3]  Strang G, Nguyen T. Wavelets and filter banks. Cambridge, MA: 
Wellesley-Cambridge Press 1997. 

[4]  Joonmi O, Sandra IW. Reversible wavelet compression for digital 
angiograms. IEMBS 1998; 3: 1442-45. 

[5]  Literature Number: BPRA065, Texas Instruments Europe, An 
Introduction to Fractal Image Compression. October 1997. 

[6]  Fractal Image Compression. Available at: 
http://inls.ucsd.edu/y/Fractals/, Yuval Fisher's fractal image 
compression page, http://www.rocq.inria.fr/fractales/, Grouped 
Fractals. 

[7]  Andreopoulos I, Karayiannis YA, Stouraitis T. A hybrid Image 
compression algorithm based on fractal coding and wavelet 
transform. ISCAS 2000; 3: 37-40. 

[8]  Taekon K, Robert EVD, David JM. Hybrid fractal zero tree 
wavelet image coding. Signal Proc-Image. 2002; 17 (4): 347-60. 

[9]  Wenxiu F, Shigang W, Dahui K. Hybrid fractal object-based zero-
tree wavelet video coding algorithm. ICSP '04 2004; vol. 2: pp. 
1147-50.  

[10]  Woods JW, O'Neil DD. Subband coding of images. IEEE Trans 
Acoust Speech 1986; 34: 1278-88. 

[11]  Antonini M, Barlaud M, Mathieu P, Daubechies I. Image coding 
using wavelet transform. IEEE Trans Imaging Proc 1992; 1 (2): 
205-20. 

[12]  Buccigrossi RW, Simoncelli EP. Image compression via joint 
statistical characterization in the wavelet domain. IEEE Trans 
Image Proc 1999; 8: 1688-701. 

[13]  Shapiro JM. Embedded image coding using zero trees of wavelet 
coefficients. IEEE Trans Signal Process 1993, 41: 3445-62. 

[14]  Said A, Pearlman WA. A new, fast and efficient image codec based 
on set partitioning in hierarchical trees. IEEE Trans Circ Syst 
Video Technol 1996; 6 (3): 243-50. 

[15]  Xiong Z, Ramchandran K, Orchard MT. Space-frequency 
quantization for wavelet image coding. IEEE Trans Image Proc 
1997; 6: 677-93. 

[16]  Taubman D, Zakhor A. Multirate 3-D subband coding of video. 
IEEE Trans Image Proc 1994; 3(5): 572-88. 

[17]  Witten IH, Neal M, Cleary JG. Arithmetic coding for data 
compression. Commun ACM 1987; 30: 520-40. 

[18]  Servetto SD, Ramchandran K, Orchard MT. Image coding based on 
a morhpological representation of wavelet data. IEEE Trans Image 
Proc 1999; 8(9): 1161-74.  

[19]  Chai B, Vass J, Zhuang X. Significance-linked connected 
component analysis for wavelet image coding. IEEE Trans Image 
Proc 1999; 8(6): 774-84. 

[20]  Joshi RL, Hafarkhani H, Kasner JH, Fisher TR, Farvardin N, 
Marcellin MW. Comparison of different methods of classification 
in sub band coding of images. IEEE Trans Image Proc 1997; 6(11): 
1473-86. 

[21]  LoProso SM, Ramchandran K, Orchard MT. Image coding based 
on mixture modeling of wavelet coefficients and a fast estimation-
quantization framework. In: Proc. Data Compression Conf. 
DCC'97 1997; pp. 221-30.  

[22]  Chrysafis C, Ortega A. Efficient context based entropy coding for 
lossy wavelet image compression. In: Proc. Data Compression 
Conf. DCC'97 1997; pp. 241-50.  

[23]  Jacquin AE. Image coding based on a fractal theory of iterated 
contractive image transformations. IEEE Trans Image Proc 1992; 
1(1): 18-30. 

[24]  Ning L. Fractal Imaging. US: Academic Press, 1997. 
[25]  Pentland A, Horowitz B. A practical approach to fractal-based 

image compression. In: Proc. Data Compression Conf. DCC'91 
1991; pp. 176-85. 

[26]  Rinaldo R, Calvagno G. Image coding by block prediction of 
multiresolution subimages. IEEE Trans image Proc 1995; 4: 909-
20.  

[27]  Davis G. A wavelet-based analysis of fractal image compression. 
IEEE Trans Image Proc 1998; 7: 141-54. 

[28]  Li J, Kuo CC. Image compression with a hybrid wavelet-fractal 
coder. IEEE Trans Image Proc 1999; 8: 868-74. 



18   The Open Medical Imaging Journal, 2013, Volume 7 Al-Fahoum and Harb 

[29]  Zukoski M J, Boult T, Iyriboz T. A novel approach to medical 
image compression. Lect Notes Bioinforma 2006; 2: 89-103. 

[30]  Chen YT, Tseng DC. Wavelet-based medical image compression 
with adaptive prediction. Comput Med Imaging Graphic 2007; 31: 
1-8. 

[31]  Babud V, Alamelu R. Wavelet Based Medical Image Compression 
Using ROI EZW. Int J Recent Trans Eng 2009; 1: 97-100. 

[32]  Kumar S, Singh SS. Image compression techniques for medical 
images: A Review. Int J Res Eng Appl Sci 2012; 1195-9. 

[33]  Devi PSA, Mini MG. Compression of computed radiographic 
images using linear prediction on wavelet coefficients. In: ICACC 
2012; pp. 130-3.  

[34]  Singh S, Kumar V, Verma HK. DWT-DCT hybrid scheme for 
medical image compression. J Med Eng Technol 2007; 31: 109-22. 

[35]  Al-Fahoum AS, Al-Shamali A. A new adaptive wavelet-based ecg 
compression technique. In: PACII 2010; vol. 2: pp. 468-71. 

[36]  Al-Fahoum AS. Quality assessment of ECG compression 
techniques using a wavelet-based diagnostic measure. IEEE Trans 
Inf Technol B 2006; 10: 182-92. 

[37]  Tahoees PG, Varela JR, Lado MJ, Souto M. Image compression: 
Maxshift ROI encoding options in JPEG2000. Comput Vis Image 
Underst 2008; 109: 139-45. 

[38]  Chen YY. Medical image compression using DCT-based subband 
decomposition and modified SPIHT data organization. Int J Med 
Inform 2007; 76: 717-25. 

[39]  Hang X, Greenberg NL, Thomas JD. Compression of pre-scan-
converted echocardiographic video using wavelet packet and 
integer wavelet transforms. Image Vision Comput 2006; 24: 915-
25. 

[40]  Al-Fahoum A. Adaptive edge localization approach for QCA. Med 
Biol Eng Comput 2003; 41(4): 425-32. 

 

Received: April 12, 2013 Revised: July 16, 2013 Accepted: July 31, 2013 

© Al-Fahoum and Harb; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 


