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Abstract: The work showed that the integrated suite of software tools for detecting criminals using DNA databases has 

achieved the overall objective by providing a working platform for sequence analysis. The work also demonstrated that by 

integrating BLAST and FASTA (two widely used and freely available algorithms), plus an additional implementation of 

PSA (custom-built pairwise sequence alignment algorithms) and TR analysis tools (for detecting tandem repeats) with the 

rest of the utilities supporting tools (databases and files management) developed, it is entirely possible to have an initial 

working version of the software tool for criminal DNA analysis and detection work. The integrated software tool has great 

potential and that the results obtained during the tests were satisfactory. The recent South Asia Tsunami incident has re-

newed the need to establish a quick and reliable system for DNA matching and comparison. This work may also contrib-

ute towards the quick identification of victims in many disasters. 

Future works are to further enhance the existing tools by adding more options and controls, improve upon the visualisa-

tion display, and to build robust software architecture to better manage the system loadings. Fault tolerance enhancement 

to the system is one of the key areas that can further help to make the entire application efficient, robust and reliable. 

1. INTRODUCTION 

 A murder has been committed. Apart from the victim, 

there are no other witnesses, but some evidence has been 

found at the crime scene. Blood and hairs were gathered by 

the crime scene investigators, and it was believed that it 

could be left by the suspect. From the evidence collected, 

would they be sufficient to provide a clue as to how the mur-

der was committed and who was the murderer? Imagine a 

deoxyribonucleic acid (DNA) profile (i.e. double helix DNA 

typing [1-4] can be constructed from those physical evi-

dences found at the crime scene and used to match against a 

DNA database of known suspects. By using a computer 

DNA analysis tool to query a large human DNA database, 

the result obtained from the analysis would be the evidence 

that can be used to either convict or acquit a suspect. 

 DNA typing applications are not only computational in-

tensive and time consuming, the cost of implementation to 

develop such a computer system is also very expensive and 

technological demanding. However, until recently, the costs 

of hardware and software have been reduced significantly, 

making it possible now to design and build high performance 

computerized systems to carry out DNA analysis on large 

DNA databases to assist in the area of forensic science to 

detect criminals. In addition to these issues relating to tech-

nologies, there are also issues related to the accuracy of the 

DNA fingerprinting analysis. The two major concerns are 

that (1) a DNA fingerprint belonging to a specific person  
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must have a high probability. In other words, the confidence 

level that a correct match is obtained must fall within an ac-

ceptable range, and (2) the DNA sample for analysis must 

not be contaminated by any external sources, therefore it is 

essential and important to ensure the integrity of the DNA 

sample. The result of the DNA analysis will be detrimental if 

the standard process is not being followed closely. Due to 

the importance of such systems, even a slight error can have 

a profound impact on the outcome. 

 The aim of this study is to develop an integrated software 

tool, using the DNA typing concept and genetic sequence 

analysis algorithms (i.e. sequences alignment technique) for 

detecting criminals using DNA databases. The initial phase 

of the study is to understand the requirements of building a 

DNA database system that can assist forensic experts to 

carry out an automated search and match operations on a 

DNA database. Once a general understanding is achieved, 

the next step is to design and build a software system that 

will fulfil such needs. A number of important sequence 

alignment algorithms will be reviewed in section 2 and cho-

sen for the implementation of this software system. The end 

delivery of this study is a working DNA analysis tool, a cost 

effective one, which serves as a proof of concept application 

and will work on test data stored in the DNA databases. 

 The DNA analysis application will be built using 

Netbeans Integrated Development Environment (IDE). 

Netbeans IDE (current version is 3.6) is an open source 

WYSIWYG Java development tool (current Java version is 

1.4.2). The application is designed and developed to run on 

Microsoft Windows XP. Since the application (which in-

cludes graphical display and sequence analysis algorithms 
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implementation) is written using Java programming lan-

guage (version 1.4.2), it can be run on any computer plat-

forms which has a Java Virtual Machine (JVM) installed. 

The database schema will conform to the FASTA format 

(i.e. a format that is commonly used for sequence search) 

and stored using facilities provided by formatdb and Biojava. 

 The system architecture of the application has a database 

to contain all the criminal DNA data, a set of DNA sequence 

analysis algorithms, and a Java GUI based DNA analysis 

tool for results display and sequences manipulation facilities. 

However, due to the confidentiality and sensitivity nature of 

the data (i.e. involving human DNA), a high security clear-

ance from the relevant authorities is required in order to have 

access to the real data, which makes it difficult to acquire 

real data for the testing. Therefore, in this work test data, a 

combination of self-generation data supplemented by data 

obtained from the Internet Genome Databases will be used. 

Nevertheless, it is sufficient for testing the software applica-

tion and for the purpose of concept demonstration. 

 Since the subject matter on DNA typing is wide, and with 

only limited resources and time, the emphasis of this study is 

therefore confined to the implementation of sequence align-

ment algorithms, such as pairwise sequence alignment 

(PSA), short tandem repeats search algorithm, BLAST and 

FASTA alignment algorithm, in the area of forensic science 

applications. 

2. LITERATURE REVIEW 

 This section provides an overview of the concept of DNA 

Typing and its scientific basis. It also provides a detailed 

study into various DNA sequence alignment algorithms that 

are hitherto available. 

2.1. The Scientific Basis of DNA Typing 

 Often, DNA fingerprinting deals with DNA sequences at 

the molecular level. Therefore, it is important to understand 

terminologies like locus, allele, polymorphism (and their 

different types) and tandem repeats. These are discussed in 

the following paragraphs. 

 The physical location (i.e. at the molecular level) in the 

genome is called locus (singular – locus, plural – loci). The 

presence of multiple alleles (i.e. alternative forms of a single 

gene) of a marker at a single locus is known as polymor-

phism. There are two kinds of variation (1) sequence poly-

morphisms and (2) length polymorphisms. Sequence poly-

morphisms are usually simple replacement of one or two 

bases in the genes themselves [5]. For example, Fig. (1) de-

picts the sequence polymorphism at the fifth base pair from 

the left. 

 This is different in the case of length polymorphisms. 

Length polymorphisms are known as the variations in the 

length of the DNA molecule. For example, given three 

blocks of repeats (with similar DNA sequences), each block 

is known as a tandem repeat as shown in Fig. (2). 

 Therefore, a locus that exhibits variation in the number of 

tandem repeats is known as a variable number tandem repeat 

(VNTR). 

 Research has shown that only 5% of the human genome 

contains useful genes. Genes are portions (sub-units) of 

chromosome that contain useful information and serve as 

templates for the production of proteins. However, the rest of 

the 95% of the human genome does not contain genes that 

code for any proteins. Sometimes this section of the human 

genome is known to be “junk DNA”. Until recently, studies 

have shown that these “junk DNA” do have important func-

tions such as regulating gene expression, assisting in cellular 

machinery and serving as chromosomal structure support [3]. 

 It is in these non-coding regions of the human genome 

where the VNTRs are mostly located. The number of copies 

of a VNTR determines the size of a DNA fragment, and each 

individual has a unique number of tandem repeats at specific 

molecular location (i.e. loci) on his or her chromosome. Es-

sentially, this important principle serves as a building block 

of DNA evidence that is used today in many forensic works 

to allow unambiguous identification of suspects. 
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 Position 

1 2 3 4 5 6 7 8 9  1 2 3 4 5 6 7 8 9 

                   

A T G C G T G C A  A T G C A T G C A 

| | | | | | | | |  | | | | | | | | | 

T A C G C A C G T  T A C G T A C G T 

Fig. (1). An example of sequence polymorphisms. 
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T A C G  T A C G  T A C G 

              

Tandem Repeat  Tandem Repeat  Tandem Repeat 

Fig. (2). An example of length polymorphisms. 
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2.2. The Scientific Basis of DNA Fingerprinting 

 After gaining understanding of the scientific basis of 

DNA typing, we now turn to a few sequence alignment algo-

rithms that perform appropriate tasks. In many applications 

of Bioinformatics, especially in the area of forensic studies, 

we need to examine the possible optimal alignment between 

two or more related sequences (i.e. be it DNA or protein 

sequences, these sequences can be extracted from various 

loci with tandem repeats or from any forensic evidences) and 

the close relationship between them. For this reason, it is 

important to include them in our studies and understand their 

vital roles and functions in forensic applications. 

2.3. Dot Plot 

 One of the simplest methods for evaluating whether two 

sequences are similar is to use a dot plot approach [6]-[7]. 

First, a matrix is constructed, with sequence A on the x-axis 

and sequence B on the y-axis. Begin with all the cells initial-

ised at zero. The computation starts by taking the first char-

acter of sequence A and comparing it with all the characters 

of sequence B. Mark those characters of sequence A with an 

‘ ’ if the same character can be found in sequence B. Next, 

the computation advances to the next character of sequence 

A and the same steps are performed. Stop when all the char-

acters in sequence A have been compared with all the char-

acters of sequence B. At the end of the computation, a dot 

plot is produced as illustrated in Fig. (3). 

   Sequence A 

   1 2 3 4 5 6 7 

   A T A G C C A 

 1 A        

Sequence B 2 A        

 3 G        

 4 C        

 5 A        

Fig. (3). Dot Plot. 

 One of the shortcomings of a dot plot is that it can be 

complex and overcrowded with dots when the sequences 

become too large and similar (i.e. similar does not mean 

identical). Normally, identical sequences will give rise to a 

single diagonal line across the plot as shown in Fig. (4). 

Whereas in Fig. (5), similar sequences tend to produce a 

broken diagonal line and the gaps in between them indicates 

that there are mismatches between the two sequences. If the 

two sequences are distantly related with very few similari-

ties, it will not only contain more diagonal lines in the direc-

tion parallel to central diagonal, but also broken diagonal 

lines as in Fig. (6). The distance between the central diagonal 

line and the surrounding sub-diagonal lines represents the 

correction needed by introducing gaps to align the two se-

quences. 

 Since the dot plot is particularly sensitive to noise when 

comparing two large sequences with similarities, one of the 

workaround solutions is to introduce the concept of a sliding 

window with a cutoff threshold. The sliding window is simi-

lar to a cart that contains a number of characters (i.e. defined 

by the window size), which will be used and compared with 

other characters in another cart. If the total number of 

matches between these two carts is higher than or equal to 

the predefined cutoff threshold, a match is found, otherwise 

no match is found and the sliding window then advances to 

the next set of characters and the process is repeated. The 

sliding window with a cutoff threshold helps to reduce noise 

in the dot plot. 
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Fig. (4). Comparison of two identical sequences. 
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Fig. (5). Comparison of two highly similar sequences. 
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Fig. (6). Comparison of two distantly related sequences. 

2.4. What is a Pairwise Sequence Alignment? 

 An alignment between two sequences is defined as a 

pairwise match between the characters of each sequence. So, 

pairwise sequence alignment is a technique used to find the 
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optimal pairing of sequences (i.e. can be either DNA se-

quences {A, C, G, T} or Protein sequence {A, C, D, E, F, G, 

H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}) that preserves the 

order of characters in each sequence. Gaps may be intro-

duced in the alignment process so that the total score can be 

maximized [6-9]. This concept can be generalised as follows 

in Table 1. 

 With the generalisation and understanding of pairwise 

sequence alignment, we are now ready to tackle more sophis-

ticated algorithms. The algorithms described in the following 

sections perform sequence alignment via dynamic program-

ming. Dynamic programming is a concept, which refers to 

solving an instance of a problem by taking advantage of com-

puted solutions for smaller subparts of the problem. Three 

alignment methods will be reviewed in the following sections, 

namely global, semi-global and liner alignment algorithms. In 

addition, two penalty schemes, the linear and affine gap penal-

ties, will be discussed for each alignment method. 

2.4.1. Global Alignment With Linear Gap Penalty 

 Regardless of the location of the gaps in a sequence, global 

alignment will give penalty to gaps identified during sequence 

comparison. As such, the entire sequence will be considered as 

a whole entity during the alignment process. The “Needleman 

and Wunsch Algorithm” is one such global sequence align-

ment algorithm. The algorithm is described in Table 2. 

2.4.2. Semi-Global Alignment With Linear Gap Penalty 

 If the aim is to use a shorter sequence to search for a 

larger sequence for a possible sub-sequence match, semi-

global alignment will be a better choice as compared to the 

global alignment as the latter will penalise gaps at either 

ends of the alignment. Semi-global alignment solves this 

problem by not penalising gaps found at either ends of a se-

quence. The semi-global alignment with linear gap penalty is 

described in Table 3. 

2.4.3. Local Alignment With Linear Gap Penalty 

 If the aim is to find sub-sequences that are similar to any 

part of a long sequence, both the global and semi-global 

alignments are not suitable because both penalise every non-

matching position. Hence, the local alignment is proposed to 

solve this problem and one such method is the “Smith-

Waterman Algorithm”, which is described in Table 4. 

2.4.4. Global Alignment With Affine Gap Penalty 

 In many occasions, gap of length k is more probable than 

k gaps of length 1. This is especially so for a single mutation 

event that can insert or delete a stretch of characters in a se-

quence. In addition, distinct mutational events could also 

lead to separated gaps being produced. A linear gap penalty 

function treats all these events in the same fashion. However, 

the affine case distinguishes these events and treats them 

separately. The affine gap penalty function uses two penal-

ties, which are the gap opening penalty, referred to as h, and 

the gap extension penalty referred to as g. The only differ-

ence between a global alignment with linear gap penalty and 

a global alignment with affine gap penalty is the penalty 

function being used, and instead of only one similarity ma-

trix being computed (in linear gap penalty), three similarity 

matrices are being computed (in the affine gap penalty). The 

rest are similar. The global alignment with affine gap penalty 

is tabulated in Table 5. 

2.4.5. Semi-Global Alignment With Affine Gap Penalty 

 Table 6 summarised the semi-global alignment with af-

fine gap penalty. 

 

Table 1. Pairwise Sequence Alignment Generalisation 

 

Input Two sequences Xm and Yn where m and n are the length of sequences X and Y respectively. 

A scoring function, s(x, y), where x  Xm and y  Yn 

Score for character similarity (i.e. x = y) 

Score for character dissimilarity (i.e. x  y) 

Score for gap, g (i.e. inserting a ‘-‘ character) 

Example: 

s(x, y) = +1 if x = y, gives a score of +1 if the two character are the same 

s(x, y) = -1 if x  y, gives a score of -1 if the two character are not the same 

g = -2, gives a score of -2 if a gap is introduced in the sequence 

Task Traverse along the two sequences and attempt to find the optimal alignment between the sequences such that the total score is maxi-
mized. During the process, gaps may be introduced to assist sequence alignment. 

Output The alignment of the two sequences with the best score. Example on DNA sequence: 

Sequence 1   (query) AGGGTTGCC 

                     |||||| || 

Sequence 2 (subject) AGGGTT-CC 

Example on Protein sequence: 

Sequence 1     (query) EEFLMNW 

                       || |||| 

Sequence 2   (subject) EE-LMNW 
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Table 2. Global Alignment with Linear Gap Penalty Algorithm 

 

Input: Given sequences of S1 and S2 with length n and m respectively. Let s be the scoring scheme and g be the linear gap penalty.  

Objective: To find the best match between sequences of S1  and S2  from one end to another. 

Step 1: Compute the similarity score of the optimal global alignment with linear gap penalty. First, construct a (m+1)  (n+1) matrix M and then 

initialise the matrix M with the following conditions, 

M (0, 0) = 0

M (i, 0) = i g

M (0, j) = j g

 

i and j are the row and column index of matrix M respectively and g is the gap penalty from the scoring scheme. Lastly, construct the rest 

of the remaining cells according to the recurrence relation for global alignment with linear gap penalty: 

M i, j( ) = max

M (i 1, j 1) + s(S1[i],S2[ j])

M (i 1, j) + g

M (i, j 1) + g

 

Step 2: In step 1, only the similarity score is computed. To find the alignment itself, we must find the path of choices that lead to this score. This 

is known as the traceback stage. In each cell, it saves pointer(s) to parent cell(s) that gives the optimal score (where the optimal score 

originated). M (i, j)  contains the optimal score and the formula is as follows: 

M (i, j) = max M (i 1, j 1) + s(S1[i],S2[ j]), M (i 1, j) + g, M (i, j 1) + g{ } . Initialise P to an empty set, P(i, j) = . 

From the matrix top to bottom, left to right, perform the following operations to locate the traceback path for each cell. 

Case 1 

IF M (i, j) == M (i 1, j 1) + s(S1[i],S2[ j])( )  then P(i, j) ( ) 

Case 2 

IF M (i, j) == M (i 1, j) + g( )  then P(i, j) = P(i, j) ( ) 

Case 3 

IF M (i, j) == M (i, j 1) + g( )  then P(i, j) = P(i, j) ( ) 

Step 3: Start from the final cell ),( nmP and follow any path back to P(0, 0) . It is possible to obtain multiple alignments if there are more 

than one path leading to P(0, 0) . 

 Time complexity: m n( )  

Space complexity: m n( )  

Table 3. Semi-Global Alignment with Linear Gap Penalty 

 

Input: Given a sequence S1 of length m and a sequence S2 of length n and a scoring scheme s . 

Linear gap penalty function: w(k) = g k , where w(k)  indicates cost of a gap of length k  and g  is a constant. 

Objective: To find the best match between subsequence of S1  and S2 . 

This semi-global alignment is particularly useful when lengths of sequences differ significantly and we want to align the shorter sequence 

in the interior of the other or to align the suffix of one sequence to the prefix of the other. 

Step 1: Compute the similarity score of the optimal semi-global alignment with linear gap penalty. 

First, construct a (m+1)  (n+1) matrix M, and then initialise the matrix M with the following conditions, 

M (0, 0) = 0

M (i, 0) = 0

M (0, j) = 0

 

i and j are the row and column index of matrix M respectively. Take note of the differences. The first row and first column of the matrix 

M are initialised to zeros. 

Lastly, construct the rest of the remaining cells according to the recurrence relation for global alignment with linear gap penalty: 

M (i, j) = max

M (i 1, j 1) + s(S1[i],S2[ j])

M (i 1, j) + g

M (i, j 1) + g

 

Step 2: This step is similar to the global alignment (section 2.4.1). 

Step 3: Start from the last row or the last column of matrix M with the maximum value. 

Trace until the cell (0, 0)  is reached. 

 Time complexity: m n( )  

Space complexity: m n( )  
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Table 4. Local Alignment with Linear Gap Penalty 

 

Input: Given sequences of S1 and S2 with length n and m respectively. Let s be the scoring scheme and g be the linear gap penalty. 

Objective: To find the best match between subsequence of S1  and S2 . 

Step 1: The step 1 is similar to that of semi-global alignment except we are computing the similarity score of the optimal local alignment with 

linear gap penalty. 

Take note here that there is an additional of a zero in the modified recurrence relation. 

Step 2: This step is similar to the global alignment (section 2.4.1). 

Step 3: Find the maximum value of M [i, j] , which can be anywhere in the matrix. Traceback pointers from the maximum cell until a cell with 

value 0 is reached. 

 Time complexity: m n( )  

Space complexity: m n( )  

 

Table 5. Global Alignment with Affine Gap Penalty 

 

Input: Given sequences of S1 and S2 with length n and m respectively. Let s be the scoring scheme, h be the gap opening penalty and g be the 

gap extension penalty. 

Step 1: Global alignment dynamic programming algorithm for the affine gap penalty case uses three matrices instead of one. 

( )M (i, j) =  score of the best global alignment of S1[1..i]  and S2[1.. j]  that ends in S1[i]  matched with S2[ j] . 

( ) E(i, j) =  score of the best global alignment of S1[1..i]  and S2[1.. j]  that ends in a gap matched with S2[ j] . 

( ) F(i, j) =  score of the best global alignment of S1[1..i]  and S2[1.. j]  that ends in S1[i]  matched with a gap. 

Construct these matrices, initialise the first row and first column of the three matrices with the following initial conditions, 

M (0, 0) = 0; M (i, 0) = ; M (0, j) =  

E(0, 0) = ; E(i, 0) = ; E(0, j) = h + j g  

F(0, 0) = ; F(i, 0) = h + i g; F(0, j) =  

Lastly, construct the rest of the remaining cells according to the recurrence relation for global alignment with affine gap penalty, 

M (i, j) = s(S1[i],S2[ j]) +max

M (i 1, j 1)

E(i 1, j 1)

F(i 1, j 1)

 

E(i, j) = max

h + g + M (i, j 1)

g + E(i, j 1)

h + g + F(i, j 1)

 

F(i, j) = max

h + g + M (i 1, j)

h + g + E(i 1, j)

g + F(i 1, j)

 

Step 2: This is the traceback stage. Fill in the rest of the three matrices from the top to the bottom, and from the left to the right and then store the 

corresponding pointers to the parent cells in each matrix. 

Step 3: Start from the cell with the largest value of either M (m,n), E(m,n) or F(m,n) . Trace back pointers until the cell M (0, 0)  is 

reached. 

 

Table 6. Semi-Global Alignment with affine gap penalty 

 

Input: Given sequences of S1 and S2 with length n and m respectively. Let s be the scoring scheme, h be the gap opening penalty and g be the 

gap extension penalty. 

Step 1: The step 1 is similar to that of global alignment (section 2.4.4) except that the semi-global alignment dynamic programming algorithm 

for the affine gap penalty with three matrices is used here. Also, one of the initial conditions is 

F(0, 0) = ; F(i, 0) = ; F(0, j) =  

Step 2: As step 2 of section 2.4.4. 

Step 3: Start from the last row or last column of the matrix M with the largest value. Traceback pointers until the cell (0, 0) is reached. 
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2.4.6. Local Alignment With Affine Gap Penalty 

 The local alignment with affine gap penalty is detailed in 

Table 7. 

2.4.7. Comparison of Global, Semi-Global and Local 
Alignment 

 Krane et al. [6] reviewed that global alignment is good 

for comparing two sequences in their entirety, if this is the 

intention. The gap penalty is scored regardless of where the 

gaps are located; the gaps can be found in the middle of a 

sequence, or at either end of a sequence. However, to locate 

a sub-sequence within a longer sequence (but not the en-

tirety), semi-global alignment is more suitable. This is be-

cause semi-global alignment does not penalize gaps that are 

located at either end of a sequence. Quite often, gaps that are 

located at either end of a sequence have no biological sig-

nificance and therefore, it can be safely omitted without any 

significant impact. But gaps that are located within a se-

quence will be penalized. There may be times where only a 

very small sub-sequence matches a subsection of a larger 

sequence, and there are many mismatching position, the 

alignment score may be lowered significantly. Under such a 

circumstance, it is better to use local alignment. Local 

alignment ignores mismatches and gaps before and after the 

matching region, but it reveals the matching region in the 

centre of two sequences. 

 Although each PSA algorithm has its own strengths and 

limitations, it is able to meet most of the sequence alignment 

needs. In fact, PSA works with thousands, or even millions, 

of DNA and protein sequences, which would otherwise be 

impossible if done manually. 

3. HEURISTIC ALIGNMENT ALGORITHMS 

 The above-mentioned PSA algorithms work efficiently 

when aligning a smaller set of sequences. However, it is 

more common to perform pairwise database search using a 

query sequence through a database of many sequences to 

retrieve those that are similar to that query sequence. This 

can quickly translate into a higher demand in the usage of 

computing resources, such as hardware memory, disk space 

and CPU speed, which is not a trivial task. Therefore, two 

important techniques were developed to handle these re-

quirements. They are BLAST [10] and FASTA [11] database 

search techniques, which are simply extensions of the PSA 

technique and are fast because they incorporate heuristic 

features in the algorithm. In the following sections, we will 

look at these well-known techniques in greater detail. 

 

3.1. BLAST 

 BLAST (Basic Local Alignment Search Tool) algorithm 

was originally developed in 1990 by Altschul et al. and it is 

one of the most commonly used tools for searching sequence 

databases for maximal un-gapped local alignments. It is effi-

cient and optimised for parallel computation. BLAST adopts 

a simple approach by taking the input sequence and breaking 

it down into a fixed length of words (normally length of 4). 

After which, these words will be used to search through the 

sequence databases to obtain high-scoring pairs. The BLAST 

search process can be summarised as follows: 

 Given an input sequence: ACCGTTTAAAA 

Step 1: Break the query sequence into words of a fixed 

length (default word length of 4). 

ACCGTTTAAAA  ACCG, CCGT, CGTT, GTTT, …, AAAA 

Step 2: Pre-process the words by discarding those that 

contain common amino acids. 

Step 3: Starting from “ACCG”, search the sequence data-

bases for word matches. 

  ACCG 

   |||| 

ATTTGCCACCGGGAAATATATATA … 

Step 4: Then, extend the query sequence and repeat the 

search until the local alignment score falls below a 

certain threshold. 

  ACCGTTTA 

  |||||||| 

 TTTTTACCGTTTATTTTCTATATATA … 

Step 5: Output the alignment results. 

 There has been much work done lately on improving 

sequence alignment such as Clustal W is the most commonly 

used multiple alignment software [12]. ClustalW can gener-

ate phylogenetic trees when a properly formatted alignment 

is input. 

3.2. FASTA 

 FASTA, originally developed in 1985 by Lipman et al. 

[11], is used to perform gapped local alignments between 

sequences. Similar to the BLAST technique, FASTA also 

breaks a query sequence into words of a fixed length, known 

as ktup no. For nucleotides, ktup no 4 to 6 is used, and for 

proteins, ktup no 1 to 2 is used. Next, a look-up table and an 

offset table are constructed for a query sequence and a target 

Table 7. Local Alignment with Affine Gap Penalty 

 

Input: Given sequences of S1 and S2 with length n and m respectively. Let s be the scoring scheme, h be the gap opening penalty and g be 

the gap extension penalty. 

Step 1: Step 1 is similar to the semi-global alignment (section 2.4.5) except that the local alignment dynamic programming algorithm for 

the affine gap penalty case with three matrices is used here. Also, there is an additional of a zero in the modified recurrence relation 
max(M(i,j)). 

Step 2: As step 2 of section 2.4.5. 

Step 3: Start from the cell with the highest value of matrix M. Trace back pointers until a cell with zero value of the matrix M is reached. 
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sequence respectively. By comparing these two tables, simi-

lar subsequences are identified. The FASTA search process 

can be summarised as follows: 

 Given a query sequence: ATGCTATAC 

Position:  123456789 

ATGCTATAC 

 For a ktup no = 4, a look-up table is constructed as fol-

lows: 

 

Word Position 

ATAC 6 

ATGC 1 

CTAT 4 

GCTA 3 

TATA 5 

TGCT 2 

 

 Given a target sequence: TGCTAT 

Position:  123456 

TGCTAT 

 The following offset table is constructed using ktup no = 

4. 

 

Word TGCT GCTA CTAT 

Position 1 2 3 

Offset 1 1 1 

 

 Offset by 1 (a large no. of instances of the distance 1 in 

the second table), we would obtain the following alignment. 

ATGCTATAC 

|||||| 

TGCTAT  (offset the target sequence by 1)  

3.3. Comparison Between BLAST and FASTA 

 The similarities and differences between the BLAST and 

FASTA approaches can be summarised as follows [13]. 

BLAST and FASTA have the following common strategies: 

• Both techniques have fast screening process to elimi-

nate unrelated sequences; and 

• Both techniques are able to complete alignment of top 

scoring sequences. 

 The differences between these two techniques can be 

found in: 

• Statistical model; and 

• Heuristic and tuning. 

4. TANDEM REPEATS SEARCH ALGORITHMS 

 In section 2, the definition of tandem repeats and its ap-

plication were introduced. A brief discussion for each of the 

tandem repeats alignment algorithm is given here. 

 Tandem repeats (TRs) can be generally classified into 

two categories. The first being the exact tandem repeats 

(ETRs), which refer to repeats that exist in two or more du-

plications, and each repeat following the preceding one in a 

continuous fashion. The second category is the approximate 

tandem repeats (ATRs), which refer to repeats that evolve 

through mutations (i.e. insertions, deletions or substitution), 

and each repeat following the preceding one may differ 

slightly in one or more alphabet. For example, 

…AGCTAGCTAGCT… is an ETR with “AGCT” repeated 

three times in a continuous manner and 

…AGCTAGTTAGCTAGCCAGCA… is an ATR with 

AGCT AGTT AGCT AGCC… Take note of the varia-

tion in one of the alphabets. The remaining sections give an 

overview of TR algorithms being used currently. 

 In a paper written by Benson [14], he grouped the current 

TR algorithms into four general approaches. These are: 

• Alignment matrix approach. This approach computes 

and aligns alignment matrices and adjacent repeats 

within a DNA sequence. However, the limitation of 

this approach is excessive running time. 

• Data compression approach, which takes advantage 

of the fact that adjacent repeats can be compressed ef-

ficiently into respective regions and that these regions 

contain tandem repeats. 

• Heuristic approach. This is a direct approach, 

whereby it incorporates heuristic techniques during 

implementation. However, not all tandem repeats can 

be identified through this approach. 

• Direct approach. This approach, unlike the previous 

three approaches, aims to search for tandem repeats 

directly. A Tandem Repeat Finder [14] is an example 

of such a method. 

 Due to the complexity and wide variation of each TR 

algorithm, it is not possible to discuss every one. However, 

to complete the discussion, two methods have been selected 

for a walkthrough, so that the steps taken to search for tan-

dem repeats within a nucleotide sequence can be better un-

derstood. 

5. ARCHITECTURE DESIGN AND COMPONENTS 
IMPLEMENTATION 

 In this section, a detailed discussion is provided in the 

area of architecture design and implementation. 

5.1. System Architecture Overview 

 Fig. (7) depicts the high-level system architecture of the 

system developed. The user interacts with the system via a 

GUI (Graphical User Interface) display to perform sequence 

alignment operations. The sequence alignment algorithms 

included in this work are PSA, BLAST, FASTA and Dot-

plot. In addition, TR is used for tandem repeats analysis. 

PSA, TR and Dotplot are custom-built applications using the 

Java SDK, whereas BLAST and FASTA are both open-

source applications freely available for development use and 

have been integrated to the system. The rest are utilities de-

veloped to support Sequence Analysis Work. Examples are a 

set of database utilities for index (key) creation, data conver-

sion, and packaging of data into the Fasta data format (i.e. 
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BlastFastaData) for database search, which are particularly 

used by BLAST and FASTA algorithms. Also, BioJava utili-

ties for creating and maintaining data (i.e. BioData) that is 

compatible to BioJava standard, are used by the PSA algo-

rithm. BioJava also provides many other sequence routines, 

algorithms and libraries for building bio-applications. In ad-

dition, a text file editor is also developed to facilitate se-

quence files editing. 

 PSA, BLAST and FASTA algorithms are capable of util-

ising multiple CPUs for parallel execution. PSA achieves 

this via the Java Threading function. Java Threads are light-

weight processes spawned by PSA to perform database 

search and sequence alignment. Open-source such as 

BLAST and FASTA were developed to handle multiple 

CPUs as well. 

Table 8. Tandem Repeats Search Algorithms 

 

Method Characteristic Key Steps 

Tandem Repeat Search via data 
compression approach [Rival 

1997] 

1. Works well for short tandem pat-
terns (less than four). 

2. Assume tandem repeat zone must 

begin and end with exact tandem 
pattern. 

1. First, locate all the PTRs within a sequence. Then, the algorithm will at-
tempt to compress each adjacent PTR. If there is a compression gain, then it 

is an ATR region. This process is repeated for each adjacent ATR. 

2. From the ATR region, derive a new compressed sequence from the original 
one. A function is used to evaluate the likelihood of each ATR region as a 

tandem repeat based on the compression gain criteria. 

Tandem Repeat Finder [Ben-
son 1999] 

1. This method is considered to be 
more general as compared to other 

TR methods. 

2. Based on Bernoulli trials concept. 

3. Uses a sliding window of size k 
and transverses along the nucleo-

tide sequence. 

1. First a small window of size k is constructed. Then, create an exhaustive list 
of k-length strings. There should be 4k of such strings, which are known as 

probes. 

2. For each k-length probe p, slide along the nucleotide sequence using the k-
size window. Insert position i into the list Hp, if there is a match for probe p 

at position i. 

3. From the list Hp, scan Hp for all j < i. The distance d = i – j is a possible 
tandem repeat. 

4. Keep a distance list Dd. Update it every time a match at distance d is de-

tected. 

5. During the analysis phase, use dynamic programming to align a potential 
tandem pattern of size d with its surrounding sequence. If two or more cop-

ies are aligned, then the pattern is reported as a tandem repeat. 

 

Fig. (7). System Architecture. 
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5.2. Components Implementation 

 The GUIMain is the root user MMI Interface. It was built 

using the Java Frame Class. The rest of the user interfaces 

(such as the Dotplot MMI and PSA MMI) are to reside 

within this root MMI as Java Internal Frame Class. In other 

words, the GUIMain is the main console where everything 

begins. 

 The Dotplot software component has four input parame-

ters as shown in Fig. (8). They are the input sequences to be 

compared and their homology determined via the Dotplot 

algorithm. The window size determines the word size on 

each axis to be examined, moving from left to right for the 

horizontal axis (sequence A) and moving from bottom to top 

for the vertical axis (Sequence B). A dot will be plotted on 

(x, y) coordinate if the number of matches between sequence 

A[x, x + windowsize] and sequence B[y, y + windowsize] > 

threshold on a diagram. The output is a plot diagram indicat-

ing those sections with two identical sequences as illustrated 

in Fig. (9). 

 

Fig. (8). GUIMain Java Frame vs Java Internal Frame. 

 

Fig. (9). Dotplot Input & Output Parameters. 
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 A GUI was developed using the Java Internal Frame 

(Java Swing Library) and integrated with the Dotplot algo-

rithm. The user specifies the input parameters, such as se-

quences to be compared, the window size and the threshold, 

and the type of file to be imported (i.e. either DNA or protein 

sequence file) and click on the <Apply> button to run the 

Dotplot program. The result of the plot is displayed on the 

“Results” panel as presented in Fig. (10). 

 The PSA software component has a number of input pa-

rameters that can be set (Fig. 11). The PSA component was 

implemented to perform three different types of alignment 

with either linear or affine gap penalty function depending 

on the user’s selection. They are (1) Global Alignment with 

linear or affine gap penalty, (2) Semi-Global Alignment with 

linear or affine gap penalty and (3) Local Alignment with 

linear or affine gap penalty. 

 

 The PSA GUI was implemented as a Java Internal 

Frame. It has controls to handle all the three types of PSA 

discussed earlier on. That is, the user is able to select a single 

query sequence to search against a database containing many 

target sequences, or to search against a file containing multi-

ple target sequences, or to search only one target sequence. 

Once the user has selected the desired option, he/she will be 

prompted to enter the desired values. Finally, to execute the 

application, the user can click on the <OK> button to run the 

PSA operation. The result is displayed on the “Results” text 

area, as seen in Fig. (12). 

 For the BLAST component, only the essential parameters 

are implemented. This is sufficient to demonstrate that the 

BLAST Algorithm can be integrated into the GUI and can 

work together as one single component for the present appli-

cation. The remaining parameters can be incorporated into 

the existing architecture easily. 

 
Fig. (10). Dotplot GUI Layout. 
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Fig. (11). PSA Input & Output Parameters. 

 

 

Fig. (12). The PSA GUI Implementation. 
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 The GUI was developed from ground up. The layout was 

designed to accommodate a partial list of BLAST input pa-

rameters (not the full parameter list). Hitherto, the remaining 

input parameters are left out. However, the GUI was devel-

oped to allow future expansion in mind without too much 

hassle. If needed, the GUI can be extended using the 

Netbeans IDE GUI Editor Tool. The BLAST GUI is shown 

in Fig. (13). 

 To input parameters, sequences file and target database, 

the user clicks on the “folder” icon. To run the BLAST ap-

plication, the <OK> button is clicked. The alignment result 

is shown on the result text area. 

 FASTA, like BLAST, is also a freely available open-

source application that can be downloaded from the net. 

Hence, it is not required to build from ground up. FASTA is 

incorporated together with the GUI, which is developed from 

scratch. Likewise, only a partial list of parameters are used, 

which is sufficient for concept proofing. If needed, the re-

maining parameters can be incorporated for future work. 

 The FASTA GUI is implemented and it has controls for 

files input and parameter settings. To execute the FASTA 

alignment, click on the <OK> button. The result is then dis-

played on the text area. 

 DNA fingerprinting is the foundation of most forensic 

applications. The uniqueness of DNA fingerprinting is based 

on the number of tandem repeats found in each individual 

“junk DNA”. It is this tandem repeats that give rise to unique 

identification of an individual. Therefore, TR analysis tool is 

included in this software implementation. 

 Due to the high complexity and difficulty of ATR im-

plementation, the TR component in this implementation only 

handles detection of ETR as this is sufficient to demonstrate 

the concept of using TR Search Tool to identify potential 

criminals. The inclusion of ATR implementation can be con-

sidered for future work. 

 The inputs to TR search tool are: (1) suspect’s DNA se-

quence; and (2) minimum and maximum TR word size. Dur-

ing stage 1, the suspect’s DNA sequence is analysed and the 

 

Fig. (13). BLAST GUI Layout. 
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TR tool will locate all possible ETRs found within the nu-

cleotide sequence based on the selected TR word size. The 

tool allows the TR word size to be configured freely, as well 

as to shorten or widen the sliding window size (the sliding 

window is used to scan along the sequence and to locate pos-

sible TRs). Once all the possible TRs are identified, the user 

is able to select one or more TRs to scan the selected data-

bases for a possible match. If one or more matches are 

found, the results are displayed on the MMI. See Fig. (14). 

 Fig. (15) depicts the GUI layout of the tandem repeats 

search tool. To upload a suspect’s DNA sequence, click on the 

“folder” button. A file selector dialog will be prompted. Enter 

a minimum and maximum word size for the TR search. Click 

on the “Enter” button to start analysing the DNA sequence. 

The TR algorithm will perform TR analysis on the sequence 

being entered. All the possible ETRs are displayed in the STR 

Word Text Area. For instance, “ATG (3)” means that “ATG” 

is found to be a continuous TR within the sequence and “(3)” 

means that there are three such TRs. 

 The next step is to select one or more STR words to scan 

through one or more databases (multiple selection of data-

bases are allowed). Click <OK> to execute the database scan 

and the final results of the suspect’s ID and the associated 

DNA sequence in the databases. 

 As Bioinformatics advances, there is an ever-increasing 

need to store large amounts of biological data for analysis 

work. It is common to work with very large sequence data-

bases that are unable to fit into the current physical memory 

available. Hence, the preferred way to handle large amounts 

of biological sequence is to use a dedicated database system. 

FASTA and BLAST provides a “Fasta” format database for 

this purpose. They use the “formatdb” routine to create their 

databases. BioJava also provides a set of library APIs (Ap-

plication Programming Interfaces) for data creation, update 

and modification. 

 As such, a number of database tools have been developed in 

this work for such purposes and are summarised as follows: 

1. Tool to create “Fasta” format database: 

a. The “Fasta” format is widely accepted by 

FASTA and BLAST applications. In fact, it is 

one of the most widely used data format in 

many of the third-party applications. 

b. In this work, both of the FASTA and BLAST 

use this format. 

2. Tool to create BioJava compatible format database: 

a. BioJava offers a simple and efficient sequence 

database implementation backed by one or 

more sequence files on disk. These files can be 

in any format, as long as a suitable sequence 

format class exists. 

b. The current PSA software component uses this 

format. 

3. Text File Editor: 

a. To create, modify and update sequence or da-

tabase files. 

 To create a local customised database for BLAST and 

FASTA applications, the “formatdb” routine, which is pro-

vided by the BLAST and FASTA packages, is used. How-

ever, it is rather inconvenient to use the “formatdb” com-

mand manually via the command line input. Therefore, a 

GUI is developed to provide a more user-friendly interac-

tion. 

 To upload a file containing the sequences, click on the 

“folder” icon. After that, select the appropriate file type. 

Choose either “NUCLEOTIDE” for DNA sequences or 

“PROTEIN” for protein sequences. By default, it is set to 

“FALSE” for parse output. Click the <OK> button when 

done to initiate database creation. 

 For the PSA component, the BioJava compatible format 

database is used. However, BioJava Library only provides a 

list of APIs, and hence there is a need to build these database 

tools. 

 The first database tool is the “Create DB Index” routine. 

This routine is responsible for creating a BioJava DB Index 

for storing all the sequences on disk. It functions like a 

schema. Fig. (16) depicts the GUI layout. 

 The second database tool is the “Add File To DB”. This 

routine is responsible for uploading all the sequences to the 

DB Index created earlier on. Only when this step has been 

executed, then can the DB be populated with data. 

 

 

 

Fig. (14). TR search tool parameters. 
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 The last database tool is for listing all the sequence IDs 

associated with a particular database. It is useful when a 

global listing of sequence IDs is required. 

 

Fig. (16). Database tool for creating BioJava compatible data-

base. 

 The sequence file-editing tool is responsible for creating; 

updating and modifying sequence files or sequence data-

bases. These files can then be uploaded via the appropriate 

database tools into various data formats, which can be used, 

by BLAST, FASTA and PSA. 

 The data used for testing the software tools is generated 

from a custom-built software program. Fig. (17) shows the 

program has four parameters, which are: 

1. Record Size - the number of records to be created; 

2. Repeat Word - the TR pattern to be inserted into the 

test data; 

3. Random Seed - to add in random variation; and 

4. Record Name - the record name for each sequence 

generated. It is postfix by a unique ID generated by 

the computer. 

 The output data of this program is in the “FASTA” for-

mat. 

6. TEST AND FINDINGS 

 The sequence alignment test uses PSA, BLAST and 

FASTA. Each sequence alignment algorithm performs an 

alignment of sequences taken from the test datasets. Each 

test data starts from as small as ten records and can generate 

up to a maximum of one thousand records. Each record con-

tains a number of tandem repeat patterns with a maximum of 

one thousand “AATG” tandem repeat patterns being gener-

 

Fig. (15). Tandem Repeats Search Tool. 
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ated. For the three sequence alignment algorithms, they are 

subjected to the same datasets and individual algorithm per-

formance (time in milli-seconds) for each dataset recorded in 

a spreadsheet. Fig. (18) shows the results obtained for the 

experiment. 

 From the chart, it has been observed that as the number 

of records increases, PSA sequence alignment algorithm 

becomes prohibitively time-consuming. However, BLAST 

and FASTA were efficient for searching small and large data 

sets. The conclusion is that PSA is more suitable for aligning 

a small number of sequences. From this experiment, it is 

clear that PSA does not scale well with large data sets 

whereas BLAST and FASTA are designed to handle se-

quence alignments on large data sets efficiently [7]. 

 An additional test is conducted to verify the correctness 

of PSA algorithm in terms of sequence alignment and com-

pared to BLAST and FASTA algorithms. Two sequences 

were used as benchmark for the comparison test. 

 Query Sequence: 

>subject10 

atgcatgcaatgaatgaatgaatgatgcatgc 

 Target Sequence: 

>subject20 

ttggcattaatgaatgaatgaatgttggcatt 

 

 The result obtained from the test, using the query se-

quence and the target sequence, indicates that PSA performs 

the alignment correctly when benchmarked against BLAST 

and FASTA. The sequence alignment results from the three 

algorithms indicating the correct alignment, which starts 

from positions 9 – 24 as presented in Figs. (19-21). 

 Fig. (22) depicts the time taken for searching the exact 

tandem repeats within a given test sequence. A dataset that 

contains a number of sequences with different sequence 

lengths was used for the test. As the length of the sequence 

increases, the time taken to search the exact tandem repeats 

within a sequence increases exponentially. This is as ex-

pected due to the number of tandem repeats getting larger 

with longer sequence length as it would take a longer time to 

process all the possible ETRs with a sequence. 

 The following test has been conducted to search through 

the different sets of sequences (within a dataset) to locate a  

 

 

Fig. (17). GenerateTestData() Input & Output Parameters. 
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Fig. (18). Time performance vs number of sequences bar chart. 
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possible match for the given TR pattern. For example, 

“AATG” is the TR pattern and the number of TRs within the 

query sequence is known. The test is to search through the 

databases (which contain many sequences) given the query 

sequence detail to find a possible match. Fig. (23) depicts the 

results obtained. 

 From the chart, the time taken to complete an exhaustive 

search is proportional to the number of sequences available 

for search. This is as expected as more time is needed to iter-

ate through all the sequences within datasets. During the test, 

correct matches were identified for all the query sequences. 

 Next, two identical sequences are used to test the Dotplot 

algorithm. 

Sequence 1: AATGAATGAATGAATGAATGAATGAATGAATG 

 Fig. (24) is the result generated by the Dotplot program. 

An “=” sign indicates that there is an alignment. The diago-

nal lines formed by the “=” sign represent the alignment of 

the sequences. 

7. LIMITATIONS AND DIFFICULTIES OF PRESENT 
WORK 

 The test results have indicated that the system developed 

needs further enhancement such as optimization of the sys-

tem performance and efficiency. Some of the suggestions 

are: 

 

Fig. (19). BLAST Alignment results. 

 

Fig. (20). FASTA Alignment results. 

 

Fig. (21). PSA Alignment results. 
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• Enhancement to the existing tools, by adding more 

options and controls to each tool. 

• Develop robust distributed software architecture to 

better manage the computation loads of the tools. For 

instance, adding a load balancer to ensure that work is 

evenly distributed among processors. 

• As all subsequent analysis done assumes that the 

alignment is made without error, more focus should 

be placed on correctly aligning the sequences to avoid 

a false-positive or in this case a false arrest. Although 

this will diminish the speed, there is a sacrifice of 

speed versus accuracy that should be mentioned. An 

alternative approach is to take the query sequence and 

Blast or other similar algorithm to find candidate se-

quences from the larger database. Then a separate 

alignment algorithm that is more accurate would be 

implemented to increase the probability of a correct 

match followed by the output of possible matches 

with the confidence level given. Finally, TR and ATR 

and ETR analysis can be done. 

• Fault tolerance. At this stage, the tools are not able to 

cope with any faults (e.g. hardware failure) during 

runtime; in this event, the software hangs. It would be 

desirable to enhance the robustness of the system for 

real operation needs. 
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Fig. (22). Sequence length vs time in ms bar chart for STR Analysis. 

Sequence 2: AATGAATGAATGAATGAATGAATG 
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Fig. (23). Number of sequences vs search time in ms for STR Database search. 
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• Adding more analysis tools to the existing system to 

provide a comprehensive software environment for 

sequence analysis. 

• Enhancement to the system results visualisation. Cur-

rent implementation is rather rudimentary as the work 

focus is on the overall software architecture and inte-

gration. 

• As BLAST and FASTA are techniques for relating 

homologies, which are useful for finding relationships 

between sequences that are less identical. Thus one 

should look at EXACT match, to avoid identifying an 

innocent person as a criminal. 

 Finding of similarities using BLAST and FASTA is 

commonly used, one should not restrict to only for NOT 

identical match. These algorithms come with a confidence 

level between 0-100%. Unless a 100% level is obtained, one 

does not normally convict a person using only 85-95% con-

fidence level. Having said that, bear in mind that DNA evi-

dence is circumstantial which means that it can strongly sug-

gest something but does not prove it. In all, one does not 

convict a person based on DNA evidence since current law 

does not support this method of conviction either. 

8. CONCLUSION 

 The results obtained from the tests have shown that the 

integrated software tool performs as expected. The work 

suggested that by integrating BLAST and FASTA (two 

widely used and freely available algorithms), plus an addi-

tional implementation of PSA and TR analysis tools, with 

the rest of the supporting tools (database management) de-

veloped, it is entirely possible to have an initial working ver-

sion of the software tool for criminal DNA analysis and de-

tection work. The system has great potential and that the 

results obtained during the tests were satisfactory. The fol-

lowing observations can be made: 

• PSA algorithm is suitable for smaller sequence 

alignments as compared to BLAST and FASTA, 

which are designed for large sequence database 

searches. 

• All three-sequence alignment algorithms produced 

the same results using the given set of test data. This 

verified the correctness of the algorithms. 

• PSA is capable of running in multi-threading mode. 

This may help to improve its performance if the algo-

rithm is executed under multiple processors. 

• The TR search tool has produced promising results 

for TR analysis within a sequence (to identify all pos-

sible TRs) and found matches against multiple TRs 

databases. However, the limiting factor of the tool is 

its performance using large data sets. 

• The Dotplot works well using the test data. It is a 

good tool for performing preliminary sequence 

alignments, helping to locate segments of sequence 

similarities. Subsequently, these segments can be fur-

ther examined using PSA, BLAST or FASTA. 

• The administration tools provide user-friendly files 

and databases manipulation capabilities, which 

quicken the process of data management and persis-

tent storage. 
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