
58 The Open Medical Informatics Journal, 2008, 2, 58–69

A pervasive design strategy for distributed health care systems
Oliver Faust

∗ 1 , Bernhard H.C. Sputh1 , Rajendra Acharya U2 , Alastair R. Allen1

1
School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK

2
Ngee Ann Polytechnic, Clementi Road 535, Clementi, Singapore

Abstract: Distributed health care systems require a pervasive design strategy to ensure security, stability and
functionality of the system. Furthermore, distributed health care systems are potentially very complex, which makes it
necessary to have appropriate abstraction strategies. In this paper we introduce the theory of communicating sequential
processes to distributed health care system design. We use this theory to gain further insight into the communication
between different system components. In particular this reasoning is applied to the problem of internal and external
integration of distributed health care systems. We claim that a high level of internal and external integration can be
achieved with the pervasive design strategy. With the pervasive concept of communicating sequential processes we
have a formal method to create a model of the complete system. In the practical part of the paper we apply the formal
system model to prove security, stability and functionality of a particular system.

Keywords: Formal system design, Distributed health care, Communicating sequential processes

1. INTRODUCTION

The field of health informatics (eHealth) has mushroomed
since its inception in the early 1990s. It is concerned with
the cognitive, information processing and communication tasks
of medical practice, education and research [1]. One of the
reasons for this astonishing growth is that eHealth has the
potential to improve the quality of care, whilst simultaneously
lowering costs for complex cases [2].

There are numerous projects and studies which are exploring
this potential. Many of these projects are carried out in devel-
oped countries, therefore these projects address current needs
of these relatively wealthy nations. A typical example is the
epidemic of human overweight and obesity. Sunny Consolvo et
al address this problem by investigating how technology could
help encourage people to sustain an increased level of physical
activity [3]. They conclude that mobile phone technology can
be used in systems which attempt to solve this problem. They
presented Houston, a mobile phone-based fitness journal that
encourages physical activity by providing personal awareness
of activity level and mediating physical activity-related social
interaction among friends. However, Houston is, by far, not the
only mobile phone based health care system. Tammy Toscos
et al developed a preventative health cell phone application
that helps to motivate teenage girls to exercise by exploiting
their social desire to stay connected with their peers [4]. Their
aim was to create a system to reach out to young women
who enjoy technology and need motivation to continue being
physically active throughout adolescence. In a similar project,
Gunny Lee et al created PmEB, an application for mobile
phones that allows users to monitor their caloric balance as a
part of weight management [5]. PmEB addresses the challenge
of improving user compliance, data reliability, and self-efficacy
of self-monitoring of calorie intake and expenditure. Related to

∗Address correspondence to this author at the Electronics Research
Group (ERG), Department of Engineering, University of Aberdeen,
Fraser Noble Building Aberdeen, Scotland, AB24 3UE; United King-
dom; E-mail: o.faust@abdn.ac.uk

the problem of overweight and obesity is the implementation
of PREVENIMSS, a Spanish national program for education
and prevention of diseases caused by malnutrition and obesity
by Juan M. Silva et al [6]. PREVENIMSS works by organizing
informational sessions about the risks of keeping sedentary life
and bad feeding habits.

Apart from these relatively targeted projects there are devel-
opments which aim at general heath care. Misook Sohn and
Jeunwoo Lee used Instant Messaging systems to share context
information relating to health and covering things such as
physical activity and smoking behaviour [7]. Toshiyo Tamura
et al developed a fully automatic healthcare system for use
in a so-called welfare techno house. The system automatically
collects physiological data in an effective and controlled way
[8]. They claim that their system helps in the understanding of
personal health status and daily activity without the use of in-
vasive measurements. Similarly consumer or patient related is
the work by Diana Bental and Alison Cawsey. They developed
a range of systems that synthesize text to speed up content
creation and access. For example, the program ‘mail merge’
was used by health professionals to produce printed letters and
leaflets that incorporate information for specific individuals
[9]. Within the group of general heath care systems many are
aimed at professionals. K. A. Kuhn and D. A. Giuse claim
that hospital information systems are evolving towards health
information systems [10]. Terry L. Huston and Janis L. Huston
argue that today, health-care decision-makers are struggling
with the ramifications of the managed care environment [11].
Concurrently, technological advances take place that create a
benevolent convergence with the upheaval generated by the
managed-care movement. John Fulcher claims that a major
conclusion of his study was that so-called high-tech solutions
are not always necessary or effective for health care systems
[12]. This claim is based on the fact that if patient privacy, con-
fidentiality and security are not incorporated from the outset,
then this can lead to unimagined difficulties at some future
time — indeed such systems can be rendered inoperative.
These considerations lead to yet another set of problems heath

1874-4311/08 2008 Bentham Science Publishers Ltd.

hashim
Text Box
Open Access

hashim
Line

hashim
Text Box
Open

A pervasive design strategy for distributed health care systems The Open Medical Informatics Journal, 2008, Volume 2 59

care professionals face. From a computer science point of view
health information systems are huge data gathering devices.
Data gathering implies data storage and data transmission.
It is necessary to safeguard against deliberate misuse or loss
of data. Boaz Gelbord and Gert Roelofsen examined the use
of computers to extract information from large amounts of
data with regard to privacy and public safety. They show that
due to the use of computers to extract information from data
sources, such as video surveillance recordings, all collected
data is sensitive [13].

The root of the problems and indeed their solution lies
in the fact that telemedicine and eHealth both depend on
communication technologies [14]. Wullianallur Raghupathi
and Joseph Tan claim that the success of IT based health care
systems depends on [1]:

• Internal integration. – The degree to which systems and
technologies are integrated with one another within an
organisation.

• External integration. – The degree to which systems
and technologies interface with outside organisations and
agency computer systems.

In this paper we interpret internal and external integration
in terms of network terminology and process orientation. We
claim that systems which are designed according to process
orientation reach a high level of integration. We are even able
to extend the requirements of internal and external integration
when we say that this is the functionality of the system, and
functionality is only one part of system specification. System
specification defines the system properties in terms of security,
stability, and functionality. These properties are the funda-
mental requirements for intelligent distributed diagnosis and
home healthcare systems, because such systems are designed
as networked components which work cooperatively on the
decision making task.

1.1. Towards Process Orientation

To achieve the goal of high internal and external integration
we adopt the theory of communicating sequential processes
(CSP). This theory was first introduced by C. A. R. Hoare
[15]. By now, CSP has over 25 years of solid research
behind it, see [16]. During this time it has been applied to
diverse topics such as hardware synthesis [17], concurrent
programming [18], security [19] and systems testing [20]. This
flexibility makes CSP ideal for modelling distributed diagnosis
and home healthcare systems. CSP enables the formal spec-
ification of such systems and their refinement to executable
implementation. It allows the description of complex patterns
of synchronisation between component processes and provides
semantics sufficiently powerful to capture non-determinism,
multiway synchronisation, channel communication deadlock
and divergence [21]. We link CSP and distributed diagnosis
and home healthcare systems by modelling each component
as a process and the communications between components
(processes) as events. To provide another glimpse of the theory,
the following list defines the system properties according to
CSP principles and links them with distributed health care:

• Security – A system is secure if and only if it is not
able to exhibit a potentially hazardous sequence of events
(traces). A distributed health care system is secure if it
exhibits only allowed sequences of events. For example,
only authorised persons should be abele to access data.
Security is bridged if unauthorised people can gain ac-
cess. In terms of CSP this security bridge can be stated
as follows: unauthorised people took some action which
generated a sequence of events for the system. The system
responded to this sequence of events by releasing the
sensitive data. Clearly, the system reacted in the wrong
way to this particular sequence of events, therefore it is
not secure.

• Stability – A system is stable if it does not have any
deadlock or livelock conditions. For distributed health
care systems stability is the second most important prop-
erty after security. This statement is true, because a failed
system does not exhibit any event at all, i.e. no sign of
functionality at all. This implies that the system is not
able to exhibit a potentially dangerous event, therefore it
is secure. For example, a distributed health care system
which incorporates the MAILER system, discussed in
Section 3, will show a stable failure. To be specific,
the system can be forced into deadlock by a large
number of communication requests. This is potentially
very dangerous in emergency situations, because such sit-
uations usually produce a large number of communication
requests and many people depend on the stable function
of the system.

• Functionality – A system is functional if it behaves ac-
cording to the specification. This is measured by compar-
ing the specified sequences of events with the sequences
of events a system can exhibit. Functionality is what we
want from a distributed health care system. We have to
lay down a set of rules (specification) which govern the
behaviour of the system. A distributed health care system
is functional if and only if it complies with these rules.
CSP helps to overcome the practical difficulties in laying
down the rules and checking for compliance.

These definitions provide a reference for the analysis of sys-
tem properties. The act of analysing a system with respect to
security, stability, and functionality, is called model checking.
If model checking is carried out in a formally correct way,
it leads to proven statements about the system properties. For
example, to make a statement about the security of system P,
we have to identify a set of hazardous traces H. And then,
in a second step, the set S with all the possible traces of the
system is computed. The system is secure, if and only if there
is no trace x which is an element of the hazardous set H and
an element of the set of all possible traces S. We can define a
function secure(...) which returns true if the process is secure.
(For a discussion of the mathematical symbols see [22].)

secure(H, S) = ¬∃ x • (x ∈ H ∧ x ∈ S) (1)

The big benefit of having such rigid definitions and the asso-
ciated CSP theory is that model checking can be mechanised.
To follow the security example, it is possible to use model

60 The Open Medical Informatics Journal, 2008, Volume 2 Faust et al.

checking tools to compute all possible traces of a process, see
[23].

The pervasive design strategy for distributed health care sys-
tems is a three step process. The first step is the development of
a theoretical CSP model which serves as system specification.
The next step is to check the specification for security, stability
and functionality. Automated model checkers, such as FDR,
can be used for this task. The last step of the pervasive
design strategy is the translation of the specification into
an implementation. Figure (1) illustrates the proposed design
flow.

Specification

Implementation
Model

Process
Implementation

FDRCSP

Fig. (1). Overview of the pervasive design strategy

Before we detail the example system, the next section
provides some background on the process algebra CSP. The
section does not introduce all theorems and lemmas which
arise from the axiomatic definition of the process algebra, it
just provides some simple examples which explain important
concepts. These important concepts are deadlock, divergence
(livelock), choice and abstraction. Based on these examples
we introduce mechanised model checking. This leads to con-
siderations about failures divergence refinement. Discussing
the CSP method, we move on to the main design exercise.
Distributed diagnosis and home healthcare systems require a
routing network to exchange data between individual entities.
This is the reason why the design exercise is a distributed
mailer system. The design follows the approach outlined in
Figure (1). Section 3 outlines the basic mailer process network.
However this process network is not stable, i.e. there is a
deadlock condition. With mechanised model checking we
show that when all connected nodes want to send a message,
the mailer deadlocks! To avoid this deadlock, Section 3.4
introduces an arbiter which ensures that only one message
is in the mailer network at the same time. The paper finishes
with concluding remarks and further work.

2. THE LINK TO CSP
This section provides a brief introduction to CSP. We

present a number of examples which explain the fundamental
principles of the CSP process algebra. This theory is necessary
to understand the benefits of the pervasive design strategy for
distributed health care systems. The examples can not replace

an in-depth treatment of the process algebra, Schneider and
Roscoe provide such treatments in their books [24], [22].

The examples are abstract rather then practical, because the
concepts are best introduced without the burden of practical
considerations. The first of these concepts is deadlock. The
deadlock example allows us to introduce the concepts of
events, processes and synchronisation. Then choice is intro-
duced. We show that in CSP there are two types of choice,
namely external and internal choice. The next concept which
we introduce in this section is non-determinism. Abstraction
and hiding extend the concept of non-determinism. A non-
deterministic system might livelock.

Livelock and deadlock constitute the two stable failures
which are relevant for distributed health care systems. Mech-
anised model checking helps to detect stable failures and
establishes system security and functionality. Such mechanised
model checking is introduced based on FDR (Failures Diver-
gence Refinement). Model checking does not guarantee that
the implementation is correct, however it guarantees that it is
possible to build or implement a system which is secure, stable
and functional.

2.1. Deadlock
In the case of distributed health care systems, the term dead-

lock describes the situation when two or more independent
processing entities prevent each other from making progress.
The simplest example involves two processing entities (P1 and
P2) and a duplex message transfer channel between them. At
one stage of the execution P1 is determined to send a message
to P2 before it can make further progress. A deadlock occurs
if P2, in the same state of execution, is determined to send
a message to P1 before it can make progress. In this case,
deadlock means P1 does not progress because it waits for a
message from P2 and at the same time P2 does not progress
because it waits for a message from P1.

To model this deadlock scenario with CSP, we need three
processes, two of which represent the processing entities.
The third process represents the environment in which the
messages are exchanged. The communication between the
processing entities is modelled as the exchange of events
between processes. In this case the message from process P1
to process P2 is represented by a and the message from P2
to P1 is represented by b.

We model the functionality of the deadlocking system by
describing what each involved process does. Initially, P1 is
able to perform event a then a again and then b before it
terminates. The previous sentence communicates the underly-
ing idea of the model. However, text is not formal enough
to establish provable statements about security, stability and
functionality. The CSP process algebra and the associated
operational semantics provide the required level of formality.
The following equation states the operational semantics for the
P1 process.

P1 = a→ a→ b→ SKIP (2)

where → indicates a transition or change of state and SKIP
represents successful termination. P2 is initially able to per-
form a then b then a again and so on. The following recursive

A pervasive design strategy for distributed health care systems The Open Medical Informatics Journal, 2008, Volume 2 61

expression describes this functionality.

P2 = a→ b→ P2 (3)

The P3 process describes the environment in which P1 and P2
communicate. We say that P1 and P2 must synchronise on the
events a and b. The following equation models this behaviour.

P3 = P1 ‖
{a,b}

P2 (4)

where ‖{a,b} is the indexed parallel operator. The set {a, b}
below the parallel operator forces processes P1 and P2 to
synchronise on the events a and b. Synchronisation means that
these events can happen if and only if both processes P1 and
P2 are able to perform them. Initially, P1 is able to perform a
and P2 is able to perform a. That means this event can and will
happen. Next, we consider the situation or system state when
the event ‘a’ has happened. Now, P1 wants to perform a again,
but P2 is only able to perform b. In other words, the parallel
statement forces P1 to wait until the communication partner
P2 is able to perform a. Similarly, the same synchronisation
statement forces P2 to wait until b can be performed. This is a
classical deadlock situation, the two communication partners
prevent each other from making progress.

2.2. External choice
In many natural situations there is a choice between two or

more possible actions. In CSP external choice describes the
situation when a system accepts any one of a number of offered
actions. The environment is in control, because it decides
which action to take. Therefore, for the environment such a
choice is deterministic: the system accepts any of the offered
actions. The process P4, defined in Equation 5, describes such
a situation. This process is able to perform either a or b before
the process recurses.

P4 = a→ P4
2 b→ P4

(5)

where 2 is the external choice operator, with which the
environment can choose whether a or b occurs.

The process P5 is the environment in which P4 and P2
communicate. Equation 6 defines P5 as the parallel combina-
tion of P4 and P2. The parallel processes must synchronise
on the events {a, b}.

P5 = P4 ‖
{a,b}

P2 (6)

Within P5 the process P2 constitutes the environment which
chooses whether a or b occurs. From the definition of P2 in
Equation 3, it follows that P5 exhibits events a then b then
a again and so on. That means, P5 behaves similarly to P2,
or in other words the parallel combination of P2 and P4 does
not restrict the functionality of P2.

2.3. Internal choice
Internal choice models the situation when the process is

in control. That means, the system selects the action to take.
This makes a system with internal choice non-deterministic

for the environment. The operational semantics in Equation
7 describe such a situation. Process P6 decides whether it
engages in event a or b.

P6 = a→ P6
u b→ P6

(7)

where u is the internal choice operator.
The process P7 defines the parallel combination of P6 and

P2. The combined processes must synchronise on the events
{a, b}.

P7 = P6 ‖
{a,b}

P2 (8)

Within P7 the process P2 constitutes the environment for P6,
the process with the internal choice. Equation 3 defines that
P2 exhibits a then b then a again and so on. The process P6
chooses internally in which event, either a or b, it is able to
engage. In the initial state of execution P2 is able to exhibit
a and P6 chooses internally whether or not a can happen. If
P6 chooses b in the initial state then the system deadlocks.

2.4. Abstraction and hiding
Abstraction reduces the model complexity. This leads to

simpler models which are easier to understand and to predict.
The idea is to represent complex systems with somewhat
simpler models that capture the essence or main functionality
of the complex system. In CSP abstraction is achieved with the
hiding operation. The hiding operation makes events internal to
processes, such that an external observer is unable to observe
the hidden events.

For example, the process P8, shown in Equation 9, is
constructed such that it initially offers the environment the
choice between event c and d. However, c is hidden from
the environment with the hiding operator: ‘\’. Therefore, the
environment is not able to exercise this choice. The occurrence
of c is non-deterministic, because it is internal to P8 i.e. it
does not depend on external influences. Therefore, for the
environment it appears that P8 chooses internally between a
and b.

P8 =

(
c→ a→ P8
2 d → b→ P8

)
\ {c, d} (9)

In Equation 9 the hiding operation converts an external choice
into an internal choice. This observation leads us to two con-
clusions. First, the hiding operation reduces the information
content of a system, it becomes less deterministic. Second,
non-deterministic operations model abstracted behaviour.

2.5. Livelock
Livelock describes the situation when a system makes

progress without engaging in external events. That means, an
external observer does not observe any events, but the system
consumes energy. The process P9, defined in Equation 10,
describes such a situation. This process might decide to engage
only in event a. If this is the case an external observer is
unable to observe any event, because a is hidden with the
hiding operator.

P9 =

(
a→ P9
u b→ P9

)
\ {a} (10)

62 The Open Medical Informatics Journal, 2008, Volume 2 Faust et al.

2.6. Model checking
The previous sub-sections introduce CSP operational se-

mantics. These semantics provide a formal way to model the
functionality of distributed health care systems. The formal
specification allows us to prove certain properties of the model.
Furthermore, this reasoning can be mechanised, this leads to
automated model checking. FDR∗ is a tool which provides
such mechanised model checking. In this section we use
this tool to check the examples for deadlock and livelock
conditions. Furthermore, we use the tool to introduce trace
and stable failure refinement.

The first step towards automated design checking is to
transfer the operational semantics into a machine readable
format. The result of such a translation is a CSPM script.
Listing 1 constitutes the CSPM version of the examples defied
in the previous section. The code in Line 1 defines all possible
events. The code block from Line 3 to 10 defines the example
processes. The last part of the script, Lines 12 to 23, instructs
the model checker to carry out various tests.

1 channel a,b,c,d

3 P1 = a -> a -> b -> SKIP
P2 = a -> b -> P2

5 P3 = P1 |[{a,b}]| P2
P4 = a -> P4 [] b -> P4

7 P5 = P4 |[{a,b}]| P2
P6 = a -> P6 |˜| b -> P6

9 P7 = P6 |[{a,b}]| P2
P8 = (c -> a -> P8) [] (d->b -> P8)

11

assert P3 :[deadlock free [F]]
13 assert P5 :[deadlock free [F]]
assert P7 :[deadlock free [F]]

15 assert P6\{a} :[deadlock free [F]]
assert P6\{a} :[divergence free]

17 assert P6 [T= P4
assert P4 [T= P6

19 assert P4 [F= P6
assert P8\{c,d} [T= P6

21 assert P6 [T= P8\{c,d}
assert P8\{c,d} [F= P6

23 assert P6 [F= P8\{c,d}

Listing 1 CSPM source code for the example processes

Figure (2) shows the results of the automated checks. A
red ‘×·’ indicates a test was not successful and green ‘X’
indicates a test was successful. The stability checks, Lines 12
to 15 hold no surprises. The tool confirms all the statements,
we made in the previous sections, about the process stability.

In Listing 1 Lines 17 to 23 instruct the FDR tool to perform
refinement checks. The first of these refinement checks is trace
refinement. A trace is a sequence of events which can be

∗From Formal Systems Europe

detected by an external observer. The traces of a process is the
set of all possible traces this particular process can exhibit. The
successful trace refinement check in Line 17 established that
the traces of P4 are a subset of the traces of P6. Similarly,
the next line of trace refinement establishes that the traces of
P6 are a subset of the traces of P4. That means, P6 and P4
are trace equivalent. However, the failure refinement check in
Line 19 fails. That means, internal and external choice are not
the same, they have different stable failures. The remaining
four refinement checks establish that P6 and P8 have the
same traces and the same stable failures. Therefore, there is no
difference between P6 and P8. This supports the statement
that abstraction can convert external to internal choice, thus
making the resulting process less deterministic.

Fig. (2). Output of the model checker tool FDR.

3. MAILER

As outlined in the introduction, distributed health care
systems monitor health parameters and interact with patients.
To achieve this functionality the individual system components
must exchange information via a routing network. The follow-
ing list outlines three practical distributed health care systems
where we stress the central role of the routing network:

1) Blood Pressure – Subjects with high blood pressure
need to monitor their blood pressure. The blood pressure
measurements are transferred via a routing network to
a central processing system. The software which runs
on this central processing system will interact with the
patient. To be specific, it will prescribe them the diet
and encourages them, if there is a decrease in the blood
pressure. If there is an increase in the blood pressure it
cautions them.

2) Cardiac health – Subjects with cardiac abnormalities
can send their ECG through the internet to a server
for the physician to inspect. This helps the cardiologist
to monitor their patient’s cardiac state using his unique
ID. In this example the internet represents the routing
network.

3) Medication adjustment – Physicians can access his pa-
tient’s images from a remote place to constantly monitor

A pervasive design strategy for distributed health care systems The Open Medical Informatics Journal, 2008, Volume 2 63

the efficacy of the drug and progress of the disease. The
images travel over a routing network.

After having stressed the importance of such routing net-
works, we highlight potential design shortcomings in these
structures. A routing network enables independent entities to
send messages to one another. Such systems can suffer from
security, stability and functionality problems. For example,
a stability problem can arise during mass casualty incidents
[25]. In such incidents, a potentially enormous amount of
data, including blood pressure and cardiac abnormalities, are
gathered and communicated in distributed health care systems.
It is possible to overwhelm these systems, when they are not
designed properly [26].

We argue that a data handling architecture must take into
account such extreme situations. To support this statement
with a practical example we introduce the mailer system, a
data handling architecture. It receives a message from one
input and sends it to a distinct output. We achieve this
functionality with a routing network where each network node
can act as both message source and destination. The network
nodes communicate with a packet based protocol. Each packet
consists of message and destination, where the destination is
the ID of the node which is supposed to output the message.

In the following sub-sections we use our pervasive design
strategy for distributed health care systems to plan the mailer
system. In the first step we develop the functional model. Then
we establish security, stability and functionality properties for
this model. The functionality of the theoretical models in the
introduction was straightforward. We had a good control and
could detect stable failures before hand. This is different for
the mailer system, we discover that a straightforward approach
to the mailing problem results in a hidden deadlock condition.
This is a design error. Past experience shows that in classical
approaches design errors are hard to detect. To be specific, it is
hard to detect them early within the project. With the mailer
example we can show how the CSP approach improves the
understanding of the system which leads to improvements in
functionality and stability.

3.1. Distributed mailer
Figure (3) on Page 64 shows the process network of

a distributed mailer system. It consists of 2n independent
NODE(ID) processes. The process ID is encoded in an n
dimensional binary number. Each NODE(ID) process is con-
nected to an internal routing network and individual input and
output channels. In the process network diagram, shown in
Figure (3), a channel which belongs to the internal routing
network is depicted as and labelled as c.from.to
where from indicates the sender NODE and to indicates the
receiver NODE. The two arrow heads indicate a bidirectional
link, therefore each channel which belongs to the internal
routing network has two labels. The individual input and
output channels are depicted as and labelled: in and
out.

Apart from the general network setup, Figure (3) shows
also a particular example of a packet being routed through the
network. We use this example to explain the mailer algorithm

functionality. In the example the environment sends the packet
〈〈1, 0, 0〉, 42〉 over the channel in to the NODE with the ID
〈0, 1, 1〉. The address of the packet is 〈1, 0, 0〉 and the message
is 42. After having received the packet from the environment,
NODE(〈0, 1, 1〉) recognises that the first entry in the address
vector is different from the node ID. Therefore, it sends the
packet to NODE(〈not(0), 1, 1〉). In other words the first entry
of the NODE ID is inverted. Sending the packet results in the
event:

c. 〈0, 1, 1〉︸ ︷︷ ︸
from

. 〈1, 1, 1〉︸ ︷︷ ︸
to

. 〈〈1, 0, 0〉, 42〉︸ ︷︷ ︸
packet

(11)

After NODE(〈1, 1, 1〉) has received the packet, it uses the
same method to determine the next node address. To be
specific it recognises that the second entry of the address is
different from the NODE ID. Therefore, the following event
is created:

c.〈1, 1, 1〉.〈1, 0, 1〉.〈〈1, 0, 0〉, 42〉 (12)

Similarly, after NODE(〈1, 0, 1〉) has received the packet, it is
sent on to NODE(〈1, 0, 0〉). This is done with the following
event:

c.〈1, 0, 1〉.〈1, 0, 0〉.〈〈1, 0, 0〉, 42〉 (13)

Now, NODE(〈1, 0, 0〉) is the final destination of the packet.
Therefore, the message is sent via channel out. This creates
the following event on the local output channel

out.〈1, 0, 0〉.42 (14)

3.2. CSP mailer model
The model starts with constant definitions. There is only

one constant n which governs the system setup. The number
of NODE processes is 2n. In the following equation we set n
equal to 3 which results in a network with 8 NODE processes,
as shown in Figure (3).

n = 3 (15)

The next part of the CSP model is concerned with helper
functions and their recursive implementations. The function
adj(l), defined in Equation 16, returns a set. This set contains
the IDs of all nodes to which the node with ID l is adjacent.
A node is adjacent if the ID differs in only one digit.

adj(l) = adj r(l, {}, 0) (16)

Equation 17 states adj r(l, res, i) as the recursive implemen-
tation of adj(l).

adj r(l, res, i) =

if i = #l then
res

else
adj r l,

vset m(i, b not(vget m(i, l)), l) ∪ res,
i + 1

(17)

where # returns the dimension of the vector, vget m(i, v)
returns the ith entry of vector v, b not(bit) returns 1 if bit = 0

64 The Open Medical Informatics Journal, 2008, Volume 2 Faust et al.

NODE
〈0, 0, 0〉

NODE
〈0, 0, 1〉

NODE
〈0, 1, 0〉

NODE
〈0, 1, 1〉

NODE
〈1, 0, 0〉

NODE
〈1, 0, 1〉

NODE
〈1, 1, 0〉

NODE
〈1, 1, 1〉

c
c

c
c

c c c c

c
c

c.〈0, 1, 1〉.〈1, 1, 1〉.〈〈1, 0, 0〉, 42〉
c

c. 〈1, 0, 1〉︸ ︷︷ ︸
from

. 〈1, 0, 0〉︸ ︷︷ ︸
to

. 〈〈1, 0, 0〉, 42〉︸ ︷︷ ︸
packet

c

c
c

c

c.〈1
,1
,1〉.〈1

,0
,1〉.〈〈1

,0
,0〉,4

2〉

c c

c
c

c
c

io io

io

in.〈0, 1, 1〉.〈〈1, 0, 0〉, 42〉

in/outin/out

in/outout.〈1, 0, 0〉.42

c.from.to

c.from.to
out.l
in.l

Fig. (3). MAILER process network for n = 3

else it returns 0, finally the function vset m(i, val, v) changes
the ith entry in vector v to val.

The function next(l, d), defined in Equation 18, returns the
ID of the mailer node to which the message must be routed.
The second part, defined in Equation 19, states the recursive
definition of this functionality.

next(l, d) = next r(l, d, 0) (18)

next r(l, d, i) =
if vget m(i, l) 6= vget m(i, d) then

vset m(i, vget m(i, d), l)
else

next r(l, d, i + 1)

 (19)

A packet has the format 〈address(d),message(m)〉. The fol-
lowing two functions extract message and address respectively.

get message(〈d,m〉) = m (20)
get address(〈d,m〉) = d (21)

Equation 22 defines all nodes as a set which contains all

node IDs.

all nodes = {int2vec(x, n) | x ∈ {0..pow(2, n)− 1}} (22)

where pow(x, y) returns xy and int2vec(x, n) returns an n
dimensional vector where the entries are the binary represen-
tation of the integer x. The constant data defines a set with all
events that can be transferred over the routing channels.

data =

{
〈int2vec(x, n), y〉
| x ∈ {0..pow(2, n)− 1}, y ∈ {1}

}
(23)

Now, we are ready to start with the definition of the atomic
NODE processes. The functionality is so complex that the
process is broken into four processes.

The first of these processes is NODE(l). This process ac-
cepts a packet from the routing channels c.i.l where i ∈ adj(l)
or a message from the input channel in.l before it behaves like
CHECK.

NODE(l) = 2i∈adj(l)
c.i.l?m→ CHECK(l,m)

2 in.l?m→ CHECK(l,m)
(24)

A pervasive design strategy for distributed health care systems The Open Medical Informatics Journal, 2008, Volume 2 65

where l is the node index and c.i.l?m indicates that the process
inputs the message m from the channel c.i.l.

The second process CHECK(l,m) checks whether or not it
is the destination of the packet. If it is the destination, then
the process behaves like OUTPUT else like ROUTE.

CHECK(l,m) =

if get address(m) = l then

OUTPUT(l,m)
else

ROUTE(l,m)

 (25)

where l is again the node index and m is the data packet.
The ROUTE process sends the packet to the next NODE

process on the shortest path to the destination. After the
message is sent out, the process behaves like NODE again.

ROUTE(l,m) =
c.l.next(l, get address(m))!m→ NODE(l) (26)

where c.l.next(l, get address(m))!m outputs the message m
over the channel c.l.x and x is the next NODE process to
which the message is routed.

The OUTPUT(l,m) sends the message part of the packet
over out.l before it behaves like NODE again.

OUTPUT(l,m) = out.l!m→ NODE(l) (27)

Equation 28 defines αNODE as the set of all events in which
a particular process NODE(i) can engage. In CSP this set is
known as the alphabet.

αNODE(i) = {| in.i, out.i, c.x.i, c.i.x | x ∈ adj(i) |} (28)

The MAILER process is the parallel combination of all the
2n individual NODE processes.

MAILER = ‖αNODE(i)

i∈all nodes
NODE(i) (29)

the alphabetised parallel operator defines that a particular
NODE(i) synchronises with all events of its alphabet.

3.3. Stability considerations
We use the FDR tool to find the deadlock condition.

Equation 30 instructs the tool to perform a deadlock analysis.

assert MAILER :[deadlock free [F]] (30)

Figure (6) on Page 68 shows that there is at least one deadlock
condition in the system.

We use the debugging capabilities of the FDR tool to
identify the deadlock state. Figure (4) shows the MAILER
process network diagram generated by the FDR tool. In the
FDR GUI this figure represents the MAILER process in the
deadlock state. That means it is possible to study the set of
events which a particular process accepts when the complete
system is in the deadlock state. Similarly, it is possible to
determine the set of events which a particular process refuses
in the deadlock state. Furthermore, it is possible to see the trace
of each process. The trace of the MAILER process constitutes
the sequence of events which lead to deadlock. Equation 31
shows a possible deadlock trace of the MAILER. From this
trace it is clear that this particular deadlock occurs when each

node process receives a packet from the environment via the in
channel. Effectively, this blocks the complete network, because
all NODE processes try to send a packet over the routing
network and no NODE process is able to receive.

〈in.〈1, 1, 1〉.〈〈1, 1, 0〉, 1〉,
in.〈0, 0, 0〉.〈〈0, 1, 1〉, 1〉,
in.〈0, 1, 1〉.〈〈1, 0, 1〉, 1〉,
in.〈1, 0, 0〉.〈〈0, 0, 0〉, 1〉,
in.〈1, 0, 1〉.〈〈0, 0, 1〉, 1〉,
in.〈0, 1, 0〉.〈〈0, 0, 0〉, 1〉,
in.〈1, 1, 0〉.〈〈1, 1, 1〉, 1〉,
in.〈0, 0, 1〉.〈〈0, 0, 0〉, 1〉〉

(31)

3.4. MAILER ARBITER CSP model
In this section we extend the MAILER functionality with the

ARBITER process in order to avoid the deadlock. Figure (5)
shows an ARBITER centric view of the MAILER ARBITER
system. The MAILER functionality is just represented by the
NODE processes. As a matter of fact the NODE processes can
be seen as the interface of the MAILER.

The system relies on the blocking capability of the p2arb
channels. Each producer P(i) of a message tries to register
with the ARBITER via the p2arb channel. The ARBITER
selects only one event from the connected p2arb channels
and blocks all other communication on these channels. After
having accepted a message from a producer P(i) the ARBITER
expects a message from one consumer C(i) via a c2arb
channel. The ARBITER does not know from which consumer
C(i) it receives the message: this is determined by the MAILER
functionality. If a message, or in this case an event, was
received over a c2arb channel the ARBITER recurses and
allows another producer P(i) to register.

From this description it is clear that the ARBITER func-
tionality ensures that only one message is processed by the
MAILER. This effectively prevents the MAILER from dead-
lock.

3.5. CSP semantics
The functionality of the producer processes P(i), provided

in Equation 32, is straightforward. The in ext.i constitutes the
external interface of P(i), via this interface the environment
can send packages through the MAILER process network.
First the process announces to the ARBITER that it wants to
transfer a packet though the MAILER. If this request is granted,
i.e. an event on the p2arb.i channel occurs, the process is
willing to input a packet from the in ext.i channel. After that
the process sends out this packet via the in.i channel before
it recurses. Note, the sequence of acquiring the permission
from the ARBITER first before inputting the packet from the
in ext channel reduces the model complexity. Without loss of
stability it would be possible to receive the packet first before
permission is acquired. However, this method introduces a
buffer which moderately increases the model complexity. But
this moderate increase in model complexity nearly doubled the
processing resource requirements of the FDR tool.

P(i) = p2arb!i→ in ext.i?x→ in.i!x→ P(i) (32)

66 The Open Medical Informatics Journal, 2008, Volume 2 Faust et al.

Fig. (4). MAILER process network generated by the FDR tool

NODE
〈0, 1, 0〉

NODE
〈0, 0, 1〉

NODE
〈0, 0, 0〉

NODE
〈1, 1, 1〉

NODE
〈1, 1, 0〉

NODE
〈1, 0, 1〉

NODE
〈1, 0, 0〉

NODE
〈0, 1, 1〉

C(0) P(0)

C(1)

P(1)

C(2)

P(2)

C(3)

P(3)

C(4)P(4)

C(5)

P(5)

C(6)

P(6)

C(7)

P(7)

ARBITER

in.from out.to p2arb.from c2arb.from

Fig. (5). Process network of MAILER ARBITER

A pervasive design strategy for distributed health care systems The Open Medical Informatics Journal, 2008, Volume 2 67

The consumer process C(i), defined in Equation 33, con-
sumes a message from the out.i channel and to announce the
consumption via the c2arb.i channel.

C(i) = out.i?x→ c2arb!i→ C(i) (33)

The ARBITER is the last atomic process of the current
model. The process chooses one input event from a p2arb
channel. After that it is only willing to accept an event from
one c2arb channel. The reception of an event from a c2arb
channel indicates that a packet was routed through and has
left the MAILER process, therefore it is safe for the ARBITER
to recurse and thus allow another message to occur on one of
the p2arb channels.

ARBITER =

2from∈all nodes
p2arb?from

→2to∈all nodes
c2arb?to→ ARBITER

(34)

All producer processes act independently from one another.
Therefore, all producer processes P(i) are interleaved to form
the PRODUCER process.

PRODUCER = |||i∈all nodes
P(i) (35)

Similarly, the consumer processes execute independently
from one another. The CONSUMER process is formed by
interleaving all consumer processes C(i).

CONSUMER = |||i∈all nodes
C(i) (36)

The MAILER PRODUCER process is a helper construct
which increases the readability of the model. The process
combines MAILER and PRODUCER with an interface parallel.
Both processes have to agree on all messages of the in channel.

MAILER PRODUCER = MAILER ‖
{|in|}

PRODUCER (37)

The MAILER PRODUCER CONSUMER process is an-
other helper construct which combines MAILER PRODUCER
and CONSUMER via interface parallel. Both processes† have
to agree on all messages which are sent via the out channel.

MAILER PRODUCER CONSUMER =
MAILER PRODUCER ‖{|out|} CONSUMER (38)

Finally, we are able to construct the MAILER -
ARBITER process as the parallel combination of
MAILER PRODUCER CONSUMER and ARBITER. These
processes have to agree upon all messages sent via the
channels p2arb and c2arb.

MAILER ARBITER =
MAILER PRODUCER CONSUMER
‖{|p2arb,c2arb|}
ARBITER

(39)

†Both MAILER PRODUCER and CONSUMER represent process
networks, therefore to write ‘both process networks’ would also be
correct.

3.6. FDR tests of the MAILER ARBITER
This section describes two tests. First we prove that the

MAILER ARBITER process is deadlock free. In a second test
we show that the MAILER ARBITER process behaves accord-
ing to specification. The first test is concerned with stability
and the second is concerned with security and functionality.

The following equation‡ instructs the FDR tool to carry out
a deadlock analysis on the MAILER ARBITER process.

assert MAILER ARBITER : [deadlock free [F]] (40)

This constitutes already the first test. Figure (6) shows that the
test was successful, therefore we have proven that the CSP
model of the MAILER ARBITER process is deadlock free.
This increases the confidence in the stability of the system.

The second test is concerned with security and functionality.
This test requires a specification against which the MAILER -
ARBITER can be tested. The specification defines all the
required functionality and more importantly it does not exhibit
undesired behaviour. One criterion for a good specification is
that it should be different and if possible simpler than the
process to test. These criteria are sometimes hard to fulfil.

The following equation defines the SPEC process which
serves as specification for the MAILER ARBITER process.
Due to the fact that the MAILER ARBITER is an implemen-
tation model which must comply with certain system aspects,
the functionality can be modelled in a much simpler process.
From the outside, all the MAILER ARBITER process does is to
receive a package via one of the in ext channels and then the
message emerges on the out.i channel, where i is the address
of the packet. This leads to the following simple description
of the specification process SPEC.

SPEC =

2i∈all nodes
in ext.i?p

→ out.get address(p).get message(p)
→ SPEC

(41)

The first test is concerned with security. To be specific,
we test whether or not one process is confined to a subset
of functionality of the second process. In CSP this is done
with the trace refinement operation. The following equation
instructs the FDR tool to verify that MAILER ARBITER can
only exhibit a subset of traces of the SPEC process.

assert SPEC @T MAILER ARBITER
\ {| c, p2arb, c2arb, in |} (42)

where the hiding operator ‘\’ prevents internal events from
being detected by an external observer.

The second test establishes the functionality of the
MAILER ARBITER process. This is done via cross refinement,
i.e. we ask whether or not the specification exhibits a subset of
functionality of the system under test. The following equation
instructs the FDR tool to check whether or not the SPEC
process exhibits a subset of traces of the MAILER ARBITER
process.

assert MAILER ARBITER \ {| c, p2arb, c2arb, in |}
@T SPEC (43)

‡Line of code

68 The Open Medical Informatics Journal, 2008, Volume 2 Faust et al.

Both tests, stated in Equations 42 and 43 were successful, this
leads to only one conclusion: MAILER ARBITER and SPEC
can exhibit the same traces.

Fig. (6). Output of the model checker tool FDR

4. CONCLUSION

This paper discussed a pervasive design strategy for dis-
tributed health care systems. Such distributed health care
systems suffer from the same problems as all distributed sys-
tems. Namely, it is difficult to establish security, stability and
functionality of such systems. We addressed these problems
by modelling distributed health care systems with the process
algebra CSP. This leads to process oriented systems where
everything is a process, from a single sensor to the complete
health care system. The main idea behind CSP is that the
individual processes communicate over well defined interfaces.
This leads to systems which can be composed of simpler
components. Furthermore, we could define system properties
such as security, stability and functionality in a formal way.
This leads to mechanised model checking, where specific
system properties can be established.

In the practical section of this chapter we introduced a
simple mailer system. The mailer represents a network of
nodes which have the ability to send messages to one another.
Such functionality is bread and butter for distributed health
care systems. The first attempt to realise the design was
straightforward: there is a meshed routing network between
the individual nodes and each node acts as router, source and
sink for the messages. The formal model of this system, to be
specific the model checking of this formal model, unearthed a
fundamental design flaw. The system deadlocks when all nodes
try to send a message at the same time. Such a situation is
unlikely, but it can happen. From the perspective of distributed
health monitoring systems such a situation could indicate an
emergency. And these are the situations when dependable
systems are required. It is not acceptable that a system can
be overwhelmed in case of an emergency. After the detection
of the deadlock, the removal of the deadlock was trivial. The
solution of having a central arbiter which ensures that only
one message is in the routing network. In practical systems
there might be other and better solutions.

We have abstracted distributed health care systems as a
process network. This process network must comply with high
demands on security, stability and functionality, because the
underlying application is critical for human health. The perva-
sive design strategy helps us to achieve these high demands.
Furthermore, this pervasive process oriented design strategy
is the first step towards a deeper understanding of distributed
health care systems. Based on this deeper understanding the
next step towards decision making systems is possible. These

decision making systems incorporate appropriate feedback
structures which model artificial intelligence. They can also be
understood with the pervasive design strategy. Therefore, the
CSP based design strategy is truly pervasive: it opens the door
for future projects on a secure, stable and functional basis.

REFERENCES

[1] Raghupathi W, Tan J. Strategic IT applications in health care.
Commun ACM 2002;45(12):56–61.

[2] Greenes RA, H SE. Medical Informatics. An emerging academic
discipline and institutional priority. JAMA. 1990;263:1114–
1120.

[3] Consolvo S, Everitt K, Smith I, Landay JA. Design requirements
for technologies that encourage physical activity. In: CHI ’06:
Proceedings of the SIGCHI conference on Human Factors in
computing systems. New York, NY, USA: ACM; 2006. p. 457–
466.

[4] Toscos T, Faber A, An S, Gandhi MP. Chick clique: persuasive
technology to motivate teenage girls to exercise. In: CHI ’06:
CHI ’06 extended abstracts on Human factors in computing
systems. New York, NY, USA: ACM; 2006. p. 1873–1878.

[5] Lee G, Tsai C, Griswold WG, Raab F, Patrick K. PmEB: a
mobile phone application for monitoring caloric balance. In: CHI
’06: CHI ’06 extended abstracts on Human factors in computing
systems. New York, NY, USA: ACM; 2006. p. 1013–1018.

[6] Silva JM, Zamarripa S, Moran EB, Tentori M, Galicia L.
Promoting a healthy lifestyle through a virtual specialist solution.
In: CHI ’06: CHI ’06 extended abstracts on Human factors in
computing systems. New York, NY, USA: ACM; 2006. p. 1867–
1872.

[7] Sohn M, Lee J. UP health: ubiquitously persuasive health
promotion with an instant messaging system. In: CHI ’07: CHI
’07 extended abstracts on Human factors in computing systems.
New York, NY, USA: ACM; 2007. p. 2663–2668.

[8] Tamura T, Kawarada A, Nambu M, Tsukada A, Sasaki K,
Yamakoshi KI. E-Healthcare at an Experimental Welfare
Techno House in Japan. The Open Medical Informatics Journal
2007;1:1–7.

[9] Bental D, Cawsey A. Personalized and adaptive systems for
medical consumer applications. Commun ACM 2002;45(5):62–
63.

[10] Kuhn KA, Giuse DA. From Hospital Information Systems to
Health Information Systems. Method Inform Med 2001;4:275–
287.

[11] Huston TL, Huston JL. Is telemedicine a practical reality?
Commun ACM 2000;43(6):91–95.

[12] Fulcher J. The use of smart devices in eHealth. In: ISICT ’03:
Proceedings of the 1st international symposium on Information
and communication technologies Trinity College Dublin; 2003.
p. 27–32.

[13] Gelbord B, Roelofsen G. New surveillance techniques raise
privacy concerns. Commun ACM 2002;45(11):23–24.

[14] Wilson EV. Asynchronous health care communication. Commun
ACM 2003;46(6):79–84.

[15] Hoare CAR. Communicating sequential processes. Commun
ACM 1978;21(8):666–677.

[16] Abdallah AE, Jones CB, Sanders JW, editors. Communicating
Sequential Processes: The First 25 Years, Symposium on the
Occasion of 25 Years of CSP, London, UK, July 7-8, 2004,
Revised Invited Papers vol. 3525 of Lecture Notes in Computer
Science Springer; 2005.

[17] Lin B, Vercauteren S. Hardware/Software Communication
and System Integration for Embedded Architectures. De-
sign Automation for Embedded Systems, KLUWER Journal
1997;2(8):359–382.

A pervasive design strategy for distributed health care systems The Open Medical Informatics Journal, 2008, Volume 2 69

[18] Welch PH, Brown NC, Moores J, Chalmers K, Sputh B. In-
tegrating and Extending JCSP. In: Communicating Process
Architectures 2007; 2007. p. 349–369.

[19] Roscoe AW. CSP and determinism in security modelling. In: SP
’95: Proceedings of the 1995 IEEE Symposium on Security and
Privacy. Washington, DC, USA: IEEE Computer Society; 1995.
p. 114.

[20] Kerridge J. Testing and Sampling Parallel Systems. In: Com-
municating Process Architectures 2007; 2007. p. 149–162.

[21] Welch PH. A Fast Resolution of Choice between Multiway
Synchronisations. In: Barnes FRM, Kerridge JM, Welch PH,
editors. Communicating Process Architectures 2006; 2006. p. –.

[22] Schneider S. Concurrent and Real-time Systems – The CSP
Approach. 1st ed. 111 River Street, Hoboken, NJ 07030 United
States of America: John Wiley; 2000.

[23] Failures-Divergence Refinement: FDR Manual. 26 Temple
Street, Oxford OX4 1JS England; 1997. Available from: http:
//www.fsel.com/index.html.

[24] Roscoe AW. Theory and Practice of Concurrency. 1st ed. Upper
Saddle River, New Jersey 07485 United States of America:
Prentice Hall; 1997. Download:
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/
68b.pdf.

[25] Gao T, Massey T, Sarrafzadeh M, Selavo L, Welsh M. Partici-
patory user centered design techniques for a large scale ad-hoc
health information system. In: HealthNet ’07: Proceedings of
the 1st ACM SIGMOBILE international workshop on Systems
and networking support for healthcare and assisted living envi-
ronments. New York, NY, USA: ACM; 2007. p. 43–48.

[26] Ganesan D, Estrin D, Heidemann J. Dimensions: why do we
need a new data handling architecture for sensor networks?
SIGCOMM Comput Commun Rev 2003;33(1):143–148.

Received: March 03, 2008 Revised: March 27, 2008 Accepted: April 11, 2008

http://www.fsel.com/index.html
http://www.fsel.com/index.html
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/68b.pdf
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/68b.pdf
hashim
Text Box
© Faust et al. Fujii; Licensee Bentham Open.This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

	1 INTRODUCTION
	2 THE LINK TO CSP
	3 MAILER
	4 CONCLUSION
	REFERENCES

