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Abstract: Event-Related Potentials (ERPs) provide non-invasive measurements of the electrical activity on the scalp re-

lated to the processing of stimuli and preparation of responses by the brain. In this paper an ERP-signal classification 

method is proposed for discriminating between ERPs of correct and incorrect responses of actors and of observers seeing 

an actor making such responses. The classification method targeted signals containing error-related negativity (ERN) and 

error positivity (Pe) components, which are typically associated with error processing in the human brain. Feature extrac-

tion consisted of Multivariate Autoregressive modeling combined with the Simulated Annealing technique. The resulting 

information was subsequently classified by means of an Artificial Neural Network (ANN) using back-propagation algo-

rithm under the “leave-one-out cross-validation” scenario and the Fuzzy C-Means (FCM) algorithm. The ANN consisted 

of a multi-layer perceptron (MLP). The approach yielded classification rates of up to 85%, both for the actors’ correct and 

incorrect responses and the corresponding ERPs of the observers. The electrodes needed for such classifications were 

situated mainly at central and frontal areas. Results provide indications that the classification of the ERN is achievable. 

Furthermore, the availability of the Pe signals, in addition to the ERN, improves the classification, and this is more pro-

nounced for observers’ signals. The proposed ERP-signal classification method provides a promising tool to study error 

detection and observational-learning mechanisms in performance monitoring and joint-action research, in both healthy 

and patient populations. 

1. INTRODUCTION 

 Event-Related Potentials (ERPs) are a class of electroen-
cephalographic (EEG) recordings, usually measured on the 
scalp, when a subject is presented with stimuli (or events). 
Strictly defined experimental protocols guide the administra-
tion of specific stimuli, according to psychological para-
digms or tests. ERP study is focused on parts of the electrical 
potential waveform containing significant local maxima and 
minima, called components or peaks of the ERP. The high 
temporal resolution of ERPs allows for non-invasive obser-
vation of electrical activity changes in the brain, as reflected 
in scalp recordings, during the processing of information 
related to the presentation of the stimuli, therefore permitting 
the concurrent study of psychological measures of cognitive 
operations and of electrophysiological measures of brain 
functioning [1, 2]. When subjects commit incorrect actions, a 
negative deflection of the ERPs is produced, peaking at 
around 80 msec after the initiation of the incorrect response, 
called error-related negativity (ERN) [3, 4]. A positivity fol-
lowing the ERN, the so-called error positivity (Pe) has also 
been described [5], showing a maximum between 200 and 
500 msec after the initiation of the incorrect response. Re-
search has shown that ERN is elicited when there is a  
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mismatch between representations of the actual response and 
the correct response [6, 7]. Pe have been linked to error 
awareness [8, 9]. It therefore seems likely that ERN and Pe 
are related to mechanisms reflecting error detection, a key 
component of performance monitoring [10]. Recently, the 
focus of ERN-research has been extended to include also the 
mechanisms related to the observation of errors committed 
by others, in an effort to elucidate whether the mechanisms 
responsible for learning ‘by doing’ are similar to mecha-
nisms of observational learning [11]. In that work, an ERN 
was also found in a condition where subjects observed the 
incorrect actions of another person, albeit with a lower am-
plitude than the ERN for self-generated errors and a later 
occurrence of the peak. 

 Classification algorithms to discriminate between ERPs 
have been developed for various technical [12-15] and clini-
cal applications [6]. Scalar autoregressive coefficients, ex-
tracted from biosignals and treated as feature vectors in clas-
sification methods, have been widely used for designing 
classifiers in biomedical systems. Tsoi et al. in [16] used one 
channel of EEG to estimate a feature vector consisting of the 
autoregressive (AR) model coefficients. By inputting the 
features to a multilayer neural network, differentiation be-
tween normal subjects and subjects diagnosed as suffering 
from severe obsessive-compulsive disorder (OCD) and from 
severe schizophrenia was achieved. Roberts and Tarassenko 
in [17] investigated the different human sleep states using 
AR model coefficients extracted from a single-channel 
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EEGs. Vasios et al. used AR model features of ERPs as in-
put to a neural network for the classification of patients suf-
fering from first-episode schizophrenia against control sub-
jects [18]. Almost all model-orders between 3 and 10, ac-
cording to the Schwartz order-selection criterion, resulted in 
classification results up to 100% for electrode (C4-T6)/2. 

 When information can be extracted from multiple, simul-
taneously recorded waveforms, the AR model can be replaced 
by the Multivariate Autoregressive (MVAR) model. In the 
MVAR model, features are extracted from a number of input 
signals by using the multivariate analogue of the AR model. 
Mental task discrimination has been investigated using scalar 
and MVAR models of the EEG [19]. Order 3 was found to be 
the optimum using the Akaike information criterion. The fea-
tures were inputted to a feed-forward neural network, resulting 
in a classification accuracy of 91.4%. In another multi-channel 
study, an MVAR model was computed to investigate the syn-
chronization of brain structures, the degree of coupling be-
tween channels, the estimation of phase delays and eventually 
the direction of brain activity spreading [20]. An order of 6 
was found to be adequate to parameterize four-channel data. 
Application of the MVAR model to the current study requires 
the construction of an associated feature vector and the defini-
tion of several parameters such as the number and kind of 
electrodes and the order of the model used. Exhaustive search 
for the selection of the values of these parameters is not feasi-
ble, especially in multi-channel studies recording tens of elec-
trodes. Therefore, methods to reduce the computational load 
should be used. An example was proposed in [21], where the 
MVAR model was combined with a global optimization 
method, the Simulated Annealing (SA) technique to detect 
optimum combinations (number and kind) of electrodes and 
model order. The Fuzzy C-Means (FCM) algorithm was used 
as well as classification with a Multi-layer Perceptron (MLP) 
Artificial Neural Network (ANN). 

 The primary aim of the present study was the develop-
ment and implementation of a classification system for dis-
criminating correct and incorrect responses, as well as obser-
vations of correct and incorrect responses, based on scalp-
recorded ERPs of actors and observers, using features ex-
tracted through the MVAR model in combination with the 
SA technique. The present work is based on subjects’ aver-
ages and is a first step towards future single-trial classifica-
tion. We aimed at investigating the discrimination ability of 
signals including only the ERN, both for the execution and 
the observation condition, and signals including both the 
ERN and the Pe. The study also aimed at investigating and 
comparing the performance of two classifiers, one based on a 
MLP ANN classifier and the other on the FCM method. 

2. SYSTEM DESIGN 

2.1. The Proposed Classification System 

 In this study, two similar classification systems were de-
veloped: one classification system for discriminating correct 
(Class 1) and incorrect (Class 2) responses and a second 
classification system, with the same structure, for discrimi-
nating the observation of correct responses (Class 1) and the 
observation of incorrect responses (Class 2). Classification 
systems each consisted of two modules: the feature-
extraction module and the classification module, as shown in 
Fig. (1). 

 
Fig. (1). Block diagram of the proposed system for the classifica-

tion of ERP waveforms into two classes. In case the system was 

applied for classifying actions, Class 1 corresponded to correct 

actions while Class 2 to erroneous actions. In case the system was 

applied for classifying observations, Class 1 corresponded to obser-

vations of correct actions while Class 2 to observations of errone-

ous actions. 

 The inputs to the first module were each subject’s aver-
aged ERPs waveforms, as computed by the procedure de-
scribed in [11]. The appropriate features were extracted and 
processed by the feature-extraction module, and then fed to 
the classification module. The output of the system encodes 
two classes (Class 1 and Class 2). In case the system is ap-
plied for classifying actions, Class 1 corresponds to correct 
actions and Class 2 corresponds to erroneous actions. In case 
the system is applied for classifying observations, Class 1 
corresponds to observations of correct actions and Class 2 to 
observations of erroneous actions. 

2.2. Feature-Extraction Module 

 In the present work, the MVAR model was used for fea-
ture extraction. When using the MVAR model for ERP clas-
sification and the construction of the feature vector, a num-
ber of parameters have to be selected such as the number and 
the kind of signals (i.e. ERPs recorded at specific electrodes 
whose waveforms will be modeled), the time interval of the 
waveforms to be modeled, and the order of the model to be 
used. An exhaustive search for the selection of the parame-
ters that achieve the best classification rate is practically very 
difficult as the search space for all parameter combinations is 
very large. A further disadvantage of the MVAR model is 
the dependence of the model coefficients on the input sig-
nals, where any modification of the input signals requires 
recalculation of the MVAR coefficients. 

 For these reasons, the method for the extraction of 
MVAR coefficients from ERPs in the present study was 
combined with a global optimization method, the SA tech-
nique [22], to detect optimal combinations of ERP record-
ings, in terms of number and kind, time interval and model 
order, leading to the best classification performance. 

 The implementation of the MVAR model to ERPs is 
based on the principle that the signals are described by a 
linear filter fed with noise. According to this model, each 
value of the signal can be estimated using the values of the 
preceding p samples, as follows [23, 24]: 

x(k)=-A(1)x(k-1)-A(2)x(k-2)+…-A(p)x(k-p)+e(k) k=p,…,N  (1) 

where N is the maximum number of samples available. The 
procedure works for samples with the index (p, p+1, ...), i.e. 
starting after the p minimum number of initialization inputs. 
In Equation (1), x(k) is a d-dimensional vector of data at 
sample with index k and e(k) is a d-dimensional vector of 
random input (noise). Furthermore, A(i), i=1,…,p are the 
dxd  matrices of the AR coefficients to be estimated from 
x(k), k=1,…,N and p is the model order. These coefficients 
construct the feature vector of each subject. 
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 According to the proposed feature-extraction methodol-
ogy, an optimum combination of ERP recordings, in terms of 
number and kind, is obtained by implementing the MVAR 
model in conjunction with the SA technique. The SA tech-
nique provides the advantage of finding a possible global 
minimum (or maximum) in contrast with other local optimi-
zation methods, which require a good initial guess and are 
often trapped to local minima (or maxima) [25, 26]. This 
optimum selection is tested for different model orders, 
within a pre-defined interval, based on the performance of 
the Fuzzy C-Means classifier (FCM) [27]. 

 More specifically, in feature extraction from ERP data, 
an initial random selection of inputs, i.e. ERP recordings (in 
terms of kind and number) is considered. For this selection, 
the MVAR coefficients are extracted, constructing the fea-
ture vector for each subject. These coefficients are fed to a 
classifier, based on the FCM algorithm, and the classification 
rate is then calculated. After several iterations, as defined by 
the SA algorithm, an optimum combination of ERP record-
ings is extracted corresponding to the best classification rate 
achieved. 

 According to the aforementioned MVAR model, a fea-
ture vector was constructed with a dimensionality of p xdxd , 
where p is the model order and d is the number of ERP sig-
nals. 

2.3. Classification Module 

 The classification module consisted of a Multi-layer Per-
ceptron Artificial Neural Network (MLP ANN) trained with 
the back-propagation algorithm. The selection of the topol-
ogy of the ANN is a methodological aspect that was investi-
gated in the present work. Various methodologies for the 
selection of the number and the size of hidden layers in 
ANNs have been used, including evolutionary strategies and 
genetic algorithms [28, 29], network pruning techniques 
[30], network growing techniques [31], as well as extensive 
network architecture search [32]. 

 In the present work, we opted for an extensive network 
architecture search strategy, scanning combinations of net-
work structure parameters, in order to compare the perform-
ance of 3-layered and 4-layered networks with one or two 
output neurons. Specificity was computed as the percent 
ratio of the correctly classified correct actions (observations 
of correct actions) to the total number of correct actions (ob-
servations of correct actions). Sensitivity was computed as 
the percent ratio of the correctly classified incorrect actions 
(observations of incorrect actions) to the total number of 
incorrect actions (observations of incorrect actions). Nega-
tive predictive value was computed as the percent ratio of 
correctly classified correct actions (observations of correct 
actions) to the total number of actions classified as correct 
(observations of correct actions) and positive predictive 
value the percent ratio of correctly classified incorrect ac-
tions (observations of incorrect actions) to the total number 
of actions classified as incorrect (observations of incorrect 
actions). The overall classification rate (CR) was computed 
as the percent ratio of correctly classified actions (observa-
tions of actions) to the total number of actions (observations 
of actions). 

 As a result of the network structure selection investiga-
tion, based on empirical test results using the set of data of 

the present study, the classification module was implemented 
with an ANN consisting of three layers. The input layer con-
sisted of a number of neurons equal to the number of the 
selected features. The hidden layer contained a number of 
neurons equal to one fifth of the input neurons. The output 
layer consisted of one neuron, encoding the two classes of 
actions (observations): correct actions (observations of cor-
rect actions) and incorrect actions (observations of incorrect 
actions). In addition to the MLP ANN classifier, the Fuzzy 
C-Means classifier (FCM) [27] was implemented in order to 
compare its classification performance with the results of the 
MLP ANN. 

3. MEASUREMENT AND COMPUTATIONAL METHODS 

3.1. Subjects and ERP Recording Procedure 

 The ERP data used in the present study were collected in 
previous research [11]. The data were acquired from 16 
healthy volunteers. Participants were faced in front of a table 
facing an experimenter, having in front of them, on the table, 
two joystick devices positioned to the left and right of a LED 
stimulus device. Participants took part in an execution condi-
tion and an observation condition. In the execution condition 
they had to perform an Eriksen flanker task. In this kind of 
choice reaction tasks, used in Cognitive Psychology 
research, a participant is expected to respond to a centered 
and directed item surrounded or flanked by distracting 
symbols, such as arrows or letters [33, 34]. In the experiment 
used in [11], participants responded to the direction (right or 
left) of a center arrowhead, by moving the corresponding 
joystick with the thumb in an outward direction. The center 
arrowhead was surrounded by four distracting flanker ar-
rowheads, two on each side, pointing either in the same di-
rection as the center arrow (congruent flankers), or in oppo-
site direction (incongruent flankers). In the observation con-
dition, subjects observed an experimenter performing the 
task. EEG activity was recorded from 47 electrodes, labeled 
1 to 34 and 37 to 49 in the montage shown in Fig. (2), as 
well as vertical and horizontal electro-oculograms. Sampling 
rate was 250 Hz, and the data used for ERN analysis were 
filtered using a 1-14Hz bandpass filter. Correct and incorrect 
trials were averaged separately per condition (execution and 
observation) over a 700 ms epoch (baseline 100-0 ms before 
response). Trials to be included in the averaging process had 
been selected according to an Response Time-matching pro-
cedure between correct and incorrect trials (described in 
[11]) to mitigate the differential contribution of stimulus-
related activity in the ERP. For the present study one subject 
average from the execution condition was missing resulting 
in averages from 15 subjects for the execution condition, and 
16 subjects for the observation condition, included for classi-
fication. 

3.2. Time Interval Selection and Electrode Region Selec-
tion for Waveforms MVAR Modeling 

 The time intervals from the averaged curves, to be used 
in the present study, for extracting MVAR features were 
selected as follows: In the study of van Schie et al. [11], the 
difference between correct and incorrect trials was signifi-
cant in the time window from -6 to 146 msec for the execu-
tion condition and in the time window from 90 to 318 msec 
for the observation condition. Consequently, the actors’ re-
sponses were investigated using the -6 to 146 msec time 
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window and the observers’ responses, using the 90 to 318 
msec time window. Furthermore, in order to investigate the 
contribution of ERP components occurring later than the 
ERN, i.e. the Pe component, a time window starting at -6 
msec and ending at 500 msec after response, expected to 
include the Pe component, was included in the analysis. The 
question could then be addressed, if availability of the Pe, in 
addition to the ERN would improve classification perform-
ance. Another benefit of choosing the -6 to 500 msec win-
dow, was the possibility to compare, in a common time win-
dow, the performance of classifiers built for the classifica-
tion of the ERPs of the actors to the performance of classifi-
ers build for the classification of observers’ ERPs. Lastly, a 
time window, starting at -6 msec and ending at 700 msec 
after the response, was selected for analysis, in order to in-
vestigate the robustness of the classification with additional 
noise introduced with longer data windows. 

 For the selection of electrodes used in the MVAR model-
ing procedure, the search space was reduced into two sub-
regions of the 47 electrodes available. The first sub-region 
(SR-1) corresponded to 34 electrodes, surrounded by the 
thick dashed line shown in Fig. (2), excluding the electrodes 
placed on the external circumference of the 47 electrodes 
montage. In the second sub-region (SR-2) we focused the 
search space even more than in the previous region, by fo-
cusing at electrodes around the vertex, i.e. only electrodes 1 

to 7 and 10 to 18 were kept. SR-2 is surrounded by the thick 
dotted line shown in Fig. (2). 

 For both sub-regions, SR-1 and SR-2, the order of the 
model used varied from 3 to 13 and the number of electrodes 
in each combination varied from 2 to 8. The MVAR parame-
ters were extracted for the aforementioned time intervals, i.e. 
-6 to 146 msec, -6 to 500 msec and -6 to 700 msec, for the 
execution condition and 90 to 318 msec, -6 to 500 msec and 
-6 to 700 msec, for the observation condition, respectively. 

3.3. ANN Training and Testing Procedure 

 The back-propagation algorithm with adaptive learning 
rate and momentum was used to train the ANN [35]. The 
initial weights of the neurons were randomly selected in the 
range [-1.0, +1.0]. Log-sigmoid and tan-sigmoid activation 
functions were used for the hidden and the output layer, re-
spectively. The values of the learning rate and the momen-
tum were estimated using a process of trial-and-error, until 
no further improvement in classification could be obtained. 

 Training and cross-validation of the ANN, would pose 
too strong of a computational load, if all combinations of 
electrodes would have had to be used. Instead, the speed of 
the optimization procedure provided by the SA algorithm, in 
combination with the FCM method, was used for eliminating 
the need for extensive search. According to this scheme, the 
FCM algorithm was the first classifier to be used. Then, for  
 

 

Fig. (2). Montage used for the EEG recording. The electrodes on the central line correspond to those of the 10%-system. Electrodes used 

were 1 to 34 and 37 to 49. Sub-region SR-1 is included inside the thick dashed line and sub-region SR-2 inside the thick dotted line. 
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Fig. (3). The grand average curves for electrodes 1,8,9,11,13-15,17,19: (a) for actors’ ERPs correct (dashed lines) and incorrect (solid lines) 

responses, and (b) for ERPs of observers’ observations of correct (dashed lines) and incorrect (solid lines) responses. The vertical axis has 

negative values upwards. The number above each pair of curves indicates the electrode. 
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each time interval checked, the electrodes that provided the 
best classification rates for the FCM algorithm, were the 
electrodes whose MVAR features were used as inputs to the 
ANN. The leave-one-out cross-validation procedure [36] was 
adopted to test the performance of the network in a reliable 
manner, taking into account the limited number of cases 
available in the classes, and in the same time achieving an 
acceptable generalization in the classification and avoiding 
overtraining. 

4. RESULTS 

 The grand average curves for representative electrodes of 
SR-1 for the actors’ ERPs correct and incorrect responses are 
presented in Fig. (3a), and for the observers’ ERPs in Fig. 
(3b). Classification results obtained with the MVAR/SA 
method, for both actors and observers (correct or incorrect 
actions), for both classification systems (the MLP-ANN 
classifier and the FCM method) are presented in Table 1. 

 Concerning the classifiers built for discriminating correct 
and incorrect actions based on actors’ ERPs, as can be seen 
in Table 1, the best overall classification performance for 
sub-region SR-1 was 86% for every time interval investi-
gated, using an order of p=4. Results were similar for both 

the FCM classifier and the ANN classifier using cross-
validation. For sub-region SR-2, classification performance 
again reached 86%, but only for the -6 to 500 msec time 
window, again for an order of p=4. Nevertheless, the classi-
fication performance reached levels equal or higher than 
80% for all time intervals used in SR-2, and again the two 
classification systems (the ANN with cross-validation and 
the FCM method) proved to provide similar overall classifi-
cation rate, when results are inspected overall. 

 Concerning the classifier built for discriminating the ob-
servation of correct and incorrect actions based on observers’ 
ERPs, again classification rates higher or equal to 80% were 
reached, for both sub-regions, SR-1 and SR-2, but only for 
the intervals from -6 to 500 msec and -6 to 700 msec. In both 
cases, the optimal order was p=5. Classification performance 
based on the window selected to fit the observation ERN fell 
just below 80%, reaching a classification performance of 
78% for both sub-regions, SR-1 and SR-2, respectively. The 
best classification performance (87%) was reached for sub-
region SR-2 using the FCM method for the time interval -6 
to 500 msec. The truth tables for the best classification per-
formance for both actors and observers are presented in Ta-
ble 2. 

 

Table 1. Overall Best Classification Rates (CR) for Actors’ Correct or Incorrect Actions and for Observers’ Observations of Cor-

rect or Incorrect Actions 

 

Classification of Actors’ Correct or Incorrect Actions 

Sub-Region SR-1 

Overall Classification Rate - CR 
Time Interval (msec) Electrode Position Model Order (p) 

MLP-ANN Classifier Using Cross-Validation FCM 

-6 to 146 [1 5 7 11 20 21 30] p=4 86% 83% 

-6 to 500 [1 9 10 25 30 31 32] p=4 86% 83% 

-6 to 700 [7 8 11 13 16 29 32] p=4 83% 86% 

Sub-Region SR-2 

-6 to 146 [2 4 6 18] p=5 76% 80% 

-6 to 500 [11 12] p=4 86% 83% 

-6 to 700 [11 12] p=4 83% 83% 

Classification of Observers’ Observations of Correct or Incorrect Actions 

Sub-Region SR-1 

90 to 318 [1 4 16 18] p=4 75% 78% 

-6 to 500 
[2 7 12 21 25 31] 

[8 9 15 20 23 25] 

p=5 

p=3 
80% 80% 

-6 to 700 [8 11 19 23 24 30] p=5 84% 84% 

Sub-Region SR-2 

90 to 318 [1 4 16 18] p=4 78% 78% 

-6 to 500 [2 3 4 6 14 16] p=5 84% 87% 

-6 to 700 [3 5 18] p=5 84% 81% 

CR results are given using the Multivariate Autoregressive/Simulated Annealing (MVAR/SA) feature extraction method for different time intervals and the best order model in 

conjunction with the Fuzzy C-Means (FCM) method and the Multi-layer Perceptron Artificial Neural Network (MLP-ANN) classifier using cross-validation, for both sub-regions 
SR-1 and SR-2. The electrodes whose AR parameters are estimated are also provided for each case. 
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 By inspecting the truth Table 2a for the case of the best 
overall classification performance for actors’ actions, using 
sub-region SR-1, in the time window -6 to 146 msec, which 

was achieved using the MLP-ANN classifier with cross vali-
dation, we must note the excellent sensitivity (100%) and 
excellent negative predictive value (NPV) (100%), while the 

Table 2a. Truth Table for Classification Performance of Actors’ Actions in the Time Window -6 to 146 msec, Using the Cross-

Validated ANN, for Sub-Region SR-1 

 

Classifier Output 
 

Correct Action Incorrect Action 
 

Correct Action 11 4 73 % Specificity 
Desired Classification Results 

Incorrect Action 0 15 100 % Sensitivity 

100 % 78 % 86 % Overall Classification Rate 
 

NPV PPV  

 

Table 2b. Truth Table for Classification Performance of Actors’ Actions in the Time Window -6 to 500 msec, Using the Cross-

Validated ANN, for Sub-Region SR-2 

 

Classifier Output 
 

Correct Action Incorrect Action 
 

Correct Action 12 3 80% Specificity 
Desired Classification Results 

Incorrect Action 1 14 93% Sensitivity 

92% 82% 86% Overall Classification Rate 
 

NPV PPV  

 

Table 2c. Truth Table for Classification Performance of Observers’ Observations in the Time Window -6 to 700 msec, Using the 

Cross-Validated ANN, for Sub-Region SR-1 

 

Classifier Output 

 
Observation of 

Correct Action 

Observation of 

Incorrect Action 

 

Observation of 

Correct Action 
13 3 81 % Specificity 

Desired Classification Results 

Observation of 

Incorrect Action 
2 14 87 % Sensitivity 

86 % 82 % 84 % Overall Classification Rate 
 

NPV PPV  

 

Table 2d. Truth Table for Classification Performance for Observers’ Observations in the Time Window -6 to 500 msec, Using the 

FCM Method, for Sub-Region SR-2 

 

Classifier Output 

 
Observation of 

Correct Action 

Observation of 

Incorrect Action 

 

Observation of 

Correct Action 
13 3 81 % Specificity 

Desired Classification Results 

Observation of 

Incorrect Action 
1 15 93 % Sensitivity 

92 % 83 % 87 % Overall Classification Rate 
 

NPV PPV  



Classification of Event-Related Potentials Associated with Response Errors The Open Medical Informatics Journal, 2009, Volume 3    39 

system generates specificity and positive predictive (PPV) 
values that are lower than 80%. The inspection of the truth 
Table 2b for the best overall classification performance for 
actors’ actions in sub-region SR-2, which occurred using the 
MLP-ANN classifier with cross validation, for the time win-
dow -6 to 500 msec, indicates a sensitivity and NPV greater 
than 90%, while the specificity and PPV remains at levels 
higher than 80%. Truth Table 2c for the case of best overall 
classification performance for observations of actions by the 
observers, which occurred for sub-region SR-1, in time win-
dow -6 to 700 msec, using the MLP-ANN classifier with 
cross validation, indicates a sensitivity and NPV greater than 
90%. Finally, the truth Table 2d for the case of best overall 
classification performance for observations of actions by the 
observers, which occurred for sub-region SR-2, in time win-

dow -6 to 500 msec, using the FCM method, is very similar 
to the truth table of Table 2b and indicates again a sensitivity 
and NPV greater than 90%, while the specificity and PPV 
remains at levels higher than 80%. 

 The combinations of electrodes providing the best classifi-
cation results, whose truth tables have been presented above, 
are shown in Fig. (4). The squares present the electrodes 
whose AR parameters were used in the MVAR/SA model 
providing the best overall classification rate of actors’ actions 
and of observers’ observations for specific time intervals and 
for the sub-regions SR-1 and SR-2, which are included within 
the thick dashed and dotted lines, respectively. For the actors, 
in region SR-1, in the case providing the best classification 
rate, i.e. the classifier based on the -6 to 146 msec interval, 
electrodes used included anterio-frontal, central and centro-

(a) (b) 

  

(c) (d) 

  

Fig. (4). Visual representation of the electrode combinations (indicated by squares) corresponding to the best classification rate achieved for 

actors’ actions and observers’ observations and for the two sub-regions SR-1 and SR-2 (regions within the thick dashed and dotted lines, 

respectively). Electrode combinations for the best classification rate achieved for actors’ actions: (a) in the time window -6 to 146 msec for 

SR-1, and (b) in the time window -6 to 500 msec for SR-2, using both the ANN classifier with cross validation. Electrode combinations for 

the best classification rate achieved for observers’ observations: (c) in the time window -6 to 700 msec for SR-1 using the ANN classifier 

with cross-validation, and (d) in the time window -6 to 500 msec for SR-2 using the FCM method. 
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parietal and a left parietal electrode. For the SR-2 region, in 
the case providing the best classification rate, i.e. the classifier 
based on the -6 to 500 msec interval, electrodes used included 
only two right central and centro-posterior electrodes. In the 
observation condition, for SR-1, in the case providing the best 
classification rate, i.e. the classifier based on the -6 to 700 
msec interval, electrodes used included anterior-frontal ones 
bilaterally, as well as two right central and fronto-central elec-
trodes and the same left parietal electrode as in the actors’ SR-
1 case above. For the observation condition and the focused 
search space (SR-2), the best classification rate was provided 
for a classifier using features from the ERP at the time interval 
at -6 to 500 msec and using fronto-central, centro-parietal and 
a midline parietal electrode. It should be noted, however, that 
the above approach provides only indirect and two-
dimensional indications about relations between brain regions 
and ERP classification accuracy. More direct inferences about 
brain regions related to the differential response of both actors 
and observers, to correct and incorrect actions, can only be 
gained by using inversion techniques for the three-dimensional 
localization of brain activity, and applying the methodology of 
the present study to the time series of the intracranial quanti-
ties that these techniques compute [21, 37, 38]. 

 The robustness of the MVAR/SA method, in terms of 
classification rate, was tested against two parameters: the 
model order and the number and kind of electrodes that were 
combined. Concerning model order, criteria for order selec-
tion, such as the Schwarz Bayesian Criterion and the Final 
Prediction Error Criterion [24], were examined, yielding that 
the best representation accuracy was achieved with model 
order varying from 3 to 8, for all electrode combinations. 
Additionally, previous research [18, 19] and experimental 
trials have pointed out that the optimum classification rate is 
achieved using similar values of model order. To be com-
plete, however, model orders ranging from 3 to 13 were ex-
amined in this study. In Fig. (5a), the robustness of the 
MVAR/SA model is presented in terms of the classification 
rate using the MLP-ANN classifier for different model or-
ders p and for both correct and incorrect actors’ actions in 
the time window -6 to 146 msec using electrodes [1 5 7 11 
20 21 30] for the SR-1 sub-region. From the results, it is evi-
dent that the best classification rate was achieved for a model 
order of p=4 for this specific case as seen in Table 1. Simi-
larly, in Fig. (5b), a model of order p=5 achieved the best 
classification rate for both correct and incorrect observed 
actions in the time window -6 to 700 msec using electrodes 
[8 11 19 23 24 30] for the same sub-region (SR-1). 

 Apart from using a sub-set of the available electrodes for 
creating the search space, during the implementation process, 
the proposed system allowed a maximum number of 8 elec-
trodes to be combined for the calculation of the MVAR coef-
ficients. This decision was also taken in order to reduce the 
computational complexity of the search process. After sev-
eral trials, it was found that optimal classification results 
corresponded to combinations consisting of less than 8 elec-
trodes. As a result, further expansion of the process, by com-
bining more than 8 electrodes, was deemed not necessary. 
Furthermore, robustness testing of the MVAR/SA method, 
with respect to the number and kind of electrodes that were 
combined, indicated that deviation from the combinations 
selected by the MVAR/SA method leads to deterioration of 
classification performance. A characteristic result concerning 

actors’ actions had as follows: According to Table 1, the 
optimal combination of electrodes provided by the proposed 
methodology was electrode combination [1 5 7 11 20 21 30], 
for actors’ actions for a model order of 4 resulting in a classi-
fication rate of 86% for the sub-region SR-1. If one of the 
electrodes, i.e. electrode 21, is omitted the performance is 
reduced to 83%. If one of the electrodes, i.e. electrode 21, is 
replaced by another electrode, i.e. electrode 34, the perform-
ance is reduced to 80%. Similarly, if a new electrode, i.e. 
electrode 34, is added to the initial combination of elec-
trodes, a classification rate of 73% is obtained. 

5. DISCUSSION 

 This paper reports an ERP classification method capable of 
discriminating between an actor’s brain potentials that accom-
pany correct and incorrect responses as well as the brain poten-
tials that occur in an observer looking at those responses. The 
requirement to use information existing in concurrently re-
corded ERP waveforms, leads to the creation of an unpractical 
large search space for selecting the MVAR/SA model providing 
the best classification rate. The combination of the MVAR 
model with the SA optimization technique, as proposed in the 
present work, provides a principled way to reduce the computa-
tional complexity of the search process. Nevertheless, even us-
ing the SA technique, we followed a gradual approach with 
respect to the degrees of freedom allowed in the search process, 
so that a compromise between satisfactory classification rates 
and computational complexity was reached. 

 In this framework, the MVAR/SA model in conjunction 
with two classifiers were implemented towards the classifi-
cation of correct and incorrect responses, as well as observa-
tion of correct and incorrect responses, based on scalp-
recorded ERPs of actors and observers. For the classification 
of actors’ responses, the best overall classification perform-
ance reached 86%. The classifier used for discriminating 
responses viewed by observers achieved an overall classifi-
cation performance of 87%. In particular, the sensitivity and 
consequently the NPV reached 100% for the case of actors’ 
actions in the time interval -6 to 146 msec using the MLP-
ANN classifier with cross-validation, indicating that the pro-
posed system was able to completely discriminate all the 
incorrect actions of actors without any loss. From the ob-
tained results, it is noticeable that in general, both the sensi-
tivity and the NPV remain in high rates (up to 90%) for both 
actors and observers whereas the specificity and the PPV 
remains constant in lower rates (up to 80%). 

 An important aspect of our study was the selection of 
specific time windows from ERPs of actors and observers. 
Specifically, for the actors’ data, the time interval -6 to 146 
msec was selected to include the ERN as reported in the 
original study of van Schie et al. [11]. A time interval from 
90 to 318 msec was selected to fit the observers’ ERN in 
conformance to the original findings ([11]). An additional 
interval from -6 to 500 msec was included to investigate the 
contribution of ERP components occurring later than the 
ERN, i.e. the Pe component. A final interval from -6 to 
700msec was included to investigate the robustness of the 
classification with additional noise introduced with longer 
data windows. Results indicate that the classification of re-
sponses based exclusively on the ERN is possible. Further-
more, results indicate that the inclusion of the time window 
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overlapping with the ERN and the Pe provides a small im-
provement, as e.g. indicated in the case of SR-2 for the exe-
cution actors’ condition, and in a more pronounced way in 
both sub-regions in the observation condition. The use of the 
longest data window, which was hypothesized to introduce 
signals unrelated to the cognitive processes under investiga-

tion, provided mixed results. In some cases a slight deterio-
ration of performance was apparent, such as in SR-2 for both 
conditions, while in the case of SR-1 in the observation con-
dition an improvement was noted. This suggests that classi-
fication performance maintains its robustness when more 
prolonged data intervals are analyzed. 

(a) 

 

(b) 

 

Fig. (5). Performance of the classification system for different model orders used by the MVAR/SA method and the MLP-ANN classifier for 

the sub-region SR-1. (a) using actors’ actions in the time window -6 to 146 msec and (b) using observers’ Observation of actions in the time 

window -6 to 700 msec. 
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 The search space for electrodes used in the MVAR/SA 
modeling procedure was reduced to two sub-regions of the 
total 47 electrodes available: The sub-region SR-1 corre-
sponded to 34 electrodes, excluding the electrodes placed on 
the external circumference of the 47 electrode montage and 
sub-region SR-2 focused on electrodes located around the 
vertex. The aim of this search space reduction was primarily 
to reduce the computational complexity of the feature extrac-
tion and classification problem, without affecting the classi-
fication performance. The reduction was based on the fact 
that scalp ERN difference-wave distributions ([11]), for both 
execution and observation conditions, are subdued at periph-
eral electrode positions. Results indicate that there were no 
clearly discernible differences between the classifiers built, 
on the basis of electrode features of the two sub-regions. 
Furthermore, little consistency was found between the loca-
tion of electrodes for SR-1 and SR-2 solutions of actor and 
observer data, suggesting that both the selection of sub-
regions and the nature of the error signal (actor/observer 
generated) may largely influence the optimal choice of elec-
trodes that may be used for classification. 

 Additionally, an investigation of the robustness of the 
MVAR-SA method was performed, in terms of classification 
rate, for the selection of the model order and the number and 
kind of electrodes that were combined. The analysis indi-
cated that model orders of p=4 and p=5 provided the best 
classification results for the execution and observation con-
dition respectively, and deviation from the electrode combi-
nations selected by the MVAR/SA method resulted in dete-
rioration of classification performance. 

 The performance of the proposed classification system 
was tested with two different classifiers, i.e. the MLP-ANN 
classifier and the FCM algorithm. From the results in Table 
1, it can be seen that both classifiers achieved similarly high 
classification rates. In the actor condition, the MLP-ANN 
classifier using the cross-validation method slightly outper-
formed the FCM method. It must be pointed out that the 
MLP-ANN classifier for the actors’ ERPs in the time win-
dow -6 to 146 msec provided excellent sensitivity (up to 
100%) and consequently excellent NPV. For the observers’ 
actions, the FCM method achieved slightly better classifica-
tion rates than the MLP ANN classifier, especially for the 
time intervals -6 to 500 msec and the sub-region SR-2. 

 In conclusion, the present study showed that the MVAR 
approach can be used reliably for the classification of brain 
potentials accompanying erroneous and correct actions, both 
for actors and observers. The additional SA technique may 
be used confidently to minimize the search space for the se-
lection of relevant features such as the amount and set of 
electrodes, the model order, and the data interval, leading to 
the best classification performance. The two classifiers that 
were investigated, the MLP ANN method and the FCM ap-
proach yielded similarly high level performance rates, sug-
gesting that both models may be used interchangeably for 
classification of brain potentials associated with correct and 
incorrect behaviors. The analysis of different time windows 
revealed comparable performance for all three intervals, 
suggesting that the MVAR model is largely unaffected when 
time intervals are prolonged. Results suggest a slight im-
provement for the classification of brain potentials of ob-
servers when the Pe is included in the data interval in addi-

tion to the ERN. For the actor condition the ERN provides an 
optimal signal for classification, with little or no improve-
ment from inclusion of the Pe. Both the selection of sub-
regions (30 electrodes or 16 electrodes) and the nature of the 
signal (from the actor or from the observer) may largely in-
fluence the optimal selection of electrodes for classification. 
Among other benefits, automated classification systems, 
through the features providing best classification results, 
provide indications about underlying mechanisms related to 
pathological processes, when the systems are applied to neu-
ropsychiatric disorders. In this perspective, future research 
will include the evaluation of the classification system in 
data from patient populations that had been investigated in 
the framework of error processing research such as patients 
suffering from Attention deficit hyperactivity disorder, ob-
sessive-compulsive disorder, depression and schizophrenia 
[39]. Insights might be provided both about potential mecha-
nisms of the illnesses and error monitoring [10]. Finally, 
with knowledge gained from the medical applications, in a 
more general context, our study may foster the future devel-
opment of systems capable of automatically detecting erro-
neous actions in human-human and human-artificial agent 
interactions. In this perspective, future work will include the 
performance evaluation of the above classification algo-
rithms on single-trial recordings of both actors and observers 
performing controlled joint-action tasks, for the implementa-
tion of classification systems, that will eventually enable the 
discrimination between such actions in real-time, with appli-
cations in fields were human performance monitoring is 
critical, such as flying, driving and industrial process moni-
toring. 
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