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Abstract: We present an application of wavelet-based Information Theory quantifiers (Normalized Total Shannon 

Entropy, MPR-Statistical Complexity and Entropy-Complexity plane) on red blood cells membrane viscoelasticity 

characterization. These quantifiers exhibit important localization advantages provided by the Wavelet Theory. The present 

approach produces a clear characterization of this dynamical system, finding out an evident manifestation of a random 

process on the red cell samples of healthy individuals, and its sharp reduction of randomness on analyzing a human 

haematological disease, such as -thalassaemia minor. 
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INTRODUCTION 

 Fractal analysis has been applied with great success to 
many different biological systems, and many of them have 
been found to be either spatial or temporal fractals [1]. The 
present model of erythrocytes (blood cells) viscoelastic 
properties is another example of a temporal fractal in 
biological systems. The clinical interpretation of erythrocyte 
deformation attempts to link pathological features with the 
visual microscopy inspection of erythrocyte samples. It is 
well known that on healthy donors the erythrocytes are 
discocytes which is the dynamical expression of the best 
capability of the cells to be able to adapt in flow. Human red 
blood cells are viscoelastic, showing viscous and elastic 
components integrated in a complex viscoelasticity when 
undergo fluid shear stress. This dynamic behaviour has a 
physiological significance since in vivo the erythrocytes 
continually change their shape and adapt passively to 
capillary circulation. The objective of the present work is to 
investigate and characterize different populations of red 
blood cells subjected to fluid shear stress, by means of 
Information Theory tools, in particular by the use of the 
Entropy-Complexity plane. 
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 Our preliminary studies on red blood cells (RBC) 
complex behaviour [2-6], have shown the competition 
between stochastic ordinal Brownian motion (oBm) and 
fractional Brownian motion (fBm), and deterministic 
behaviour and makes a crossover from one relaxation 
scenario to the other subjected to shear stress. On this basis 
we applied a new concept in the study of the manifestation 
of this behaviour. We introduce Wavelet based Information 
Theory quantifiers: the Normalized Total Shannon Entropy, 
the Martín-Plastino-Rosso (MPR) Statistical Complexity and 
in particular the complexity-entropy plane [7-9], to find out 
the evident manifestation of a random process on the red cell 
samples of healthy individuals (controls), and its sharp 
reduction of randomness on analyzing a human 
haematological disease, such as -thalassaemia minor. 

 -thalassaemia syndromes constitute an heterogeneous 
group of genetic alterations characterized by deficient or 
absence synthesis of -globin chain [10]. Heterozygous -
thalassaemia is associated with morphological changes 
consisting of microcytosis, decreased red blood cells 
haemoglobin concentration, and high haemoglobin A2 
levels. Rheological studies in -thalassaemia carriers suggest 
the existence of decreased red cell deformability [11]. 
However, to our best knowledge, there are no reports on 
thalassaemia erythrocytes complexity quantification using 
these novel quantifiers. So far, the wavelet based 
complexity-entropy plane of erythrocytes performed by laser 
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diffractometry could be very useful to investigate the cell 
membrane alterations. 

MATERIALES AND METHODS 

Blood Samples 

 Samples were obtained by cubital venipuncture with 
disposable syringes and large gauge needles to avoid 
mechanical cell damage [12], using as anticoagulant 
Na2EDTA, in 19 individuals: 14 -thalassaemia patients, 5 
healthy controls. Healthy controls were non-smokers, non-
alcoholic individuals and were not receiving any therapeutic 
drug. Thalassaemia patients were diagnosed as -
thalassaemia minor by conventional methods and classified 
by molecular biological ones (PCR-ARMS) as 

0
 (

0
 39). 

Anticoagulated blood samples were kept at 5 ºC. Rheological 
studies were carried out within the first four hours after 
withdrawal to avoid cell membranes damage. All patients 
and healthy controls gave their informed consent to 
participate in the study. 

Red Blood Cells Suspension and Medium 

 100 μl of anti coagulated whole blood were suspended 
into 4 ml of isotonic viscous medium. 5 % w/v polyvinyl-
pyrrolidone (PVP 360, Sigma, MW 360 kDa) in phosphate 
buffered saline (PBS: 0.150 M NaCl, and 0.005 M (K2PO4 
+ KPO4H); pH 7.4 ± 0.05; 295 ± 8 mOsmol/kg). Medium 
viscosity adjusted at 22 ± 0.5 cP at 25 º C. 

Experimental Setup 

 In Fig. (1) an scheme of the home-made 
erythrodeformeter device is presented. For its validation and 
reliability we refer the reader to reference [13]. This device 
allows us to tests the ability of red blood cells to change their 
circular shape into an ellipsoidal one, when are subjected to a 
well-controlled fluid shear stress. The erythrodeformeter 

device has two plane disks, both of them of flint glass, 
superposed, coaxials, parallels and horizontals. The driving 
motor is coupled to the lower disk by two helicoidal gears 
that provide a great rigidity to the transmission system. This 
allows the rotational disk to start or stop rotation in a short 
time (< 1 ms), so can be considered as instantaneous. 

 The light source is a 5 mW HeNe laser. When the layer 
of diffracting cells is perpendicularly transversed by the laser 
beam, the diffraction pattern can be observed on a ground 
glass screen. Diffracted intensity corresponding to each 
principal diameter of the elliptical diffraction pattern falls 
onto a masked photomultiplier tube (PMT), after passing 
through a thin straight slot in the mask placed exactly on the 
corresponding axis of the elliptical pattern. 

 All units, except the oscilloscope and the PC, are home-
made equipments. The PMT signal output is either relayed to 
the microammeter or to the oscilloscope. When the PMT is 
connected to the microammeter, two values of electrical 
current can be measured. They correspond to the long and 
short axis of the elliptical pattern. On the other hand, the 
PMT is connected to the oscilloscope through an 8-bit A/D 
converter having a memory divided into 32 sectors with 256 
bytes each. The conversion delay is 0:1 ms and the converter 
board has two important controls which must be adjusted for 
optimal performance: one selects the memory sector to be 
filled during the data acquisition, the other selects the lapse 
of time during which a set of 256 data points will be 
acquired and stored [2, 3, 14]. 

Data Acquisition 

 The erythrocyte suspension is placed between the two 
flint glass disks, and the driving motor allows the lower disk 
rotation. Normal erythrocytes being at rest can be considered 
as a monodisperse population having discoidal shape with 
almost the same size. Light diffraction under Fraunhofer 

 

Fig. (1). Scheme of the home-made erythrocytes deformeter device. 
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theory conditions may be applied to obtain quantitative 
information of diffracting particles such as suspended 
erythrocytes. The cells in dilute suspension, under shear 
stress take a three axial ellipsoidal shape having the major 
axis oriented towards the shear field direction. The laser 
beam transverses perpendicularly a thin layer of the 
erythrocytes suspension and it is diffracted producing a 
Fraunhofer diffraction pattern that is either circular when the 
cells are at rest or elliptical when they are deformed by a 
shear stress field. These two typical patterns are shown in 
Fig. (2). The start of data acquisition is externally triggered 
by the erythrodeformeter motor switch. Once the driven 
motor is switched on, the PMT signal output is read, 
converted and stored in a preselected memory sector. Each 
time the A/D converter completes a conversion and, as soon 
as, the creep time series has been stored, it returns to the 
initial position ready to start a new cycle of conversion and 
storage of another set of data into a new memory sector. A 
similar process is carried out when the motor is switched off 
to store a recovery curve (measured while the cells recover 
their circular shape from the ellipsoidal one) as well as it was 
done with the creep one. The A/D converter can receive data 
from the memory and plot them repeatedly on the 
oscilloscope screen. A 25-pin connector allows the transfer 
of data from the A/D converter to the PC by an interfaced 
bus. Data can be stored in the PC hard disk for being 
numerically processed offline. Typical time series 
corresponding to healthy donors and thalassaemic patients 
are shown in Fig. (3) (50 data points = 147 ms). From this 
figure it is clear that the signals present non-stationary 
characteristics. These time series correspond to diffracted 
intensity measured in the major axis of the elliptical pattern 
under recovery condition. 

DATA ANALYSIS 

 Ascertaining the degree of unpredictability and 
randomness of a dynamical biological system is not 
automatically tantamount to be in a position to capture the 
relationship between the components of the pertinent 
process. Randomness and structural correlations are not 
totally independent aspects of the accompanying physical 
and biological description of the erythrocytes deformation. 
Moreover, maximal randomness as well as perfect order has 
complexity zero, so have no structural correlations. In 

between these two extremes a wide range of possible degrees 
of physical structures exists that should be found in the  
 

 

Fig. (3). Diffracted intensity measured along the major axis of the 

elliptical diffraction pattern under recovery condition (typical 

signals analyzed). 

behaviour of the underlying probability distribution. 
Complexity in this sense refers to non equilibrium structures, 
typically such as erythrocyte viscoelastic behaviour. 

 In the mathematical characterization of this 

photometrically recorded time series, we used wavelet 

analysis that is one of the most useful tools when dealing 

with natural time series [15, 16]. This method expresses our 

original experimental time series in terms of a set 

j ,k t( ) = 2 j /2 (2 j t k) , with j, k  Z (the set of integers), 

of translations and scaling functions of a wavelet mother . 

In the case that this family be an orthonormal basis for the 

space of finite-energy functions, the concept of energy 

becomes linked with the usual notions derived from 

Fourier’s theory. The experimental signal obtained with the 

erythrodeformeter is collected using a uniform time grid. In 

our numerical analysis we use orthogonal cubic spline 

functions as the mother wavelet. Among several alternatives 

the symmetric and orthogonal wavelet basis obtained from it 

 

Fig. (2). Diffraction pattern of the erythrocyte: circular shape at rest, elliptical shape under well defined shear stress. 
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has become a recommendable tool for representing natural 

signals [17]. The wavelet analysis is carried out over N = 7, 

frequency resolution levels (denoted by index j, Daubechies’  

 

notation j = N,..., 1). The wavelet transform allow us a 

useful characterization of the experimental signal (time 

series) by the amplitude distribution of the coefficients in the 

wavelet basis [18, 19]. The j-scale wavelet coefficients 

family set Cj (k){ }  could be interpreted as the local residual 

errors between successive signal approximations at levels j 

and j +1. It contains information on the signal S(t)  

corresponding to the frequencies 2( j 1)ws w (2 j )ws , 

where ws  represent the sample frequency. 

 The energy associated with j-resolution wavelet level, is 
given by 

j = Cj (k)
2

k

 

 Summing over all the available wavelet levels j we obtain 
the total energy 

tot = j
j= N

1

 

 Finally, we define the relative wavelet energy (RWE) as 

j = j / tot  

 The relative wavelet energy associated to the different 

frequency bands enables one to learn about their relative 

degree of importance. This time-scale probability 

distribution of energy across the frequency scales, P = j{ } , 

constitutes a suitable tool for detecting and characterizing 

specific phenomena in both time and frequency planes [18, 

19]. Then, if one is in possession of a probability 

distribution, the possibility of applying Information Theory 

allows us to evaluate specific quantifiers like the Normalized 

Total Shannon Entropy and the MPR-Statistical Complexity 

which could give additional information about the dynamical 

process under study. So we go from the experimental 

photometrically recorded time series to wavelet Information 

Theory quantifiers. They could tell us a lot about the 

viscoelastic properties of the red blood membrane. 

 Given a probability distribution P = pi ; i = 1, ...,M{ }  we 

define the normalized Shannon entropy by 

H (P) = S P[ ] / Smax , 

where S •[ ]  denote the Shannon entropy functional form 

given by 

S P[ ] = pi ln pi
i=1

M

, 

and Smax = ln(M )  is the normalization constant, in this way 

0 H 1 . 

 The MPR-Statistical Complexity [8, 9, 19] is defined as 

C P[ ] = H P[ ].Qj P[ ] , 

where H P[ ]  is a normalized Shannon’ entropy defined 

above and Qj P[ ]  represents the disequilibrium evaluated in 

terms of the Jensen-Shannon divergence, 

Qj P[ ] = Q0 .Js P,Pe[ ].  

 In the previous equation the Jensen-Shannon divergence 

Js •,•[ ]  represents the distance between the uniform 

probability distribution Pe = pi = 1 /M , i = 1, ...,M{ }  and P  

the probability distribution of the accessible states of the 

system. Q0  is a normalization constant, then 0 Qj 1 . 

The disequilibrium would be different from zero if there 

exists more likely states among the accessible ones, and 

where our probability distribution is located with respect to 

the uniform distribution. The Jensen-Shannon divergence for 

two probabilities P1 and P2 is given by 

Js P1,P2[ ] = S P *[ ] (S P1[ ] + S P2[ ]) / 2 , 

where P = (P1 + P2 ) / 2 . The quantifiers H  and C  are 

normalized quantities and in consequence they are 

dimensionless. 

 It should be noted that this complexity measure is not a 

trivial function of the entropy, in the sense that for a given 

value of H , there exists a range of complexities between a 

minimal value Cmin  and a maximalCmax . Then, evaluating 

the statistical complexity measure provides one with 

important additional information regarding the peculiarities 

of a probability distribution. A general procedure for 

obtaining the complexity bounds is given by Martín, Plastino 

and Rosso in [20]. In order to study the time evolution of the 

signal or moreover how it changes according with some 

intrinsic characteristic parameters, a diagram of C  vs H  

can be used [21-23, 25, 26]. This is the so-called entropy-

complexity plane. 

RESULTS AND CONCLUSIONS 

 Complexity refers to certain systems quality of being 
intricate and hardly predictable, ranging from turbulent flows 
of the atmosphere to cells behaviour. For succeeding in the 
plan of explaining complex behaviour, biologist, physicists, 
mathematics and engineers have been looking for simplified 
models mathematically tractable and able to catch the 
essence of complexity. We would like to emphasize the 
dynamics, not the tools. Analysis based on Fourier 
Transform of red blood cells deformation photometrically 
recorded time series has been performed previously (see in 
example [3]). However, this kind of time series exhibit some 
degree of non-stationarity and present a small length, making 
in way difficult the application of this technique in order to 
obtain reliable results. Wavelet transform do not require 
stationary condition of the signal under analysis and can be 
used with small amount of data. The present article applies 
informational tools derived from the orthogonal discrete 
wavelet transform and their application to the analysis of red 
blood cells deformation. 
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 The relative wavelet energy, the first quantifier, provides 
information from the relative energy bands that are to be 
found in the photometrically obtained time series while the 
erythrocytes are subjected to shear stress. 

 The analyzed time series correspond to the fluctuations 

of the circular pattern of the erythrocytes for healthy donors 

(control samples) and heterozygous -thalassaemic patients. 

The erythrocytes suspensions were obtained according to the 

experimental procedure described above and following the 

International Committee for Standarization on 

Haemathology [12]. The photometrically recorded time 

series have a length of 256 data points and the corresponding 

discrete orthogonal wavelet transform (using a spline cubic 

mother wavelet) were obtained for resolution levels 

j = 1, ..., 7.  Taken the wavelet coefficients set cj (k){ } , 

the energy wavelet based probability distribution P = j{ } , 

corresponding to controls and -thalassaemia were 

evaluated. 

 In Fig. (4), the grand average of the energy wavelet based 

probability distribution for controls and -thalassaemia are 

presented. The relative energy bands appear better 

distributed in the -thalassaemia patients, than in control 

samples, which could be a signature of the appearance of 

chaos on the first ones. The relative wavelet energy on 

healthy donor samples is greater on levels j = 1, 2, 3 , 

while on -thalassaemia patient samples the relative wavelet 

energy is concentrated on levels j = 5, 6, 7 . In particular 

on level j = 7  the relative wavelet energy value on -

thalassaemia patient samples, is important and this behaviour 

could correspond to a minor entropy. 

 

Fig. (4). Grand average corresponding to Relative Wavelet Energy 

(RWE) for 5 healthy controls and 14 -thalassaemic samples. 

 In Fig. (5), we show the Normalized Total Shannon 

Entropy (H )  values obtained for the different samples 

studied in the present work. We observed that the wavelet 

entropy averaged values for control samples is 

< H (c)
>= 0.91 , this value could be related to homogeneous 

discocytes samples which is the dynamical expression of the 

cell capability of changing their shape in flow. On the other 

hand the entropy values for -thalassaemia patients have an 

averaged value of < H ( )
>= 0.785240 . This decrease in the 

mean value could be caused by the loss of viscoelasticity in 

some cells and could be associated with acanthocyte and 

dacrocyte cells in the samples. This is compatible with the 

fact that all the patients studied were -thalassaemia minor, 

so they do not need to receive blood transfusion and their 

population of erythrocytes is constituted by healthy and 

damaged cells. We have to remark that all the entropy 

values, H c( )
, for controls are higher than the corresponding 

entropy values, H ( )
, corresponding to -thalassaemia 

patients; there are two clouds of points for each population 

of samples; and they are clearly differentiated. 

 

Fig. (5). Two clearly different clouds for each population: healthy 

donors (black), and -thalassaemia patients (red). The horizontal 

lines correspond to the average Normalized Shannon Entropy 

values. 

 The MPR-Statistical Complexity (C)  values obtained for 

the different samples analyzed are presented in Fig. (6). Note 

that the averaged complexity values for -thalassaemia 

patients is < C ( )
>= 0.1725407 , while for control samples 

population is < C (c)
>= 0.083 , this reduction on the MPR-

Statistical Complexity reflects the interplay between its 

disequilibrium and the amount of information stored in the 

red blood cells deformability dynamics. This information 

measure quantifies aspects of the intricate structures hidden 

in the photometrically recorded series of red blood cells. In 

the group of control samples, the erythrocytes are constituted 

by healthy cells, while in the group of -thalassaemia 

patients, the erythrocytes are constituted by healthy and 

damaged cells. Moreover, < C ( )
>  is not only higher than 

< C (c)
>  but also all the values obtained for control samples 

are smaller than the ones obtained for -thalassaemia 

patients. The statistical complexity measure quantifies not 

only randomness but also the degree of correlation structures 

[25, 26]. As we said before, it is not a trivial function of the 

entropy because for a given H - value, there exists a range 

of possible C -values between a Cmin  and Cmax  [20]. Then, 
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evaluating the MPR-Statistical Complexity,C , provides one 

with very important additional information about the 

peculiarities of the probability distribution, that it is not 

already carried by the entropy measure. 

 

Fig. (6). Two clearly different clouds for each population: healthy 

donors (black), and -thalassaemia patients (red). The horizontal 

lines correspond to the average Normalized Shannon Entropy 

values. 

 In order to study the changes in the dynamics of the 

system under study, a diagram of C vs H  can be used, 

which is the so-called complexity entropy plane [21-26]. In 

Fig. (7) we display our results in this plane. As mentioned 

previously (see Sec. 3), the corresponding complexity values 

are bounded by Cmin and Cmax  curves evaluated, in this case 

for N = 7 . Their values are displayed in this figure using 

continuous lines. Only values in the interior of the region 

defined by these two limit curves can be numerically 

obtained. All the photometrically recorded series in the 

present entropy-complexity planes present values that are 

almost equidistant from the two limit curves; however the 

localization of the clouds of points corresponding to controls 

and -thalassaemia patients are in well differentiated 

regions. 

 In Fig. (7) it is clear that our introduced wavelet based 
informational tools are able to distinguish between the two 
sample populations. The control samples are more 
disordered. The dynamics corresponds to white noise, where 
the maximum values of entropy are reached together with 
minimum values of complexity. While, the -thalassaemia 
patients samples exhibit decreasing entropy values and 
increasing complexity values, that could correspond to short 
memory fractional Brownian motion; results consistent with 
our previous works [5, 23]. 

 For the population of control samples we found that in 

our entropy-complexity plane the pertinent point lies in the 

high entropy interval, (0.860, 0.911) and low complexity 

values (0.075, 0125). In fact this behaviour is quite close to 

the total random expected values corresponding to H = 1  

and C = 0 . In consequence one can associate an almost 

random behaviour with low correlation structures presented 

in the time series. All the photometrically recorded series 

from -thalassaemia patients are localized in the entropy-

complexity plane in the entropy region lying in the interval 

(0.735, 0.838) and complexity interval (0.125, 0.225). This 

decrease in entropy values, reduced random behaviour and 

increase in the complexity values can be associated to 

correlated structures immersed in the time series. 

 

 

Fig. (7). a) Entropy-Complexity plane for N = 7. The continuous 

lines display the bound curves Cmin  and Cmax  associated to the 

maximum and minimum values of complexity for a fixed value of 

the normalized entropy. Also, different marks are used to 

distinguish the numerical calculated values for controls and -

thalassaemia signals. The open symbols correspond to the values 

obtained using the corresponding grand average of Relative 

Wavelet Energy (see Fig. 4). b) Detail of the Entropy-Complexity 

plane. 

 From inspection of Figs. (5-7) it is clear that our 

introduced wavelet-based informational tools are able to 

distinguish between the two types of RBC under study. In 

particular, on Fig. (7), -thalassaemia patients are almost 

equidistant between the curves of maximum and minimum 

complexity, while the control samples are closer to the curve 

of minimum complexity. On comparing the two groups of 

samples both have strong stochastic behaviour, however the 

control ones became almost ideal noise with H 1  and 

C 0 , while disease samples appear more correlated and 

consequently, entropy decreases and complexity increases. 
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 Beta thalassaemia minor is a silent disease, usually 
incorrectly prescribed with iron. This fact could explain the 
difference observed in the Information Theory quantifiers in 
relation with the controls, even when they do not differ 
excessively. In fact, little information exists to explain the 
erythrocytes viscoelastic properties. The present results 
suggest that the percentage of discocytes and also 
acontocytes, leptocytes and target cells, which are present in 
a sample are reflected in the corresponding photometrically 
recorded series of -thalassaemia patients affecting the 
corresponding stochastic dynamics with an increase of the 
degree of correlation on them. 

 In summary the representation plane of complexity vs 
entropy could be a useful tool when dealing with biological 
data, which always have a stochastic component due to 
omnipresent dynamical noise, and could be used to classify 
different degrees of random behaviour. Moreover, this 
representation plane is an effective tool for revealing the 
sometimes hidden difference between chaos and noise as 
was recently shown [9]. The entropy-complexity plane yields 
additional information about the dynamics of the 
erythrocytes deformability. The use of the proposed entropy-
complexity plane, based on data wavelet transform, can 
contribute to the analysis of erythrocytes membrane 
viscoelastic properties, and may also lead to a better 
understanding of their dynamics. Certainly the use of this 
plane is not intended to replace conventional analysis; 
instead, it aims to providing further insights into the 
underlying dynamics. 
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