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Abstract: The development of prosthetic hand systems with both decoration and motion functionality for hand amputees 

has attracted wide research interests. Motion-related myoelectric potentials measured from the surface of upper part of 

forearms were mostly employed to construct the interface between amputees and prosthesis. 

However, finger motions, which play a major role in dexterous hand activities, could not be recognized from surface 

EMG (Electromyogram) signals. 

The basic idea of this study is to use motion-related surface vibration, to detect independent finger motions without using 

EMG signals. In this research, accelerometers were used in a finger tapping experiment to collect the finger motion related 

mechanical vibration patterns. Since the basic properties of the signals are unknown, a norm based, a correlation 

coefficient based, and a power spectrum based method were applied to the signals for feature extraction. The extracted 

features were then fed to back-propagation neural networks to classify for different finger motions. 

The results showed that, the finger motion identification is possible by using the neural networks to recognize vibration patterns. 

Keywords: Finger motion detection, prosthetic application, skin surface vibration, neural network. 

1. INTRODUCTION 

 It is no exaggeration to say that an upper limb without a 
hand has barely any function. 

 Recently, the development of prosthetic hand systems 
has attracted wide research interests. In order to construct the 
interface between amputees and prostheses, motion-related 
myoelectric potentials measured from the surface of upper 
part of forearms were mostly employed, to detect amputees’ 
motion intention, thus, to drive a robotic hand. 

 It has been reported that by 2-3 channels of surface EMG 
(Electromyogram) signals from forearm, up to 10 hand and 
wrist motions can be recognized [1, 2], also the on-line learning 
method proposed could cope with the time-varying motion-
related EMG signals. Yoshikawa et al. [3] reported that, by 
using feature vectors in the time and frequency domain, a 
support-vector machine could be built to recognize 8 hand and 
wrist motions from forearm EMG signals. Chu et al. [4] 
extracted feature vectors from wavelet transformation of 4 
channels of forearm EMG signals, and classified the feature 
vectors to 8 forearm motions classes using PCA (principal 
component analysis) and self-organization. 

 While most studies focus on wrist motions, there are few 
studies focusing on finger motions, which play a major role 
in dexterous hand activities, such as precision grasp of small 
objects. It has been reported that finger flexion angles could  
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be estimated from 2 channels of surface EMG signals 
detected from the sites close to wrist, by using a neural 
network [5, 6]. However, it is difficult to apply their 
approach to high-level forearm amputees. It has been 
reported that, finger motion intention can be detected from 
16 channels of forearm surface EMG signals, by using ICA 
(Independent Component Analysis)[7]. Apparently, due to 
the large number of sensors, the approach is not suitable for 
real prosthetic uses. And an estimate of low-level contraction 
of fingers was reported [8]. 

 The difficulties to recognize finger motions from forearm 
surface EMG signals come from the following issues: 

(a) The EMG signals detected from skin surface are the 
superposition of multiple muscle potentials; 

(b) The electric potentials of activated muscles, especially, 
those deep-layered muscles, such as extensor indicis, 
are affected (attenuated and modulated) by various 
nonlinear elements, such as fat and tissue, before they 
are summed with other potentials; 

(c) The finger motions are generally fast, with small 
range of motion, thus the amplitude of finger-motion-
related surface myoelectric potentials is minute and of 
low S/N ratio. 

 On the other hand, since the hand and forearm motion 
related muscles and skeletons are arranged in a very tightly 
coupled way [9], the activation of one muscle will cause 
relative muscles’ concomitant movements, which do not 
result in any additional electric potentials, but indeed 
produce the mechanical vibration. The concomitant moments 
thus transfer the mechanical potentials of the voluntary 
motion of one finger to skin surface. We considered that, the  
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mechanical vibration detected from skin surface is possibly 
contributive to finger motion detection. Since the robot 
hands with large degree of freedom (D.O.F) of controllable 
finger joints have been developed with the progress of 
robotics technology, if the intention of finger motions could 
be recognized from forearm surface EMG signals, the 
function of prosthetic hand could be greatly extended. 

 The goal of this research is the identification of finger 
motion by forearm bio-signals. Accelerometers were 
employed to detect the finger motion related mechanical 
vibration from skin surface, and a finger tapping experiment 
was conducted to collect the vibration patterns. In our 
previous work, the identification was realized by a template 
matching [10]. For one arm posture, a high correct rate was 
achieved, though, considering the use in real daily life, the 
recognition should be done at different arm postures, from 
the signals contaminated by different kind of noise sources, 
which will need a large number of templates for matching, 
thus making recognition impractically time consuming. 

 Thus in this study, two research efforts were made.  
1) Since the basic properties of the finger motion related 
forearm skin surface vibration signals are unknown, and 
have not been studied till now, we explored the signal 
properties through comparing a norm based, a correlation 
coefficient based, and a power spectrum based feature 

extraction methods, aiming at extracting the amplitude, 
phase and frequency aspect of information from raw signals. 
2) The back-propagation neural networks was employed 
with nonlinear transfer function and multiple patterns after 
training. The networks with different middle layer neuron 
number would be explored to find right scale of the 
classification. 

 The data set collected in the tapping experiment were 
processed with the feature extraction methods mentioned 
before, then separated into a training data set and a test data 
set, by which neural networks were trained, and tested, 
respectively. Making use of the recognition results, the 
properties of the finger motion related forearm skin surface 
vibration signals were discussed, and some ideas to construct 
an ideal recognition system were presented. 

2. METHODS AND MATERIALS 

2.1. Experiments 

 Six healthy male adult subjects (age: 23.17±1.33), called 
subject A-F, participated in the experiments. All of them are 
right-handed. 

 Three tri-axial accelerometers MMA7260Q (Freescale 
Semiconductor, Inc.) were used for recording the finger 
motion related skin surface vibration signals. The sensibility 

(a) Sensor position on the forearm surface for finger flexors. 

 

(b) Sensor positions on the forearm surface for finger extensors 

 

Fig. (1). Accelerometers for finger-motion related forearm vibration patterns. 



Finger Motion Classification by Forearm Skin Surface Vibration Signals The Open Medical Informatics Journal, 2010, Volume 4    33 

was set to 1.5G. Each sensor was mounted on a sensor board 
(AS-3ACC: Asakusa Giken) As shown in Fig. (1), one 
sensor was put on the surface of forearm flexor side (Sensor 
1), and another two were put on the extensor side (Sensor2, 
and 3), with both sensors’ Z axis perpendicular to the skin 
surface. The sensor positions were determined empirically, 
and verified by preliminary experiment. For subject A-E, all 
the sensors were attached to their right forearm, however, 
since subject F was suffering from tenosynovitis on his right 
hand during the experiment time, the sensors were attached 
to his left forearm. Data sampling and data recording are 
based on Labview (National Instrument Corp.). The A/D 
sampling rate was set to 1600Hz. 

 Subjects were asked to raise arms to the level of 
shoulder, parallel to horizontal plane, with their hands on 
one of the 3 postures, i.e., hand palms facing down, facing 
towards body side, facing up postures (see Fig. 2). For each 
posture, the subjects were required to tap each of 3 fingers 
(index, middle, ring finger) five times continuously, then to 
tap fingers designated by an instruction sequence, which 
include totally 15 finger motions, with each finger appearing 
5 times, but at a randomized order. Between two 
experiments for different two postures, there was a 10-
minute rest. For all 3 postures, altogether 90 finger-tapping 
signals were collected for each subject, which forms one set 
for the subject. The continuous and random tapping 
experiment was repeated once again, so as to collect another 
set of data. These two data sets were used as training data for 
the neural networks. The experiment was carried on for 

collecting another data set, which was used as test data for 
the neural networks. 

 Since accelerometers not only detect the finger-motion 
related skin surface vibration, but also the other body 
motion. In daily living, the system should be able to 
discriminate the finger motions from the other body motions. 
For each subject, signals were also recorded when his body 
was tapped or scratched, and when he moved the arm that 
was being measured. This was called as Noise data set, 
which contains 60 records, and two sets were collected. Fig. 
(3) shows one noise data example. The first 10 records are 
the signals when subject moved his arm, and the other 
records are the signals when his arm, body were tapped or 
scratched. 

2.2. Feature Extraction 

 As depicted before, since the basic properties of the 
finger motion related forearm skin surface vibration signals 
are unknown, it is necessary to explore what kind of 
information is dominant, and significant to the finger motion 
identification. Because, amplitude, phase and frequency are 
basic properties of most biomedical signals, a norm based, a 
correlation coefficient based, and a power spectrum based 
feature extraction methods were employed. 

2.2.1. Amplitude-Based Feature Extraction 

 For each axis of the tri-axial accelerometer, the value was 
unbiased, then used to calculate a second order norm to 

             (a) Posture 1.          (b) Posture 2.         (c) Posture 3. 

 

Fig. (2). Postures of finger tapping. 

 

Fig. (3). An example of noise data. 
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represent the amplitude feature. For 3 tri-axial 
accelerometers, the feature vector would contain 9 elements. 

2.2.2. Phase-Based Feature Extraction 

 The signals of all the axes were unbiased, and 
standardized with the norm of the channel, then correlation 
coefficients for each two channels were calculated to form a 
feature vector. By this way, the phase information contained 
in all recordings could be extracted. Since 3 tri-axial 
accelerometers were used, each feature vector contains 

9C2=36 elements. 

2.2.3. Frequency Domain Feature Extraction 

 The signals of all the axes were unbiased, and passed to a 
40Hz low-pass filter. The unbiased and filtered signals were 
then processed by Fourier transformation. From 4-40Hz, for 
each 4 Hz, one power spectrum point was extracted as one 
element of feature vector, so the feature vector contains 
9(points) 9(axis)=81 elements. 

2.3. Classification 

 In this research, a 3-layer neural network model was 
employed. A logistic sigmoid function was employed as the 
squashing function of its middle layer (eq. 1), where, sj is the 
state of the jth middle layer neuron, and hj is the output of 
middle layer neurons. In the output layer, a softmax function 
was employed (eq. 2), where yi is the state of the kth output 
layer neuron, zk is the output of the kth output layer neuron, 
and K is the output layer neuron number. 

 Due to the softmax function employed, the sum of the 
output layer is 1.0, thus, the output of network can be taken as 
the posterior probability of a certain input [11, 12]. That is, the 
output with a bigger entropy value can be taken as the one 
with large uncertainty, thus the one that should be rejected. 

hj =
1

1+ exp( s j )
          (1)  

zk =
exp(yk )

exp(yi )
i=1

K            (2) 

 The error function was defined as the cross entropy, 
which is shown in equation (3), where, tpk means the kth 
element of the pth output pattern t, N is the total number of 
weights in the network, wn means the nth weight. The second 
item of equation (3) is called weight decay, which is 
introduced to avoid the over-learning problem, and improve 
the generalization ability of the network to the unknown 
patterns.  is a constant for controlling the network 

complexity. A bigger  means the more limited network 
complexity [12]. 

Ep = (1 ) t pk ln
t pk
zk

+
1

N
wn
2

n=1

N

k=1

K

          (3) 

 The networks were implemented in Matlab, and learning 
and recognition were done in an offline manner. 

 Since there does not exist a general way to decide the 
middle layer number, in this research it is explored by trial 
and error. The middle layer neuron number explored for 
different feature vector is shown in Table 1. 

 Moreover, since the converged weights of neural network 
could be dependent on the initial weights. In this research, 
for each neural network structure, the initialization with 
randomized initial weights, training and testing would be 
repeated for 10 times. 

3. RESULTS 

3.1. Training and Testing without Noise Data Set 

 Fig. (4) shows the tested results of the networks learned 
from data sets with different feature vectors. Fig. (4a-d) 
shows neural network output, information entropy of the 
output, difference between the output and ideal values and 
recognized results, respectively. In the figure, horizontal axis 
stands for sample ID. 1-30 samples were recorded at the first 
posture, 31-60, 61-90 samples were recorded at the second 
and the third postures, respectively. The threshold of 
information entropy to judge the effective recognition is set 
to the 0.6 times of max entropy value, in this case, log23. 

 Fig. (5) shows the average and standard deviation of 
classification rates (correct rate) of 10 repeats of weight 
initialization, training, testing for each neural network structure. 
The symbols under the horizontal axis, I, M, R, mean index 
finger, middle finger and ring finger, respectively. “All” means 
the total recognition rate for all the 3 fingers. “Incorrect” means 
the miss-recognized sample percentage, and “Reject” means 
percentage of the output rejected by the information entropy 
threshold. The blue, red and green bars denote the middle layer 
neuron number for different input feature vectors, M1, M2, M3, 
as shown in Table 1, respectively. 

 In order to investigate the relationship between different 
feature vectors and recognition rates, the test results for all the 
subjects were summed up, and analyzed as a whole. The results 
were shown in Fig. (6), in which, the symbols under horizontal 
axis stand for the feature vectors input to the neuron networks 
(Norm: norm based feature vector, C.C.: correlation coefficient 
based feature vector, P.S.: power spectrum based feature 
vector). The blue, red, green bars denote the different middle 

Table 1. The Parameters for Different Neural Network 
 

 Norm Vector Correlation Coefficients Power Spectrum 

Input Neuron Num 9 36 81 

Middle Neuron Num M1: 18; M2: 9; M3: 5 M1: 29; M2: 18; M3: 11 M1: 65; M2: 41; M3: 24 

Output Neuron Num  3 

Learning Trial 1000 

Learning Coefficient 0.01 
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layer neuron number, M1, M2, M3, as shown in Table 1, 
respectively. 

 As the middle layer neuron number decreases from M1 to 
M2, then to M3, there was few change in the classification 
rates of all neural networks trained by 3 different feature 
inputs. That is, the middle layer neuron number has a small 
influence on the recognition, which implied that, it is 

possible to construct a small neural network for the real-time 
recognition. Moreover, the fact that the standard deviation is 
small suggested that, the classification could be achieved 
independent on the initial weight values. It is apparent that, 
the correlation coefficient and power spectrum based feature 
vectors could give better classification than norm based 
feature vectors. 

(a) Output of the neural network (Blue: Index, Red: Middle, Green: Ring). 

 

(b) Information entropy of output 

 

(c) Difference between the output and ideal values 

 

(d) Recognized finger motions 

 

Fig. (4). Neural network output using correlation coefficient-based feature (subject A). 
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 (a) Norm based feature vector as input 

 

(b) Correlation coefficients based feature vector as input 

 

(c) Power spectrum based feature vector as input 

 

Fig. (5). The results of different neural networks to test data set 

(subject A). 

 

Fig. (6). Recognition correct rate of different networks and different 

input. 

3.2. Training and Testing with Noise Data Set 

 The noise data sampled were added to the training and 
test sets. Correspondingly, one additional neuron was added 
to output layer for noise class. Meanwhile, the threshold of 
information entropy to judge the rejection of unclear output 
is set to log24 0.6. Fig. (7) shows the classification results of 
subject A. As shown in the figure, the network trained by 
norm based input vector showed worse performance. Its 
classification rate was low, while the reject rate was high. 

(a) Norm based feature vector as input 

 

(b) Correlation coefficient based feature vector as input 

 

(c) Power spectrum based feature vector as input 

 

Fig. (7). The results of different neural networks to test data set 

(subject A) (“with noise” case). 

 This could be further made clear by analyzing the test 
results of all the subjects as a whole, which is shown in Fig. 
(8), in which, the symbols under horizontal axis stand for the 
feature vectors input to the neuron networks (Norm: norm 
based feature vector, C.C.: correlation coefficient norm 
based feature vector, P.S.: power spectrum norm based 
feature vector). The blue, red, green bars denote the different 
middle layer neuron number, M1, M2, M3 respectively as 
shown in Table 1. The classification rate of Norm based 
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feature vector was quite low compared with that of C.C, and 
P.S. 

 

Fig. (8). Recognition rate of different networks and different input 

(“with noise” case). 

3.3. Real-Time Recognition 

 Based on the off-line analysis before a real-time recognition 
system was constructed, and a real-time finger-tapping test was 
carried out. Subject A took part in the experiment. Correlation 
coefficient based feature vector was used as the input. Middle 
layer of neuron network contains 11 neurons. 4 output neurons, 
corresponding to index, middle, ring fingers, and noise, were 
used. The neural network for real-time recognition was 
implemented in Labview (National Instrument), by copying the 
structure and learned weight values from the trained neural 
network in Matlab. In real-time finger tapping test experiment, 
the subject was asked to tap each finger 5 times continuously, 
then 15 times for 3 fingers in a randomized order. Additionally, 
60 noise samples were also generated by scratching, tapping, 
vibrating the subject’s arm in action (Fig. 9a), and tested with 
the neural network. The recognition results were shown in Fig. 
(9b). The overall classification rate was over 85%. 

4. DISCUSSION 

4.1. The Features of the Finger Motion Related Forearm 

Skin Surface Vibration Signals 

 One major objective of this research is to investigate the 
basic feature of the signals. Our basic assumption is that 

given suitable input vectors, a neural network can give a 
reliable classification. And also, the feature that deliver 
higher classification rates will be the one that reflect the 
basic feature of the signals. Under this assumption, 3 feature 
extraction methods were tested. Fig. (6, without noise case), 
Fig. (8, with noise case) roughly showed that, correlation 
coefficient based and power spectrum based features were 
much better than the norm based feature. 

 Since from Figs. (6, 8), there is no clear difference 
between the correlation coefficient based and power 
spectrum based feature vectors, the comparison between 
these two features was made for each subject. For each 
feature extraction, for each subject, the 30 test results from 3 
different neuron networks with 3 different middle layer 
neuron numbers were summed up, and their average and 
standard deviation were calculated and plotted in Fig. (10). 
Blue bar stands for correlation coefficient based feature, and 
red bar stands for the power spectrum based feature. A t-test 
was carried out to investigate the significant difference 
between these two feature extraction methods. The t-test 
showed that, for subject A, B, F, correlation coefficient 
based feature was better; while for subject E, F, the power 
spectrum based feature was more effective. From the current 
results, it is difficult to say, which one is more dominant. 
That is to say, the recognition of finger motions could 
benefit from both the frequency and phase information. 

 Furthermore, principal features for recognizing each 
finger for each subject, the average and standard deviation of 
difference between their classification rates, were listed in 
Table 2. The way to process data was similar as that of Fig. 
(10), except that, the feature resulting in better classification 
rate was defined as the principal feature, and listed (C.C.: 
correlation coefficent based feature, P.S.: power spectrum 
based feature). 

 As shown in the table, except subject A (C.C. for all 
fingers), the principal features for the other subjects are not 
identical. For subject E, P.S. apparently outperformed C.C. 
For the subject B, C, since the difference of classification 
rate is not too big, it would be acceptable to use C.C. as the 
feature for all the fingers. However, for subject D, F, since 
there exist clearly different features for different finger ( e.g., 
for subject D, P.S. outperformed C.C. by 32.22%, with a 

      (a) Real-time recognition experiment                      (b) Recognition results 

    

Fig. (9). Real-time recognition experiment and its results. 
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standard deviation of 2.02 for index finger, but for the same 
subject, C.C. outperformed P.S. by 21.67%, with a standard 
deviation 4.44 for middle finger). That is to say, even for a 
specific individual subject, for his different fingers, different 
features should be used for recognition. 

 

Fig. (10). Comparing correlation coefficient based and power 

spectrum based features for each subject (Blue: correlation 

coefficient based feature, Red: power spectrum based feature). 

 Aiming at exploration of basic features of the signals as 
well, the feature extraction we used focused on completely 
different aspects from the signals: norm based feature for 
amplitude aspect, correlation coefficient based feature for 
phase aspect, power spectrum based feature for frequency 
aspect. That is, C.C. feature vector doesn’t contain the 
amplitude information, whereas, P.P. feature vector doesn’t 
contain phase information. However, for different fingers of 
different subjects, the specific information does have an 
important role in differentiating the finger from the others. 
From this discussion, it is clear that, the feature that can 
reflect phase and frequency information from raw signals is 
necessary. 

4.2. The Effect of Noise Data Set on the Recognition 

 Furthermore, a comparison between the “with noise” 
case and “without noise” case was made and shown in Fig. 
(11). Again, the classification results of all the subjects were 

summed up, and analyzed as a whole. A t-test was carried 
out to investigate whether there is significant difference 
between “without noise” (blue bar) case and “with noise” 
case (red bar). Fig. (11) reflects that, the noise affected the 
recognition of almost all the networks significantly 
independent of the middle layer neuron number. The 
network trained by norm input vector was even more 
affected, however the network trained by the other two 
methods could maintain high classification rate. 

 

Fig. (11). The effect of noise data set (comparing different middle 

layer neuron number). 

 In order to make sure the effect of the noise data set, the 
comparison was made again for each subject. Fig. (12) 
shows the comparison. The blue bar, red bar stands for the 
“without noise” case and “with noise” case, respectively. 
The results from the different middle layer neuron number 
trial were counted into each subject’s results. Fig. (12a) 
shows the difference in the term of correlation coefficients 
based feature vector, and Fig. (12b) shows that of power 
spectrum. A t-test was carried out to investigate whether 
there is significant difference between “without noise”(blue 
bar) case and “with noise” case (red bar) for every subject. In 
the neural network trained by correlation coefficient based 
input vector, subject D, E, and in the neural network trained 
by power spectrum based input vector, subject A, C, D 
showed a higher recognition rates after the noise data set was 
added to the training set. 

Table 2. The Principal Feature for Each Finger, Each Subject 

 

  Principal Mean Std   Principal Mean Std 

I C.C. 1.44 1.68 I P.S. 32.22 2.02 

M C.C. 4.00 1.61 M C.C. 21.67 4.44 Subj.A 

R C.C. 27.78 1.60 

Subj.D 

R C.C. 3.56 1.94 

I P.S. 5.00 2.10 I C.C. 9.22 1.43 

M C.C. 6.78 1.63 M P.S. 3.22 3.96 Subj.B 

R C.C. 3.56 0.85 

Subj.E 

R P.S. 40.00 4.55 

I C.C. 6.33 2.02 I C.C. 14.33 1.55 

M P.S. 15.89 1.43 M P.S. 20.11 2.23 Subj.C 

R C.C. 10.00 0.00 

 

Subj.F 

R C.C. 9.33 2.96 
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 Two reasons can be considered: 1) by learning from the 
noise data, the boundary between different classes in 
solution space might be adjusted so as to classify some 
critical cases; 2) as the increment of output layer neuron 
number, the threshold of information entropy rose, in turn 
limited the miss-recognition. This can be revealed by Fig. 
(13), in which the information entropy of the output of 
“without noise” case (blue point), and “with noise” case (red 
point) of the neural network with the middle layer neuron 
number 29, trained by correlation coefficient based input, as 
well as their threshold values (blue line and red line 
respectively), were shown. The classification rate of the 
“with noise” case for all 3 fingers rose to 85.6% from the 
80% of the “without noise case”. 

 

Fig. (13). Comparing information entropy of “without noise” case 

and “with noise” case (subject D). 

5. CONCLUSION 

 In this research, the skin surface mechanical vibration 
signals of finger tap motions were investigated. 3 
Accelerometers, one for finger muscle flexor side, 2 for 
finger muscle extensor side were used to measure the 
vibration signals. 3 feature extraction methods were 
employed to capture the amplitude, phase and frequency 
aspect of the signals. Different feature vectors then were 
used to train back-propagation neural networks, which were 
then used as classifiers for different finger motions. 

 

 

 Through the finger motion classification results, it is 
clear that, the phase and frequency aspects should be 
considered for finger motion identification. Moreover, the 
addition of noise data set could sometimes improve the 
classification accuracy of neural networks. 

 Moreover, a real-time recognition experiment showed 
that, the finger motions can be identified from forearm 
surface vibration signals within 100ms, which is tolerable for 
a real-time device. 

 In the future, new feature extraction, which can capture 
both the phase and frequency information of the signals, are 
to be explored. Moreover, hand amputees subjects are also to 
be investigated. 
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Fig. (12). Subject-dependent effect of noise data set. 
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