
 The Open Medical Informatics Journal, 2010, 4, 63-73 63 

 

 1874-4311/10 2010 Bentham Open 

Open Access 

Association Rule Based Similarity Measures for the Clustering of Gene 
Expression Data 

Prerna Sethi
*,1

 and Sathya Alagiriswamy
2
 

1
Department of Health Informatics and Information Management and Biological Sciences, Ruston, USA 

2
Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA 

Abstract: In life threatening diseases, such as cancer, where the effective diagnosis includes annotation, early detection, 

distinction, and prediction, data mining and statistical approaches offer the promise for precise, accurate, and functionally 

robust analysis of gene expression data. The computational extraction of derived patterns from microarray gene 

expression is a non-trivial task that involves sophisticated algorithm design and analysis for specific domain discovery. In 

this paper, we have proposed a formal approach for feature extraction by first applying feature selection heuristics based 

on the statistical impurity measures, the Gini Index, Max Minority, and the Twoing Rule and obtaining the top 100-400 

genes. We then analyze the associative dependencies between the genes and assign weights to the genes based on their 

degree of participation in the rules. Consequently, we present a weighted Jaccard and vector cosine similarity measure to 

compute the similarity between the discovered rules. Finally, we group the rules by applying hierarchical clustering. To 

demonstrate the usability and efficiency of the concept of our technique, we applied it to three publicly available, 

multiclass cancer gene expression datasets and performed a biomedical literature search to support the effectiveness of our 

results. 
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1. INTRODUCTION 

 Cancer is the second leading cause of death in United 
States. According to a report by the American Cancer 
Society, 23.1% of the deaths in 2006 were caused by cancer. 
Early detection followed by planning and treatment can 
significantly reduce the suffering from this disease and lower 
the healthcare burden. Molecular diagnosis of cancer has the 
potential to provide personalized healthcare delivery through 
efficient and accurate computational means with high 
degrees of specificity and sensitivity. Analysis of microarray 
gene expression data for cancer classification can lead to 
information regarding the cellular mechanisms of genes, the 
regulatory functions of genes, the functions of genes and 
proteins, the structures of gene networks and pathways, and 
can yield information relating the risk of being affected by 
cancer to gene expression profiles [1, 2]. 

 Microarray technology has made it possible to monitor 
the expressions of thousands of genes simultaneously under 
different tissue types, treatments, or changes in the 
expression profile over a certain period of time. 
Consequently, this technology has allowed researchers to 
obtain the “global” view of the cell for the first time [3]. 
However, the exponentially growing microarray data sets 
present an overarching challenge for computational scientists 
to contribute to an understanding of biologically significant 
cellular mechanisms. With its thousands of uncharacterized 
variables, microarray data analysis presents one of the most  
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daunting challenges facing bioinformatics. The computat-
ional complexity of analyzing microarray data is further 
enhanced because a large number of genes can correspond to 
different time sequences or tissue types, having dimension-
ality that is several orders of magnitude more than the 
evaluated samples. Further, genes function in a complex, 
interactive manner, and, hence, the challenge is to narrow 
down the selection of gene markers by discriminating them 
from the “house-keeping” genes. The challenge posed in this 
area is to identify the biologically significant sets of 
correlated, co-regulated genes that share similar patterns and 
functions. The ultimate goal is to rely on the derived 
knowledge and utilize it for the drug discovery process, 
including biomarker identification and tracking. Data mining 
offers the promise of precise, accurate learning and 
discovery mechanisms in such complex data. An approach to 
narrow the search for a gene marker is to select a set of 
features (discriminatory genes) based on a statistical or 
machine learning measure, which can distinguish between 
types of samples according to their gene expression values. 
Among the data mining methodologies, unsupervised 
classification (clustering) has emerged as one of the major 
methods in understanding the biological process which 
provide insight into the activity of genes that vary during 
these processes and their effect on the disease states and 
cellular environments [4, 5]. Clustering is performed on the 
genes or samples to identify clusters of genes that have 
similar expression patterns or clusters of samples that have 
similar expression profiles which can assist in providing 
insight into therapeutic and pathogenic studies [2, 5]. 
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1.1. Related Research 

 Clustering algorithms such as k-means [6] and 

hierarchical clustering [7] group genes or conditions in 

clusters that exhibit “functionally similar” behavior. Tamayo 

et al. developed GENECLUSTER [8], which uses self-

organizing maps to organize genes biologically. For a review 

of cluster algorithms for gene expression, we refer to [9]. 

The class of clustering algorithms establishes clusters of 

correlated genes under certain conditions, limiting their 

ability by not providing information about embodied 

associative isomorphic relationships between genes and gene 

products. The previous results published in [10-16] have 

shown the association rule discovery (ARD) based approach 

can overcome this limitation by extracting associations 

among the subsets of genes and providing insight into how 

genes collectively react under certain conditions. However, 

the number of associations generated can be large for a gene 

expression dataset that contains thousands of genes. Further, 

applying an ARD algorithm also yields redundant rules, only 

a few of which actually represent important biological 

relationships. Hence, the challenge is to explore and sift 

through the thousands of rules to find those that are 

“meaningful”. The pruning and grouping of the rules can 

eliminate the redundancy, while providing insight into some 

important biological associations between the genes. The 

pruning and grouping of association rules have been studied 

in the past. Numerous and irrelevant rules have been 

generated by traditional approaches of association rule 

mining, many of which are redundant, which further 

complicates their interpretation [17, 18]. Han et al. [19] 

stated that the challenge of mining association rules is not 

based on the rules discovered under certain constraints but 

on the discovery of a compact and high quality set of rules. 

Toivonen et al. [20] introduced the concept of association 

rule cover for the pruning of association rules. A cover is 

defined as a “subset of the discovered associations that can 

cover the database”. The number of rules in a cover can be 

small and hence a greedy algorithmic approach is proposed 

to find a good cover, for the pruning of remaining rules. The 

standard 
2
 test employed by Liu et al. [21] prunes irrelevant 

rules, and the concept of direction setting rules is used to 

summarize the patterns. Srikant et al. [22] and Ng et al. [23] 

used the constraints provided by the user to limit the number 

of rules that were generated. In other literature, different 

measures have been proposed to discover the interestingness 

of a rule. The rule template method from [22, 23] separates 

only those rules that match the template. Finally, Liu et al. 

[24] proposed a method, which was based on statistics and 

probability to get a condensed set of rules by removing 

redundant rules. 

 Lent et al. [25] first proposed the clustering of 
association rules by developing a geometric-based algorithm 
that clusters association rules in two-dimensional space. 
However, this approach restricts to have two fixed attributes 
in their antecedents. Berrado et al. [26] introduced SCAR 
(Supervised Clustering with Association Rules) an algorithm 
for clustering high dimensional categorical data. SCAR uses 
association rules to identify the similarity between objects 
and then groups them into clusters. Zaki et al. [27] proposed 

an itemset clustering technique that clusters frequent 
itemsets to approximate maximal frequent itemsets. Quan et 
al. [28] proposed a technique for mining conceptual 
association rules which are mined using Formal Concept 
Analysis (FCA). Since, FCA suffers computationally when 
used with huge datasets, a distance based similarity metric is 
used, and data clustering is performed. 

 In this paper, we propose a formal approach for feature 
extraction by first applying feature selection heuristics based 
on the statistical impurity measures, the Gini Index, Max 
Minority [29], and the Twoing Rule [30] to obtain the top 
100-400 genes. We then analyze associative dependencies 
between the genes and assign weights to the genes based on 
their degree of participation in the rules. Consequently, we 
present a weighted similarity measure based on the Jaccard 
[31] and vector cosine [32] measures to compute the 
similarity between the association rules. Finally, we group 
the rules by applying hierarchical clustering. To demonstrate 
the usability and efficiency of the concept of our technique, 
we apply it to three publicly available, cancer gene 
expression datasets and perform a biomedical literature 
search to support the efficiency of our method. 

 The rest of the paper is organized as follows. In Section 
II, we describe the methodology to find frequent patterns, 
assign weights, and cluster them by using two similarity 
measures. In Section III, we present the results of our 
experiments by weighted Jaccard and Cosine similarity 
measures and outline the featured genes by performing an 
online biomedical literature search. In Section IV, we present 
the conclusions of our work. 

2. METHODS 

 Here, we present a novel computational framework for 
feature extraction and rule grouping based on weighted 
similarity measures. The overall methodology is illustrated 
in Fig. (1). The framework consists of the following major 
computational steps: (1) data preprocessing (standardization 
and normalization), (2) feature selection (three statistical 
measures for gene ranking and selection), (3) association rule 
mining on the selective features to obtain weights for the 
frequently occurring genes, (4) redundant association rule 
pruning, (5) association rule clustering based on the 
manipulation of the Jaccard and cosine similarity measures, 
and (6) an online biomedical literature search to report the 
functions/mechanisms of the featured genes. 

2.1. Datasets 

 The experiments are carried out on three well-known 
gene expression datasets, and their characteristics are 
described in Table 1. 

 ALL: The ALL dataset [33] covers six sub types of acute 
lymphoblastic leukemia: BCR (15), E2A (27), Hyperdip 
(64), MLL (20), T (43), and TEL (79); the number of 
samples for each class are shown in parentheses. The dataset 
is available at http://www.stjuderesearch.org/data/ALL1/. 

 MLL: The MLL-leukemia dataset consists of three 
classes: ALL(24), AML(28), MLL(20) and can be down-
loaded at http://research.dfci.harvard.edu/korsmeyer/MLL. 
htm. The dataset was first studied in Armstrong et al. [34]. 
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 SRBCT: The SRBCT dataset [35] is a dataset of small, 
round, blood cell tumors found in children and can be 
downloaded at http://chibi.ubc.ca/tmm/raw-data.html. The 
dataset consists of 83 samples, which are divided into four 
classes: EWS (29), BL (11), NB (18) and RMS (25). 

 The datasets are preprocessed using standardization and 
normalization. Normalization is performed using the z-score 
method, which transforms the features with mean 0 and 
standard deviation 1. This process also standardizes the data. 

Table 1. Description of the Datasets 

 

Dataset No. of Genes No. of Samples No. of Classes 

ALL 12,625 248 6 

MLL 12,582 72 3 

SRBCT 2,276 83 4 

 

2.2. Feature Selection and Scoring using Associative 
Pattern Mining 

 The number of features is large compared to the small 
number of samples in the gene expression datasets. The 
program Rankgene [36] ranks the features in the dataset. The 
measures included in Rankgene have been widely used in 
machine learning or statistical learning theory. We use 
statistical impurity-based measures, Gini Index (GI), Max 
Minority (MM), and the Twoing rule (TR) to extract the 
relevant features. These measures quantify the effectiveness 
of the feature by evaluating the predictability of a class by 
dividing the full range of the expression of a given gene into 
the two intervals of up-regulation and down-regulation. The 
prediction is based on the presence of all the samples 
belonging to a particular interval in the same class. We select 
the Top-100, Top-200, and Top-400 ranked genes from each 
of the three statistical measures, which formed our reduced 
feature datasets. In our approach, we apply the three 
statistical measures, and the variances for a single subset of 
genes are expected to reflect three statistical properties. If a 
particular gene is highly ranked, then the other genes, which 

are correlated with this gene, are also likely to have high 
ranks [37]. We utilize the advantage of this correlation 
among the highly ranked genes by performing ARD to find 
frequently occurring sets of genes. ARD was first introduced 
in [38] and has the following definition. 

 Let I be the set of items and D be the set of transactions. 
Each transaction T in D contains a set of items such 
as IT . Association rules follow the form YX , where 

IX , IY , and  =YX . X is called the antecedent 
(left hand side or LHS), and Y is called the consequent (right 
hand side or RHS) of the rule. The meaning of the rule 

YX is that data instances that contain X are likely to 
contain Y as well. To select the interestingness of the rules, 
various measures of significance and interest can be applied, 
including support and confidence. The support of the rule is 
the percentage of transactions that contain both X and Y. The 
confidence of the rule is the conditional probability of Y 
given X, )/( XYP . The purpose of association rule mining is 
to find all the rules, which exceed the user specified 
threshold of support and confidence. 

 ARD is performed on each of these reduced feature 

datasets separately to find frequently occurring sets of genes. 

The frequently occurring genes establish patterns between 

them of the form Genex Geney , which implies that 

when Genex  occurs; it is likely that Geney  also occurs. The 

Frequent-1, Frequent-2, and Frequent-3 patterns are 

discovered for all the sub-datasets. 

 The scores for the frequently occurring genes are 

obtained in the following manner. Let k
F be the set that 

contains k items occurring together. In our case, k is [1, 3]. 

Let FG  such that },....,,{ 21 pGGGG = be the featured 

genes that form the frequently occurring itemsets with a 

support score, si associated with them, and let ijs  be the 

number of times genes, jiGG  occur together in all the 

samples. Hence,
ii
sG  such that, 

 

Fig. (1). Overall framework for feature extraction and clustering of rules on weighted similarity measures. 
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)}(),....(),({ 21111 pp sGsGsGF =           (1) 

)}(),....(),({ 133112212 pnnp sGGsGGsGGF =
          

(2) 

)}(),..(),({ 1344311233213 pnmmnp sGGGsGGGsGGGF =         (3) 

 The weight W , for each gene k
G , in 

1
F ,

2
F  and 

3
F  is 

calculated using the following formula.  

=
=

3

1
)(

k
k
skW ,  

where, k is the number of itemset depending upon whether 

the gene belongs to 
1
F , 

2
F  or 

3
F  itemset. A detailed 

description of this method is available in our previous work 

[39]. Table 2 is a representative example that shows scores 

calculated for the set of nine genes forming the reduced 

feature set using the top 100 ranked genes selected based on 

Gini Index for the ALL dataset. 

Table 2. Scores Calculated for the Set of Nine Genes Forming 

the Reduced Feature Set Using the Top 100 Ranked 

Genes Selected Based on Gini Index for the ALL 

Dataset 

 

GENE_ID F1(%) F2(%)*2 F3(%)*3 Scores 
Normalized  

Scores 

38319_at 12.43% 75.13% 226.13% 3.136977 1 

37780_at 12.80% 70.95% 73.87% 1.57621 0.486235 

38147_at 11.20% 19.51%  0.30707 0.068466 

38051_at 12.86% 17.26%  0.301177 0.066526 

36277_at 9.85% 17.15%  0.269951 0.056248 

32724_at 10.58%   0.105846 0.002228 

35665_at 10.34%   0.103385 0.001418 

35974_at 10.03%   0.100308 0.000405 

2059_s_at 9.91%   0.099077 0 

 

 Although some of the rules discovered in this process 

represent important biological relationships between the 

genes, other rules often contain redundant information, 

which is difficult for the decision maker to manually 

analyze. In the pruning phase, we remove the redundant rules 

using the following concept. If 3,21 GeneGeneGene  is a 

frequently occurring rule, then the set of rules, 

21 GeneGene ; 31 GeneGene ; 32,1 GeneGeneGene ; 

23,1 GeneGeneGene  will be frequently occurring, an 

observation which can be derived from the original rule, and 

hence it would be redundant to analyze them. 

2.3. Weighted Similarity Measures 

 The pruning of the rules removes the redundant 
associations. However, we are still left with a number of 
rules, some of which have important biological relationships 
but are difficult to analyze because of their density. Since, 
genes exhibit complex relationships, it is important to 
identify the gene correlations, which contribute to an 
understanding of biologically significant cellular 

mechanisms. Thus, we propose two weighted similarity 
methods based on Jaccard and cosine measures to organize 
and summarize these gene correlations on the basis of 
“similarity” which will provide a consistent and precise view 
of the gene correlations. Previous studies have used the 
Jaccard coefficient (ratio of the set intersection to the set 
union) as a similarity metric that describes the degree of 
overlap (similarity) between the subsets of genes. However, 
in defining this metric, they do not capture the predictive 
power of the correlated genes to classify them into samples. 
Further, they fail to apply any heuristics between two subsets 
of gene correlations if they have the same cardinality-based 
similarity measure but entirely different sets of genes present 
in them. Our proposed method will overcome these 
limitations by i) using gene ranking measures when 
discovering gene correlations and ii) assigning weights to the 
gene subsets based on the cardinality of common genes 
between them. The cosine measure for the two rules can be 
arranged into binary valued vectors. It will yield a value of 0 
or 1 depending upon whether the common gene(s) between 
the two rules is present on the RHS or LHS of the rule. This 
binary value poses a very stringent criterion for the 
similarity, especially in cases of association rules where the 
common gene between the rules can be on the either side and 
the rules will still be similar to some extent. Our proposed 
weighted cosine measure relaxes the constraint of the cosine 
similarity measure by computing the dot product with the 
weights obtained for the genes in Section 2.2. 

Let )( R

x

L

xx
RRR =  and )( R

y
L
yy RRR =  be the two 

frequently occurring association rules such that 

=
R

x

L

x
RR  and =

R
y

L
y RR . 

Let },....,,{ 21 inii
j
i GGGR =  be the set of genes where i = x 

or y and j = L or R, respectively then the Jaccard similarity 

between the two rules can be defined as, 

Sim j (Rx ,Ry )

=

(Rx
L Ry

L )+(Rx
R Ry

R )+(Rx
L Ry

R )+(Ry
L Rx

R )

Rx
L Rx

R Ry
L Ry

R

 

and the cosine similarity between the two rules can be 
defined as, 

R
j

R
j

L
i

L
i

R
j

L
i

yxc

RRRR

RR
RRSim

,,

,
),( = , 

where the rules Rx , yR  can be defined as a vector of genes.  

R
j

L
i RR ,  is the dot product of the weights of the genes in 

the two rules, and R
j

R
j

L
i

L
i RRRR ,,  is the length of the 

vector. 

 Example 1: Elucidation of Jaccard similarity 

calculations for the two rules. Consider the two rules Rx and 

yR  such that, 

Rx = {38319 _ at 38147 _ at, 38051_ at}          (4) 
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Ry = {32794 _ g _ at 38319 _ at, 32649 _ at}         (5) 

with corresponding weights derived in Section 2.2 that are 
given in Table 3. 

 Based on Jaccard similarity we have,  

1)()()()( =+++
R
xR

L
yR

R
yR

L
xR

R
yR

R
xR

L
yR

L
xR , 

and 5=
R
yR

L
yR

R
xR

L
xR .  

Hence, 2.0),( =yRxRjSim . 

Table 3. Weights for Rules Rx(4) and  Rx(5) in (4) and (5) 

 

Gene-ID Weight (W) 

38319_at 1 

38051_at 0.137 

38147_at 0.111 

32794_g_at 0.007 

32649_at 0.014 

 

 Next, consider two more rules, which have entirely 
different sets of genes from (1) and (2) 

Rx = {2059 _ s _ at 38015 _ at, 33238 _ at}         (6) 

Ry = {2059 _ s _ at 32794 _ g _ at, 32649 _ at}               (7) 

with corresponding weights derived in Section 2.2 that are 
given in Table 4. 

Table 4. Weights for Rules  Rx(6) and  Rx(7) in (6) and (7) 
 

Gene-ID Weight (W) 

2059_s_at 0.030 

38051_at 0.137 

33238_at 0.016 

32649_at 0.014 

32794_g_at 0.007 

 

 Based on Jaccard similarity, we have  

1)()()()( =+++
R
xR

L
yR

R
yR

L
xR

R
yR

R
xR

L
yR

L
xR  

and  

5=
R
yR

L
yR

R
xR

L
xR .  

Hence, 
 

2.0),( =yRxRjSim . 

 The above examples show that Jaccard similarity 
measure does not apply any heuristics between two sets of 
rules if they have the same cardinality-based on the genes 
present on the either side of the rules but entirely different 
sets of genes present in them. 

 Example 2: Elucidation of Cosine similarity calculations 

for the two rules. Consider the two rules )4(
x
R  and )5(yR  

as in Example 1, 

 Based on cosine similarity we have, 

0, =
R
j

L
i RR  and 1,, =

R
j

R
j

L
i

L
i RRRR . Hence,  

1,, =
R
j

R
j

L
i

L
i RRRR . 

 Similarly, considering the two rules )6(
x
R  and )7(yR , 

as in Example 1, we have, 

1, =
R
j

L
i RR , and 1,, =

R
j

R
j

L
i

L
i RRRR . Hence,  

1),( =yxc RRSim . 

 This equation shows that the cosine measure will yield a 
value of 0 or 1 based on the set of common genes present at 
different sides of the two rules or on the same side. 

 Let, },....,{ 21 imii

L

i
wwwW = , and },....,{ 21 inii

R

i
wwwW =   

be the corresponding weights of the attributes in the 

association rules. We now present the definitions of 

Weighted Jaccard and Weighted cosine similarity measures 

as follows. 

 Definition 1: Weighted Jaccard Similarity Measure. The 

weighted Jaccard similarity between the two association rule 

profiles 
x
P  and yP  is defined as, 

= =
+

+++++

=

M
i

N
j jwiw

R
jw

R
iw

L
jw

L
iwjc

R
jw

R
iw

L
jw

L
iwic

yRxRwjSim

1 1

])}[])([1(])[])([1{(

),(

 

where  
i
c , jc is the number of common set of genes on the 

LHS or RHS of the rules. 

 Example 3: Elucidation of weighted Jaccard similarity 

calculations for the two rules. Consider the two rule 

pairs )4(
x
R , )5(yR with corresponding 

L

i
R  and 

R
jR  in Table 

3. 

=
R

x

L

x
RR ; =

R
y

L
x RR ; 1=

R
y

L
x RR ; and hence, 

1=jc ; =
L
y

R
x RR . 

014.0007.0137.0111.01

]}1[2]0[1{
),(

++++

+
=yxwj RRSim  

 Therefore, 58.1),( =yRxRwjSim . 

 Now, consider )6(
x
R , )7(yR  as in Example 1, with 

corresponding 
L

i
R  and 

R
jR  in Table 4. 

1=
L
y

L
x RR ; =

R

x

R

x
RR ; and 2=

i
c  

=
R
y

L
x RR ; =

L
y

R
x RR ; and 1=jc  
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Simwj (Rx ,Ry ) =
{2[0.030]+1[0 + 0]}

0.030 + 0.137 + 0.016 + 0.014 + 0.007
 

Therefore, 294.0),( =yRxRwjSim . 

 This example shows that unlike Jaccard similarity 
measure, our proposed weighted Jaccard similarity measure 
gives a different measure for rules which have entirely 
different sets of genes present in them. Thus, providing a 
more efficient way to cluster them. 

 Definition 2: Weighted Cosine Similarity Measure. The 

weighted cosine similarity between the two association rule 

profiles 
x
P  and yP  is defined as, 

R
j

R
j

L
i

L
i

R
j

L
i

yxwc

wwww

ww
RRSim

,,

,
),( =  

 Example 4: Elucidation of Weighted Cosine Similarity 

Calculations for the Two Rules. Consider the two rule pairs 

)4(
x
R , )5(yR  with corresponding 

L

i
R  and 

R
jR in Table 3. 

)0.1)(031.1(

]014.0,1,007.0][137.0,111.0,1[
),( =yxwc RRSim  

 Therefore, 12.0),( =yxwc RRSim . 

 Now consider, )6(
x
R , )7(yR  as in Example 1 with 

corresponding 
L

i
R  and 

R
jR in Table 4. 

)002.0)(020.0(

]014.0,007.0,030.0][016.0,137.0,030.0[
),( =yRxRwcSim  

 Therefore, 33.0),( =yxwc RRSim . 

 This example shows that unlike the cosine measure 
which gives a binary value for the similarity, our proposed 
weighted cosine measure relaxes the criteria and produces a 
continuous measure which is then utilized for clustering 
similar rules. 

3. RESULTS 

 We perform several experiments with the top 100-400 
ranked genes to evaluate the efficacy of the selected features 
by using our novel association rule based weighting scheme 
along with the weighted Jaccard and cosine similarity 
measures to group the rules. The gene ranking algorithm is 
run using the Queen Bee LONI supercomputer, and all the 
other experiments are carried out on 3.2GHz Intel

®
 Pentium

®
 

4 processor with 1GB RAM. 

3.1. Feature Selection and Weighted Scoring Using 
Association Rule Mining 

 In this experiment, three feature selection methods, TR, 
GI, and MM are used to rank the genes. The top 100, 200, 
and 400 ranked genes are selected for further analysis. ARD 
is performed on the 12 sub-datasets of top ranked genes for 
ALL, MLL, and SRBCT datasets separately to find 
frequently occurring sets of genes. The support and 
confidence measures are set to 60% and 90%, respectively, 
for all sub-datasets in order to generate rules. Our 

 

Fig. (2). Clusters of genes obtained by the weighted Jaccard and Cosine coefficients. 
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experiment shows that a number of rules have common LHS 
but different RHS. We limit our selection to those rules that 
have unique genes present on the LHS of the rule to identify 
a set of non-overlapping genes. Hence, a smaller number of 
genes qualify for the set support and confidence threshold in 
all sub-datasets. We further apply the concept of SAR to 
eliminate the redundant rules. The scoring method as 
described in Section 2.3 is used to obtain the weights for 
each gene in all sub-datasets. The weights are then 
normalized to the range [0, 1]. An example showing the 
weights obtained for the GI measure for the top 100 genes is 
shown in Table 2. Similarly, this scoring method is 
performed for the all sets of top ranked genes obtained using 
the feature selection methods. 

3.2. Clustering Rules Based on the Weighted Jaccard and 
the Vector Cosine Measure 

 We computed the clusters of association rules by 
employing both the weighted Jaccard and weighted cosine 
measure. Hierarchical clustering (average-linkage) is used to 
cluster the rules. Therefore, the algorithm starts with the 
single rule as an individual group and, at each stage, it 
merges the most similar pair of rule groups. The process 
completes when only one group is left containing all of the 
association rules. Our algorithm can handle the single-, 
complete-, and average-linkage, i.e. taking the maximum, 
minimum, or average similarity of all pair-wise similarities 
between two groups of rules. Each cluster has a group of 
genes obtained by the weighted Jaccard and cosine similarity 
measures. Fig. (2) shows the two proposed measures in all 
the three datasets for the top 100-400 genes perform very 
similarly in obtaining gene clusters. In the clusters generated, 
a significant number of genes are common by both measures. 
In Fig. (2), the genes obtained from both the measures are 
plotted against their weights. 

 

3.3. Performing Biomedical Literature Search to Validate 
the Results 

 After obtaining the relevant set of genes, the web based 
biomedical literature DAVID: Database for Annotation, 
Visualization, and Integrated Discovery [40] is utilized to 
study the functional annotation of the discovered genes. 
DAVID has “over 40 annotation categories, including GO 
terms, protein-protein interactions, protein functional doma-
ins, disease associations, bio-pathways, sequence general 
features, expressions, literatures, etc.” [41]. The advantage of 
web-based biomedical search is that it provides authentic 
information about the selected genes being studied without 
involving the human expertise for verification. Tables 5-7 
list the unique genes obtained after feature selection and 
clustering. Table 8 shows the genes participating in the 
pathway. The clusters obtained for each of the top 100, 200, 
and 400 genes in a dataset had a number of overlapping 
genes. The column “Featured Genes” report the genes 
obtained by our approach that were also obtained from the 
top 96 ranked genes identified based on artificial neural 
networks by [35]. 

 Three of these genes (FGFR4, IGF2, and MYL4) are 
reported to be highly expressed in rhabdomyosarcoma 
(RMS). In the SRBCT dataset, IGF2 has been reported to be 
indispensable for the formation of medulloblastoma and 
RMS [45]. PTPN13 was identified by [44] as a natural target 
gene for the EWS-FLI1 fusion protein. 

 In [35], two-dimensional hierarchical clustering is 
performed using Pearson correlation coefficient and an 
unweighted pair group method using arithmetic averages. 
The genes reported in [35] and identified by our approach 
are shown in Table 5. A flow cytometry analysis is 
performed using monoclonal antibodies specific for a 
number of antigens including CD2 to determine lineage 
derivation [46]. In the comparative expression of kinase, 

Table 5. List of Genes Obtained in SRBCT Dataset 

 

Index Image Id Gene Symbol Description Featured Genes Similarity Measure Jaccard Cosine 

1 138672   ESTs    

2 244618 FNDC5 ESTs a, b   

3 245330 IGF2 
Human Krueppel-related zinc finger protein (H-

plk) mRNA, complete cds 
a, b   

4 296448 IGF2 Insulin-like growth factor 2 (somatomedin A) a, b, c, d, e   

5 298062 TNNT2 Plasticity related-protein a   

6 461425 MYL4 Microsomal Glutathione S-Transferase 3 a   

7 784224 FGFR4 Fibroblast growth factor receptor 4 a, b   

8 789091 RNPEP Arginyl Aminopeptidase (Aminopeptidase B)    

9 839736 CRYAB Crystallin, alpha B a, b   

10 866702 PTPN13 
protein tyrosine phosphatase, non-receptor type 
13 (APO-1/CD95 (Fas)-associated phosphatase) 

a, b, d   

11 882506 PA3341 Probable transcriptional regulator    

a. Khan et al. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks [35]. 

b. Xuan et al. 2007. Gene Selection for Multiclass Prediction by Weighted Fisher Criterion [42]. 
c. El-Badry et al. 1990. Insulin-like growth factor II acts as an autocrine growth and motility factor in human rhabdomyosarcoma tumors [43]. 

d. Baer et al. 2004. Profiling and Functional Annotation of MRNA Gene Expression in Pediatric Rhabdomyosarcoma and Ewing's Sarcoma [44]. 
e. Wang et al. 2007.Accurate Cancer Classification Using Expressions of Very Few Genes [45]. 
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genes in pre–B-lineage acute lymphocytic leukemia, 
comparison of NEG, and E2A/PBX1 identify nine kinases; 
the tyrosine kinase gene (LCK) is more highly expressed in 
the E2A/PBX1 samples [46]. 

 Three of the genes (CCL2, CXCL2, and CFD) identified 
by our approach are reported by [47]. They are involved in 
the following GO processes: cell surface receptor linked 
signal transduction, response to wounding, chemotaxis, 
response to stress, inflammatory response, immune response, 
and extracellular region. A few genes reported by [9] showed 
the highest differential expression within the first 24 hours of 
cocultivation, which included CXCL2, which acts like a 
cytokine. TNFAIP6 also identified by [11] was involved in 
intracellular signaling (integral to plasma membrane, 
receptor activity, signal transducer activity, cell surface 
receptor-linked signal transduction, cell motility, G-protein-
coupled receptor protein signaling pathway, cell–cell 
signaling, development, and organogenesis, morphogenesis 
and extracellular region). TCFL5 is one of the nine selected  
 

genes reported by [48] as being the most biologically 
relevant and being able to independently differentiate 
between TEL/AML1 positive and TEL/AML1 negative 
patients. The lymphoid specific gene, MME that is highly 
expressed in ALL samples and under expressed in MLL 
samples has a function in early B-cell development [34]. 

 Annotations from the GENECODIS [49, 50] software are 
used to associate the genes with known the Kyoto Encyclopedia 
of Genes and Genomes (KEGG [51]) pathways. Table 7 shows 
the genes listed in the identified pathway for the ALL dataset 
and their description. Table 8 shows the three statistical 
measures and top 100-400 genes identified in the pathways. 

4. CONCLUSIONS 

 This paper introduces a novel approach based on ARD 
for feature extraction and grouping of rules based on 
weighted similarity measures. The Jaccard and cosine 
similarity measures have limitations in clustering of similar 
rules and will not be effective if applied as is. Experiments  
 

Table 6. List of Genes Obtained in ALL Dataset 

 

Index Gene Symbol Description Marker Genes Similarity Measure Jaccard Cosine 

1 AQP3 Aquaporin 3 (Gill Blood Group)    

2 CD1B CD1B Antigen    

3 CD1E CD1E Antigen, E Polypeptide    

4 CD2 CD2 Antigen (P50), Sheep Blood Cell Receptor b   

5 CD3D CD3D Antigen, Delta Polypeptide (TIT3 Complex) a   

6 CD3E CD3E Antigen, Epsilon Polypeptide (TIT3 Complex) a   

7 CHI3L2 Chitinase 3-LIKE 2 a   

8 EPHB6 EPH Receptor B6    

9 FXYD2 FXYD Domain containing ion Transport Regulator 2    

10 ITM2A Integral Membrane Protein 2A a   

11 LAT Linker for Activation of T Cells a   

12 LCK Lymphocyte-Specific Protein Tyrosine Kinase a, b   

13 MAL MAL, T-Cell Differentiation Protein a   

14 SEPW1 Selenoprotein W, 1 a   

15 SH2D1A 
SH2 Domain Protein 1A, Duncan's Disease (Lymphoproliferative 

Syndrome) 
a   

16 TCF7 Transcription Factor 7 (T-Cell Specific, HMG-Box) a   

17 TRA@ T Cell Receptor Alpha Locus    

18 TRBC1 T Cell Receptor Beta Constant 1    

19 TRBV19 T Cell Receptor Beta Variable 19    

20 TRBV21-1 T Cell Receptor Beta Variable 21-1    

21 TRBV3-1 T Cell Receptor Beta Variable 3-1    

22 TRBV5-4 T Cell Receptor Beta Variable 5-4    

23 TRD@ T Cell Receptor Delta Locus    

24 TRIB2 Tibbles Homolog 2 (Drosophila)    

25 VAT1 Vesicle Amine Transport Protein 1 Homolog (T Californica)    

26 KIAA0802 Unknown a, b   

a. Yeoh et al. 2002. Classification, subtype discovery, and prediction of outcome in pediatric lymphoblastic leukemia by gene expression profiling [52]. 
b. Chiaretti et al. 2005. Gene Expression Profiles of B-lineage Adult Acute Lymphocytic Leukemia Reveal Genetic Patterns that Identify Lineage Derivation and Distinct 

Mechanisms of Transformation [46]. 
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Table 7. List of Genes Obtained in MLL Dataset 

 

Index Probe Id Gene Symbol Description Marker Genes Similarity Measure Jaccard Cosine 

1 37954_AT ANXA8L2 Annexin A8    

2 31438_S_AT CD163 CD163 Antigen    

3 34375_AT CCL2 Chemokine (C-C Motif) Ligand 2 a   

4 875_G_AT CCL2 Chemokine (C-C Motif) Ligand 2    

5 37187_AT CXCL2 Chemokine (C-X-C Motif) Ligand 2 a, b   

6 36780_AT CLU Clusterin    

7 40282_S_AT CFD Complement Factor D (Adipsin) a   

8 1914_AT CCNA1 Cyclin A1    

9 39660_AT DEFB1 Defensin, Beta 1    

10 864_AT MNX1 Homeobox HB9    

11 37043_AT ID3 
Inhibitor of DNA Binding 3, Dominant 

Negative Helix-Loop-Helix Protein 
   

12 1389_AT MME Membrane Metallo-Endopeptidase  f   

13 38604_AT NPY Neuropeptide Y    

14 36151_AT PLD3 Phospholipase D Family, Member 3    

15 39208_I_AT PPBP 
Pro-Platelet Basic Protein (Chemokine 

(C-X-C Motif) Ligand 7) 
   

16 39209_R_AT PPBP 
Pro-Platelet Basic Protein (Chemokine 

(C-X-C Motif) Ligand 7) 
   

17 37185_AT SERPINB2 
Serpin Peptidase Inhibitor, Clade B 

(Ovalbumin), Member 2 
   

18 1325_AT SMAD1 
SMAD, Mothers Against DPP Homolog 

1 (Drosophila) 
   

19 37280_AT SMAD1 
SMAD, Mothers Against DPP Homolog 

1 (Drosophila) 
   

20 41097_AT TERF2 Telomeric Repeat Binding Factor 2 f   

21 32872_AT TCF4 Transcription Factor 4    

22 35614_AT TCFL5 
Transcription Factor-LIKE 5 (Basic 

Helix-Loop-Helix) 
d, e   

23 1372_AT TNFAIP6 
Tumor Necrosis Factor, Alpha-Induced 

Protein 6  
c   

a. Bloushtain-Qimron et al. 2008. Cell type-specific DNA methylation patterns in the human breast [47]. 

b. Wagner et al. 2005. Hematopoietic Progenitor Cells and Cellular Microenvironment: Behavioral and Molecular Changes upon Interaction [53]. 
c. S. Hanash and C. Creighton 2003. Making sense of microarray data to classify cancer [11]. 

d. Gandemer et al. 2007. Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia [48]. 
e. Severin et al. 2009. FANTOM4 EdgeExpressDB: an integrated database of promoters, genes, microRNAs, expression dynamics and regulatory interactions [54]. 

f. Armstrong et al. 2002. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia [34]. 

Table 8. Genes Listed in the Pathways 

 

Pathway Genes Involved Description 

A 40688_at, 36277_at, 38319_at, 33238_at 
(KEGG) 04660: T cell receptor signaling pathway, (KEGG) 05340: Primary 

immunodeficiency 

B 36277_at, 38319_at, 33238_at (KEGG) 04660: T cell receptor signaling pathway 

C 40688_at, 38147_at, 33238_at (KEGG) 04640: Hematopoietic cell lineage 

D 40688_at, 38319_at, 33238_at  (KEGG) 04660: T cell receptor signaling pathway 

E 36277_at, 40738_at, 38319_at (KEGG) 04650: Natural killer cell mediated cytotoxicity 

F 34927_at, 37861_at, 38319_at (KEGG) 04640: Hematopoietic cell lineage 
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conducted on the multiclass cancer datasets along with the 
biomedical literature datasets show the effectiveness of our 
technique. We expect that this method can be effectively 
extended to the large data sets produced in modern 
microarray experiments. Due to the efficiency and scalability 
of our proposed technique, it is well suited to the domains of 
medical image analysis for feature extraction and clustering 
of similar feature based rules. 
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