# Solid Solution Mechanism of CO<sub>2</sub>O<sub>3</sub> During C<sub>3</sub>S Formation

Hongbo Tan<sup>\*,1</sup>, Kai Ke<sup>2</sup>, Baoguo Ma<sup>2</sup> and Jun Xiao<sup>2</sup>

<sup>1</sup>School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, the P.R. China

<sup>2</sup>Key Labortory for Silicate Materials Science Engineering of Ministry of Education, Wuhan University of Technology, Wuhan 430070, Hubei, the P.R. China

**Abstract:** Polymorphism of tricalcium silicate were prepared by a calcination method with  $Ca(OH)_2$  and  $SiO_2$  as crude materials and  $Co_2O_3$  as doping agent. The solid solution mechanism of  $Co_2O_3$  during  $C_3S$  formation were studied by means of chemical analysis, XRD and phase diagram analysis. The results show: according to phase analyse of CaO-CoO and CoO-SiO<sub>2</sub>,  $Co_2O_3$  accelerated solid reaction of CaO-SiO<sub>2</sub>. When  $Co_2O_3$  additive was less than 1.5% in mass, the content of f-CaO increased with the increase of  $Co_2O_3$ , and the formation rate of  $C_3S$  was accelerated by  $Co_2O_3$ ; when  $Co_2O_3$  addition exceeded 1.5%, the content of f-CaO decreased with the increase of  $Co_2O_3$ . By the least square method and defined f-CaO, the molecular formula that  $Co_2O_3$  solidified in  $C_3S$  could be deduced:  $(Ca_{3.0.86x} Co_{0.86x})$  (Si<sub>1</sub>- $_{0.14x}Co_{0.14x}O_5$  (x=0.0209).

Keywords: C<sub>3</sub>S, crystal form, phase diagram, solid solution.

# **INTRODUCTION**

The main components of Portland cement are CaO, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub>, and they are responsible for the composition of the main mineral phases, such as alite, belite, aluminate and ferrite phase. Minor components such as MgO, SO<sub>3</sub>, and alkalis also have an influence on the clinker formation during the burning process, as well as on the hydration process of the cement. Meanwhile, cement also contains heavy metals in the form of trace elements from the natural sources of the raw materials. Volatile components, such as the compounds of Cu, Pb, and P, can evaporate during the burning process and precipitate in the cooler parts of the kiln. They can be found in the kiln dust. Less volatile compounds are incorporated in the clinker phases during the burning process [1]. Normally, these trace elements have no influence on the burning or hydration process because of very low concentration. However, with more frequent use of alternative fuels and secondary raw materials, their concentration can possibly rise within the typical range of the clinker and its products [2, 3].

In order to estimate the influence of these ions on the formation of clinker and the hydration of cements, tests were done with pure phase composed of raw meals mixed with different concentrations of ions. To show the effects, the amount of added ion oxide was in concentrations two or three dimensions higher than usual in practice.

## EXPERIMENTS

# (1) Raw Materials

For the experiments the type of crude material with one composition was chosen: one mineral in ordinary Portland

cement (PC). The sample was taken from the chemically pure agent. To prepare tricalcium silicate with higher concentrations of oxide,  $Co_2O_3$  was added to the crude material to give an ion oxide concentration of approximately 0.5, 1.0, 1.5, 2.0, 3.0 and 4.0 wt.% respectively.

#### (2) Sample Preparation and Methods of Investigation

The oxides were intensively mixed with 200g of crude material and then the cylinders were made (diameter>20mm, height>40mm) to give a regular burnability of the tricalcium silicate. The tricalcium silicate was burned in a platinum crucible in an electrically heated furnace. All samples were thermally treated up to 1550°C (rate:10°C/min and kept for 2h, 4h, 6h and 8h respectively at 1550°C) in an electric furnace and cooled rapidly in air. After burning, the samples were taken out at 1400°C or 600°C and then cooled quickly in air.

Samples were performed in a batch oscillating laboratory mill at equal times and conditions and then analyzed for the content of free lime by Franke's method [4]. These samples were also analyzed by means of X-ray powder diffraction (XRD) and DTA-TG.

Table 1. Content of Co<sub>2</sub>O<sub>3</sub> in C<sub>3</sub>S

| Sample                               | В | 01  | 02  | 03  | 04  | 05  | 06  |
|--------------------------------------|---|-----|-----|-----|-----|-----|-----|
| ω(Co <sub>2</sub> O <sub>3</sub> )/% | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 3.0 | 4.0 |

# **RESULTS AND DISCUSSION**

#### (1) The Content of Free Lime

According to Franke's method, the free lime in  $C_3S$  was analyzed [5]. In order to judge which ion oxide was incorporated into the  $C_3S$ , the concentration of ion oxide in the tricalcium silicate and the change content of free lime during burning were given in Fig. (1). The results showed

<sup>\*</sup>Address correspondence to this author at the School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, the P.R. China; Tel: 86-27-87664845; Fax: 86-27-87160951; E-mail: thbwhut@163.com



← 2h

**−**− 4h

**▲** 6h



Fig. (1). Effect of doped Co<sub>2</sub>O<sub>3</sub> on f-CaO content in C<sub>3</sub>S samples.

that a clear mechanism on firstsight, an enlargement tendency and a following decreasing tendency could be seen; they all intersected at the addition of 1.5wt. %.

With the addition of  $Co_2O_3$  up to a concentration of 0.5 wt. %, the content of CaO increased. With more Co<sub>2</sub>O<sub>3</sub> addition, the free lime rose sharply. When the addition of  $Co_2O_3$  rose to 1.5wt.%, the free lime reached a peak point. Then with more adding  $Co_2O_3$ , the free lime reduced gradually. Some colleagues [6, 7] came to the same results, some ions like Co<sup>3+</sup>, Cr<sup>3+</sup>, Cu<sup>2+</sup> and Sn<sup>4+</sup> etc could generate liquid phase to form C<sub>3</sub>S, and it also showed that a litter content of Co<sub>2</sub>O<sub>3</sub> led to a generation of liquid phase that could accelerate to form C<sub>3</sub>S. From the observation reduction, the maximum concentration of Co<sub>2</sub>O<sub>3</sub> which was incorporated into C<sub>3</sub>S at 1550°C was 1.5wt.%, when the adding below 1.5%, during phase diagram of CaO-CoO and CoO-SiO<sub>2</sub>, it showed that CoO was easier to react with SiO<sub>2</sub> to form Co-Si-O solid solution, so a little Co<sub>2</sub>O<sub>3</sub> could make CaO to spare out, with more  $Co_2O_3$  adding, more  $Co_2O_3$ could reduce the eutectic point of CaO-SiO<sub>2</sub>-Co<sub>2</sub>O<sub>3</sub> ternary system. So when the content of Co<sub>2</sub>O<sub>3</sub> satisfied the condition that the addition which can accelerate the formation of sosoloid at 1550°C, the free lime down.

By the observation of sample, both the samples with splat cooling (SSC) and the samples with furnace cooling (SFC) were exist with solid body, with some calculations, before the adding of 1.5wt.%, the rate of grade of SFC was a little bigger than the rate of grade of SSC, that was because of the difference of solidification effectiveness by two cooling ways. After 1.5wt.% additon, the tendency change of the rate of grade was revers, since the explanation could be that: the quantity of heat of SFC that come from furnace could promote the absorption of f-CaO in CaO-SiO<sub>2</sub> system.

# (3) Effect of Co<sub>2</sub>O<sub>3</sub> on Formation of Liquid Phase of C<sub>3</sub>S

Differential thermal analysis-thermal gravimetry (DTA-TG) analyses of B and O (wtO<sub>2</sub> = 1%) samples were carried out from 20°C-1500°C, 10°C/min.

In all cases the following changes were observed. As an example, a complete description of those changes was shown

for B and O: a first endothermic peak between 380-550°C corresponding to calcium hydroxide decomposition; then the CaO reaction zone with silicates and phosphorous pentoxide as an endothermic band in the 1100-1400°C zone was observed. This band was attributed to the formation of liquid as well as to the formation and development of alite crystals. At last, an exothermal peak was observed at 1400-1440°C assigned to the formation and development of tricalcium silicate.





By DTA, the starting decomposition temperature of Ca (OH)  $_2$  in samples B and O were 390.6°C and 397.6°C respectively, implying that the decomposition temperature of calcium hydroxide was a little changed by Co<sub>2</sub>O<sub>3</sub> addition. In contrast, the formation of the alite and the liquid phase was strongly affected by the presence of Co<sub>2</sub>O<sub>3</sub>. The starting formation temperatures of liquid phase and Belite in samples B and O were 1300.6°C and 864.6°C respectively, the starting point of temperature was greatly changed by Co<sub>2</sub>O<sub>3</sub> addition. The ending formation temperatures of liquid phase

and Belite in samples B and O were about  $1424.6^{\circ}$ C and  $1428.6^{\circ}$ C respectively, So the main endothermic peak at  $1424.6^{\circ}$ C shifted towards a lower temperature by  $4^{\circ}$ C. These discrepancies were caused by the different reactivity of crude material. It proved that  $Co_2O_3$  as flux could lower the formation temperature of liquid phase, increased quantity of liquid phase, and furthermore promoted the formation of tricalcium silicate mineral. In less reactive materials, the main formation of belite was assumed to take place in one step. The higher reactivity of the samples containing  $Co_2O_3$  in these temperatures, has been confirmed by the determination of the content of  $3CaO \cdot SiO_2$ .

During the research of the chemical properties of  $Co_2O_3$  at high temperature, there was a deoxidate reaction of  $Co_2O_3$  at 895°C as equation (1).

$$\operatorname{Co}_2\operatorname{O}_3 \to \operatorname{CoO}+1/2\operatorname{O}_2(895^\circ\operatorname{C}) \tag{1}$$

Therefore, CoO was researched to explain the effect mechanics of  $Co_2O_3$  in CaO-SiO<sub>2</sub> system. According to the phase diagram of CaO-CoO [4] and CoO-SiO<sub>2</sub> [8], CoO was easier to react with SiO<sub>2</sub> to form Co-Si-O solid solution.

According to the proportion of ingredients (assuming  $Co_2O_3$  content is 1.0%): wtCaO = 72.95%, wtSiO2 = 26.05%, wtCoO = 0.99%. In binary reaction system of CaO-CoO: wtCaO: wtCoO = 98.65:1.35; In binary reaction system of SiO2-CoO: wtSiO2: wtCoO = 96.3:3.7.

In binary system of CaO-CoO, solid solution and liquid phase convert at about 2174 °C and in binary system of SiO<sub>2</sub>-CoO, solid solution and liquid phase convert at about 1384 °C. Transition temperature of conversion of C<sub>3</sub>S and liquid in binary phase diagram of CaO-SiO<sub>2</sub> is 2150 °C, but SiO<sub>2</sub>-CoO solid-liquid transition temperature point is only 1384 °C. So there is a conclusion that Co<sub>2</sub>O<sub>3</sub> is advantage for formation of liquid in CaO-SiO<sub>2</sub> binary system.

### (4) Crystallographic Examination of C<sub>3</sub>S

The effect of the  $Co_2O_3$  on the mineralogical state of the  $C_3S$  concerned mainly the phases which were crystallized from the melt.

As it can be seen in Figs. (3, 4), the main peaks of tricalcium silicate mineral were at d=0.278, 0.303nm, and secondary peaks of tricalcium silicate mineral were at d=0.219nm. And secondary peaks of tricalcium silicate mineral at d=0.274, 0.261, 0.176nm were coincidence with secondary peaks of dicalcium silicate, so there were some difficulties to appreciate by these coincidence peaks, but it also could be judged data by analyzing the main peaks of tricalcium silicate. Comparing the intensity of diffraction main peaks of tricalcium silicate mineral (d=0.278, 0.303nm), the content of 3CaO·SiO<sub>2</sub> formed in all samples O were all more than that of the sample B. The experimental results indicated that Co<sub>2</sub>O<sub>3</sub> could promote the formation of  $3CaO \cdot SiO_2$  mineral. When the addition of  $Co_2O_3$  was below 2.0%, a slowly increase of C<sub>3</sub>S content followed by an increase of the Co<sub>2</sub>O<sub>3</sub> content. When the addition of Co<sub>2</sub>O<sub>3</sub> was greater than 2.0%, the content of 3CaO·SiO<sub>2</sub> mineral were increased apparently. This may be attributed that addition of Co<sub>2</sub>O<sub>3</sub> can lower the formation temperature of the liquid phase.

Comparing the intensity of XRD peaks of SSC and SFC, it could be seen that the intensity of diffraction peaks (d= 0.303, 0.278, 0.274, 0.261, 0.219, 0.176nm) of the Ca<sub>3</sub>SiO<sub>5</sub> phase in SSC were higher. It showed that different cooling ways could influence the formation of Ca<sub>3</sub>SiO<sub>5</sub>, and Ca<sub>3</sub>SiO<sub>5</sub> will decompose partly below at 1250°C, so the tricalcium silicate mineral peaks of SSC were higher than those of SFC.

# (5) Solidifying Form of Co<sub>2</sub>O<sub>3</sub> in C<sub>3</sub>S

In conditional C<sub>3</sub>S crystal structure [9, 10],  $r_{Ca}^{2+}/r_0^{2-}=99/132=0.75$ , Ca united with O to form [CaO<sub>6</sub>] octahedron;  $r_{Si}^{4+}/r_0^{2-}=41/132=0.31$ , Si united with O to form [SiO<sub>4</sub>] tetrahedron.  $r_{Co}^{2+}/r_0^{2-}=74/132=0.56$ ,  $r_{Co}^{3+}/r_0^{2-}=65/132=0.49$ , aaccording to Pauling first rule, coordination number of Co ion is 6, and the formation of Co-O is [CoO<sub>6</sub>] octahedral. In a coordination structure, the shared edge, especially in the presence of shared surface will reduce the stability of this structure, according to the third rule of Pauling, with the same kind of coordination, roof effect of octahedral of Ca<sup>2+</sup> is bigger than Co<sup>3+</sup> because the charge number of Co<sup>2+</sup> is 4, according to Pauling fourth rule, Co<sup>2+</sup> relative to Ca<sup>2+</sup>, the same valence but low coordination number of Co<sup>2+</sup> to form [CoO<sub>6</sub>] coplanar octahedral edge effects are increased.



Fig. (3). XRD of C<sub>3</sub>S samples through down quenching.

When the orbits of  $d^0$ ,  $d^3$ ,  $d^8$ ,  $d^{10}$  and  $d^5$  high spin and d6 low spin which are occupied by electrons are superimposed together, the d-shell electron cloud distribution is symmetric in space. So, they are octahedral position is stable, but spatial

distribution of electron cloud of d4 and d9 ion of d shell is asymmetry. In this way, it leads to further split the d orbital and distortion from symmetrical position. So, the ions are stable [11]. Transition metal ions in the environment will be distorted. After distortion, a more stable electron configuration has been formed because the orbits are occupied to reduce the energy. As shown in Table **2**, stability energy of  $\text{Co}^{2+}$ ,  $\text{Ca}^{2+}$  in octahedral and tetrahedral crystal is 0, octahedral select potential OSPE is 0. With the third rule of Pauling, the results show  $\text{Co}^{2+}$  and  $\text{O}^{2-}$  in the form of coplanar and edges were formed [ $\text{CoO}_6$ ] deformed octahedron. The foregoing analysis shows,  $\text{Co}^{2+}$ replaced  $\text{Ca}^{2+}$  solution, the crystal structure of  $\text{C}_3\text{S}$  easily lead to the distortion in the octahedron and octahedron shared edges of surface probability was increased.



Fig. (4). XRD of C<sub>3</sub>S samples through furnace quenching.

# (6) Solidifying Equation of Co<sub>2</sub>O<sub>3</sub> in C<sub>3</sub>S

Samples which had been sintered for 8 h were continued to sintered in an electrically heated furnace at 1550°C, and taken out at 1450°C and then were cooled quickly in air.

Samples were sintered repeatedly to assure that content of f-CaO was invariable. Apply least-squares procedure to statistic the numeric values which can be seen in Table 3. The essence of least-squares procedure was to define one aligning expressed by equation y=bx+a, it would be maked it better to reflect the variation of data, the data should be satisfied the formula to be minimality.

$$\sum_{i=1}^{n} [y_i - (bx_i + a)]^2 = \min(2)$$
  
When  $\mathbf{b} = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$ ,  $\mathbf{a} = \overline{\mathbf{y}} - \mathbf{b} \overline{\mathbf{x}}$ , equation above

set up, so y=bx+a was called equation of linear regression.

Table 3.The Content of CaO in C3S

| Sample (x <sub>i</sub> )            | <b>B</b> (x <sub>1</sub> ) | O1 (x <sub>2</sub> ) | O2 (x <sub>3</sub> ) | O3 (x <sub>4</sub> ) |
|-------------------------------------|----------------------------|----------------------|----------------------|----------------------|
| $\omega$ (f-CaO/% (y <sub>i</sub> ) | 0.65                       | 0.70                 | 0.95                 | 1.22                 |

According to Table **3**, substitute numeric value of f-CaO into valuation of  $x_i$  and  $y_i$ , during some calculation, the results could be getting: b= 0.392, a=0.586. That was to say that numerical data can format one straight-line and the slope coefficient is 0.392. It could be explained that if introduce one gramme  $Co_2O_3$ , it will separate out 0.392g CaO, that was also to say that one mol  $Co_2O_3$  can make 0.86 mol CaO separate out. According to the correlation studies about  $Co_2O_3$  doped in  $C_3S$ , the solidifying equation of  $Co_2O_3$  in  $C_3S$  was seen as followed.

# $(Ca_{3-0.86x}Co_{0.86x})(Si_{1-0.14x}Co_{0.14x})O_5(x-solid solubility)$

According to the analysis of f-CaO and XRD, when the addition of  $Co_2O_3$  up to 1.5%, it could reach the ultimate solid solution, when the addition was greater than this amount, the sample began to produce melt phase. At this moment,  $Co_2O_3$  was not inserted in C<sub>3</sub>S with a solid solution mode [11], but it could response with CaO and SiO<sub>2</sub> to form ternary eutectic system, so it was necessary to definite the ultimate solid solution exactly. Batching crude material at a 1.5% addition, keep at 1550°C for 2h, taken out at 1450°C and assayed the content of f-CaO. Specific parameter could be seen in Table **3**.

Through analysis on Table 4, the curve of f-CaO has appeared a break, transfer into mole percentage composition that was proportion to CaO-SiO<sub>2</sub> system. So the molecular formula of  $Co_2O_3$  solid solution was shown as followed.

 $(Ca_{3-0.86x}Co_{0.86x})(Si_{1-0.1}4xCo_{0.14x})O_5(x=0.0209)$ 

 Table 2.
 The Stabilizing Power of Transition Ion in Octahedral Coordination

| Electronic Configuration                        | Ion              | Stability Energy          |                           |                                             |  |  |
|-------------------------------------------------|------------------|---------------------------|---------------------------|---------------------------------------------|--|--|
| Electronic Conngulation                         |                  | Elongated Octahedral      | Compressed Octahedral     | Most Stable Form of Coordination Polyhedron |  |  |
| 3s <sup>2</sup> 3p <sup>6</sup>                 | Ca <sup>2+</sup> | 0                         | 0                         | octahedral                                  |  |  |
| $3s^23p^63d^4$                                  | Co <sup>3+</sup> | $12/5\Delta_0$            | $12/5\Delta_0$            | octahedral                                  |  |  |
| 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>5</sup> | Co <sup>2+</sup> | $4/5\Delta_0 + 2/3\delta$ | $4/5\Delta_0 + 1/3\delta$ | elongated octahedral                        |  |  |

#### Table 4.Content of CaO in C3S

| ω(Co <sub>2</sub> O <sub>3</sub> )/% | 1.2  | 1.3  | 1.4  | 1.5  | 1.6  | 1.7  | 1.8  |
|--------------------------------------|------|------|------|------|------|------|------|
| ω(f-CaO)/%                           | 3.17 | 3.29 | 3.45 | 3.51 | 3.25 | 2.98 | 2.65 |

# CONCLUSIONS

- 1. According to the characteristic of  $Co_2O_3$  which could increase liquid phase, the free lime firstly rose with  $Co_2O_3$  added, and then decreased if the addition of  $Co_2O_3$  exceeded 1.5%. Combining with XRD analysis, the adding of the solid solution saturation ratio is about 1.5%. Below this ratio, tricalcium silicate mineral rose slowly with the increase adding, and above this ratio, tricalcium silicate mineral rose apparently with the increase adding.
- 2. According to crystallochemical theory and Hume-Rothery experimental regulation, Solidifying equation of Co<sub>2</sub>O<sub>3</sub> can be deduced, with least- squares procedure and definiting the ultimate solid solution exactly, the solidifying equation could be derived:

# $(Ca_{3-0.86x}Co_{0.86x})(Si_{1-0.14x}Co_{0.14x})O_5(x=0.0209)$

# ACKNOWLEDGEMENTS

This paper is supported by the National Basic Research of China "973" Program "2009CB23201" from the Ministry of Science, China Postdoctoral Fund of 20100471167" and financially supported by self-determined and innovative research funds of WHUT of "2010-IV-011" and the Chenguang Program of Wuhan (200950431204) from Wuhan Science and Technology Bureau of China.

# REFERENCES

- Sprung S, Reehenberg W, Baehmann G. Environmental Compatibility of Cement. Zement-Kalk-Gips 1994; 47: 262-6.
- [2] Kakali G, Kasselouri V, Parissakis G. Investigation of the effect of Mo, Nb,W and Zr oxides on the information of portland cement clinker. Cement Concrete Res 1990; 20: 131-8.
- [3] Kakali G, Parissakis G. Investigation of the effect of ZnO on the formation of Portland cement clinker. Cement Concrete Res 1996; 25:79-85.
- Franke B. Calciumoxid und Calcium hydr-oxidneben wasserfreiem und wasserhaltigem Calciumsili- cat. Z Anorg Allg Chem 1941; 241:180-4.
- [5] Stephan D, Maleki R, Knofel D. Influence of Cr Ni and Zn on the Properties of pure clinker phases: Part1. Cement Concrete Res 1999; 29:545-52.
- [6] Kskli G, Parissakis G, Bouras D. A study on the burnability and the phase formation of PC clinkere on containing Cu oxide. Cement Concrete Res 1996; 10:1473-8.
- [7] Zhou Y. Inorganic material physical chemistry, in Chinese. Wuhan University of Technology Press: Wuhan; 1994.
- [8] Taylor.W. Cement chemistry. Thomas Telford Ltd, 2<sup>nd</sup> ed. London; 1997.
- [9] Guinier A, Regourd M. Structure of cement minerals. Prodeedings of the 5th international symposiums on the chemistry of cement. Academic Press: Tokyo 1968.
- [10] Kazuyori U, Hiromi N. Structural Modulations in Monoclinic Tricalcium Silicate Solid Solution Doped with Zinc Oxide M (I) M (II) M (III). Ceram Soc 2002; 85: 423-9.
- [11] Kazuyori U, Tatsuya and Shirakami. Superstructure in a Triclinic Phase of Tricalcium Silicate. Ceram Soc 2000; 83: 1253-8.

Revised: November 26, 2010

Accepted: December 23, 2010

© Tan et al.; Licensee Bentham Open.

Received: September 28, 2010

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.