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Abstract: To grow high-purity and large sizes MgO single crystals with twin-electrode DC submerged arc furnace 

requires that the temperature distribution be well understood and the processing temperature be precisely controlled. For 

the complexity of the production of MgO single crystals and the difficulty to measure the temperature inside the furnace, 

the temperature distribution was studied by using finite element method (FEM), and the temperature control was realized 

by the process control strategies with adaptive neuro-fuzzy inference system (ANFIS). Experiments were carried out to 

verify the effectiveness of the method. The result of experiments indicated that using the adaptive neuro-fuzzy control 

system can improve the quality and the quantity of the MgO single crystal production. 
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1. INTRODUCTION 

 The ability of the twin-electrode DC submerged arc 
furnace to process fines, its increased power efficiency, and 
its lower electrode consumption have made it popular in 
crystal growth since its introduction in the late 1970s [1]. 
The twin-electrode DC submerged arc furnace can easily 
generate temperature up to 3600°C in a short time. Because 
Magnesium oxide is well known refractory material which 
has very high melting points, nowadays using twin-electrode 
DC submerged arc furnace has become the main method 
applied to grow large magnesium oxide (MgO) single 
crystals. 

 The process of MgO single crystals production can be 
divided into three stages. The first stage is meltdown stage. 
In this stage the fundamental task is to get desired size of 
molten pool in MgO powder. In order to supply sufficient 
electric power for the rapid melting of MgO, the DC voltage 
of the convertor should be high and the gap between the 
electrodes should be small. The second stage is refining 
stage. In this stage the main work is to keep the stability of 
the molten pool and refine the MgO melt, so the DC voltage 
should be stepped-down and the gap between the electrodes 
should be increased. The third stage is crystallization stage. 
In this stage the core job is to build a relatively stable 
temperature gradient for the crystal growth. In order to 
decrease the supply of electric power for the growth of MgO 
single crystals, the DC voltage should be stepped-down and 
the gap between the electrodes should be reduced. The 
supply of the electric power will be shut down until the 
temperature in the twin-electrode DC submerged arc furnace 
reach about 2200°C. 
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 With the development of computing power and 
numerical techniques, the computer modeling of global heat 
transfer, defect dynamics, and three-dimensional (3D) 
phenomena for crystal growth has made significant 
progresses [2]. Finite element method (FEM) was used to 
predict the temperature distribution. 

 To keep the stability of the molten pool and build proper 
temperature gradient in the twin-electrode DC submerged arc 
furnace is crucial to grow high-purity MgO single crystals 
with large sizes. For the process of the MgO melting is 
complicated, and the mechanism of single crystals growth is 
not clearly known, there are a lot of uncertain factors in the 
production of MgO single crystals. There have been quite a 
few researches done both in modeling and simulation of the 
steel making furnace by the use of conventional and 
intelligent methods such as fuzzy logic (FL), artificial neural 
networks (ANN) and neuro-fuzzy systems, an amalgamation 
of FL and ANN [3]. However, the process of production of 
MgO single crystals is quite different from steel making. It is 
necessary to build a temperature controller with intelligent 
methods such as adaptive neuro-fuzzy inference system 
(ANFIS) for the twin-electrode DC submerged arc furnace. 

 For the complexity of the production of MgO single 
crystals and the difficulty to measure the temperature inside 
the furnace, in this paper, firstly finite element method 
(FEM) was used to study the temperature field distributions, 
and then a temperature controller with adaptive neuro-fuzzy 
inference system (ANFIS) was developed based on the result 
of the study of FEM and practical experiences. When the 
temperature in the twin-electrode DC submerged arc furnace 
was changed, the controller would regulate the positions of 
three-phase electrodes and the voltage of the power 
simultaneously. The result of experiments indicated that 
using the adaptive neuro fuzzy control system can improve 
the quality and the quantity of the MgO single crystal 
production, and through the control of the furnace current, 
the power quality was improved including power impact and 
harmonic currents. 
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2. ANALYSIS OF THE TEMPERATURE DISTRI-
BUTION OF TWIN-ELECTRODE DC SUBMERGED 

ARC FURNACE 

2.1. Mathematic Model of Twin-Electrode DC Submerged 

Arc Furnace 

 The electric arc is the main thermal source of the twin-
electrode DC submerged arc furnace. The V-A characters of 
the arc can be expressed as 

Uf =Uxh + IfR              (1) 

where Uf is arc voltage; If is arc current; R is arc equivalent 
resistance;  

R can be calculated by 

R = kd / (k d 2 )             (2) 

where is resistivity of submerge-arc determined by 
experiments; d is diameter of the electrode; the arc length is 
kd k is proportionality coefficient; Then R can be seen as 
the resistance of the arc whose length is kd and section area 
is k d

2
 

 Given equation [1] through [2], 

Uf =Uxh + bl              (3) 

 In equation (3), l is arc length b is arc voltage 
coefficient determined by experiments; Uxh is extinction 
voltage determined by the material of electrode, about 
14V  

 It is assumed that the arc distribution is normal. When 
one arc goes from the center of one electrode and reaches to 
the other electrode, it forms an arc spot on the surface of the 
electrode. The heat flux can be expressed as 

 
q(r) = qmie kr2              (4) 

where qm is the heat flux of the arc spot; k is the distance 
coefficient; r is the distance from the arc spot [4]. 

 Assumed that the radius of arc spot rH=R+2l and the 
heat flux q(rH)=0 05qm then k=3(R+2l)

-2
. The energy 

distribution of any spot can be expressed as 

 

q1(r) =
3k1P1

'

(R + 2l)2
ie
(

3r2

(R+2l )2
)

          (5) 

where P1
'
 is the arc power of one electrode; k1 is the thermal 

conductance coefficient. 

 The molten pool resistance ‘r’ is also a significant 
parameter for modeling the twin-electrode DC submerged 
arc furnace. For a spot whose coordinate is 
(x y z) assumed that the area of the spot is d dy the 
conductance can be described as 

G '
= dxdy / ( d)  

where d is distance between the spot and the center of the 
electrode. 

 The current passed through the spot can be described as 

i = I G ' /G  

 Obviously The molten pool resistance ‘r2’ can be 
obtained by 

G = G dx dy dz             (6) 

 The electric energy of the spot inside the molten pool is 
given as 

q2(x, y, z) = i2r = I 2 •G ' /G2
           (7) 

 The energy distribution in molten pool has the form 

Q = q1+ q2  

where q1 is calculated according to equation (5) and q2 is 
calculated according to equation (7). 

 The equation of temperature distribution in molten pool 
is written as 

x
c
T

x
+
y

c
T

y
+
z
c
T

z
+Q = 0          (8) 

where T is temperature, c is conductivity coefficient  

2.2. Thermal Analysis by FEM 

 A finite element (FE) thermal model was developed to 
determine temperature distribution in an twin-electrode DC 
submerged arc furnace during normal operation [5]. The 
commercial simulation software ANSYS was used to carry 
out the FE simulation. The mesh of the model used for 3D 
simulations was shown in Fig. (1). The information for the 
analysis, mainly including geometry, working conditions and 
process parameters were presented in Table 1. The thermal 
conductivity of MgO powder was assigned as a function of 
temperature which was presented in Table 2. Fig. (2) showed 
the simulated temperature contours for transverse cross-
section of the twin-electrode DC submerged arc furnace, and 
Fig. (3) showed the simulated temperature contours for 
longitudinal cross-section of the twin-electrode DC 
submerged arc furnace. Fig. (4) showed the molten pool near 
the electrodes during preparation process of MgO singe 
crystal. 

 

Fig. (1). Finite element mesh for thermal analysis of twin-electrode 

DC submerged arc furnace. 
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Table 1. Characteristics of Work Electrodes and MgO Single 

Crystal Furnace 

 

 Characteristic Value 

Electrode length, m 

Electrode diameter, m 

The distance between electrodes center (mm) 

Voltage of the output of DC convertor, V 

DC current passing the electrodes, A 

Temperature of the furnace atmosphere, K 

Ambient temperature, K 

Convection coefficient for furnace wall, W m-2 K-1 

Convection coefficient for ambient air, W m-2 K-1 

2.4 

0.35 

750 

72 

6500 

400 

398 

110 

10 

 

 

Fig. (2). Simulated temperature contours for transverse cross-

section of the furnace, the arrow indicated the direction of the mass 

transfer. 

 Some conclusions can be drawn from the comparison 
between simulated results and practical work. 

 

Fig. (3). Simulated temperature contours for longitudinal cross-

section of the furnace. 

 

Fig. (4). Photograph of molten pool during melting process. 

A) The temperature was highest under the electrodes, 
and the temperature gradient outside the regions 
quickly descended with increasing distance. The 
MgO powder got the best smelted here, but the 
dissipation was also highest in these regions. 

B) In the regions of A1 and A2, the temperature gradient 
was the steepest. The material in the molten pool was 

Table 2. Thermal Conductivity of MgO Powder 

 

Phase 
Temperature 

(K) 

Cp 

(J•( mol•K )
 -1

) 

HT H298  

( J imol
-1

) 
 
( 1

icm 1 )  

Solid Powder 

 

 

 

 

 

 

Crystals 

 

 

Liquid 

300 

600 

1000 

1400 

1800 

2200 

2600 

2800 

3000 

3098 

3098 

3200 

3400 

3533 

37.203 

47.630 

50.949 

52.763 

54.249 

55.621 

56.943 

57.594 

58.240 

58.556 

60.668 

60.668 

60.668 

60.668 

 74 

13280 

33104 

53865 

75273 

97250 

119763 

131217 

142801 

148524 

225928 

232116 

244229 

252318 

 Insulated 

 

 

 

 

 

 

 

 

 

20.9 

22.7 

25.7 

26.5 
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driven outward by the temperature difference. The 
arrow indicated the direction of the mass transfer. For 
the melting point of impurities were lower, they melt 
to liquid in advance of MgO powder and moved up to 
the surface of the molted pool. This made the surface 
of the molten pool mainly formed by impurities. The 
regions of A1 and A2 were the hot spots of the 
molten pool, the MgO powder was well smelted and 
refined here. 

C) In the regions of B1 and B2, the temperature gradient 
was gentle. The arrow indicated the direction of the 
mass transfer. For the force of temperature difference 
was low, these regions were cold spots of the molten 
pool. Here the MgO powder could not get well 
smelted and refined. 

D) The temperature gradient descended with increasing 
depth in the interior of the molten pool. There was a 
temperature peak in the central of the region, but the 
temperatures at the periphery of the molten pool were 
low and very closed. This indicated that the fluidity of 
the melt was impaired with increasing depth in the 
interior of the molten pool. 

3. ANFIS MODELING 

 An adaptive neuro-fuzzy controller for the preparation of 
MgO single crystal was constructed based on the results of 
the study of FEM and practical experiences. ANFIS is a 
fuzzy system which is often used in classification, modeling 
and solving control problems. It is based on Takagi and 
Sugeno model fuzzy if-then rules representation [6], which is 
different from commonly used fuzzy logic controllers [7,8]. 
The consequent part of the rule is a function of input 
variables. The inference mechanism of ANFIS is 
mathematically expressed by the set of the rules. The 
schematic diagram of the system was shown in Fig. (5). 

 The control of the electrodes movements and the 
regulation of the output voltage of the DC convertor were 
directly related to the arc current between the electrodes and 

the MgO powder. It was central to the control system of the 
twin-electrode DC submerged arc furnace and affected the 
temperature gradient distribution in the furnace. 

 In the Fig. (5), Tr was the set value of temperature, and 
Ta was the measured value of temperature of the furnace. 
Subtraction of Ta from Tr yielded T, which was known as 
deviation signal, i.e., the difference between the set value 
and the actual value of temperature. IA was the operation 
current of the system. The fuzzy controller had two input 
terminals, T and IA. SA and UA were the outputs of the 
fuzzy controller, which were converted to analog by D/A 
converter and keeper. UA was used to adjust the output 
voltage of the DC convertor and SA was used to regulate the 
movements of the electrodes [9]. 

 A total of 350 data sets were obtained from the results of 
the study of FEM and practical experiences. Among them a 
total of 300 data sets were selected for the purpose of 
training in ANFIS and the rest 50 data sets were selected for 
testing purposes after the training was completed in order to 
verify the accuracy of the predicted values [10]. 

 Next, the genetic-oriented clustering method was applied 
to the training data sets. The cluster centers determined the 
number of the fuzzy sets and the parameters (mean values) μ 
of the membership functions of the antecedent part, as well 
as the number of fuzzy rules of the Sugeno-type FIS. The 
standard deviation  was computed as  = r ·8

-0.5
 for all 

membership functions, where ra was the radius of influence 
[11]. The number of the resulted clusters for ra = 0.4 was 
seven. As a result, each input variable was characterized by 
seven fuzzy sets with the linguistic values. The consequent 
parameters of each rule of the Sugeno-type FIS were 
determined by using the linear least-squares algorithm [12]. 
The rule base obtained through the genetic-oriented 
clustering approach consisted of twenty-four rules, shown in 
Table 3. 

 The next step is the training process that aims at tuning 
the fuzzy inference system. Fig. (6) shows the final 
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Fig. (5). Schematic diagram of the adaptive neuro-fuzzy inference system. 
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membership functions derived from the training system. In 
contrast to the first input, there is a considerable change in 
the final membership functions concerning the second input, 
since the supports of all fuzzy sets are broadened. Fig. (7) 
depicts a three-dimensional plot that represents the mapping 
from the furnace current and the temperature error to the 
electrodes position and the output voltage of the DC 
convertor. The surface has a good continuity as it is normally 
expected from a Sugeno-fuzzy controller. 

Table 3. Fuzzy Rule Base 

 

(1) If IA is HS and TA  is NB then SA is HL and UA is HB or 

(2) If IA is HS and TA  is NM then SA is LL and UA is LB or 

(3) If IA is HS and TA  is NS then SA is L and UA is B or 

…… or 

(4) If IA is HB and TA  is PB then SA is NB and UA is HS 

 

 Fig. (8) compared the current characters of the 
preparation system for different control systems with 
experiments. The capability of restraining the disturbulances 
of current was greatly improved by using adaptive control 

system instead of PID control system, which can be proved 
by the fact that with ANFIS the magnitude of arc current 
fluctuation was only about one of fourteen with PID. Fig. (8) 
also showed that the current fluctuated wildly at the 
beginning, but trended towards stabilization with time going 
by. This indicated that the adaptive neuro-fuzzy controller 
need to be optimized at the beginning section of the 
preparation. 

 The temperatures of the furnace external shell measured 
by the adaptive neuro-fuzzy controller were showed in Fig. 
(9). The temperature rose slowly with time going by, and 
tended to be stable at last. The maximum temperature of the 
furnace external shell was lower than 750°C, this was in 
good agreement with the result estimated by FEM and 
avoided the shell overheating. 

4. EXPERIMENTS AND DISCUSSION 

 To verify the effectiveness of the adaptive neuro-fuzzy 
controller for the preparation of MgO single crystal, 
experiments were carried out in Liaoning Zhongda 
Superconducting Material CO., Ltd. The controller 
comprised a industrial PC which equipped with a single PXI-

(a) Input membership function (IA)   (b) Input membership function ( TA ) 

   

(c) Output membership function (SA)   (d) Output membership function (UA) 

   

Fig. (6). The final membership functions for input and output after training. 

  (a) Control surface for UA for different IA and   (b) Control surface for SA for different IA and TA  

  

Fig. (7). Three-dimensional plot indicative of the relationship between inputs and outputs. 
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6259 card, a Minolta/Land Cyclops 152 infrared pyrometer, 
one Halmar current transducers (Lem-Dynamp Corp., Grove 
City, Ohio), one voltage sensor and a position measuring 
potentiometer. The NI software LabView was installed on 
the PC. The analog output from sensors were conditioned 
and fed into analog input channels of the PXI-6259. 
Controlled by fuzzy Vi of the NI software LabView, the 
control signal was converted to an analog signal and sent out 
using one of the D/A channels on the PXI-6259 card to 
regulate the positions of two electrodes and the voltage of 
the power [13,14]. 

 

Fig. (8). Comparison of working current between using adaptive 

neuro-fuzzy inference system and PID control system. 

time (h)

te
m

p
er

er
at

u
re

 (
)

 

Fig. (9). Distribution diagram of the temperature of temperature-

measured points on the external shell of the furnace using adaptive 

neuro-fuzzy inference system. 

 Numerous growth experiments had been performed using 
the MgO powder. MgO single crystals had been grown by 
the use of the adaptive neuro-fuzzy inference system. The 
preferential direction of the obtained large crystals was the (1 
0 0) direction, which was validated by previous work. 

 X-ray powder diffraction (XRD, D/Max 2400, Rigaku, 
by a diffractometer equipped with the graphite-
monochromatized CuK  radiation) was employed to analyze 
the crystalline structure of large MgO crystals in the 2  
angles ranging from 2  to 85  after the obtained MgO single 
crystals were ground into ultra-fine powders. 

 The XRD pattern of powders of the large MgO single 
crystal grown by the adaptive neuro-fuzzy inference system 
was shown in Fig. (10). All the reflections of the sample can 

be readily indexed as a pure cubic phase of the MgO single 
crystal, which were identical to the reported data in the 
JCPDS cards (45-0946). The ideal intensity ratio between 
(220) and (200) was about 0.4, whereas the measured ratio in 
this study is smaller than 0.1. The intensity from the (220) 
diffraction is strongly depressed. 

 

Fig. (10). XRD pattern of the large MgO single crystal: measured 

by scan speed 6°/min and step interval is 0.020°. 

 Fig. (11) presents optical absorption spectra of large 
MgO single crystals in UV–VIS–NIR wavelength at room 
temperature. MgO single crystal possesses a steep absorption 
edge in the UV region (about 280nm), which means that the 
strong photoabsorption of these crystals occurs only at 
wavelengths shorter than 280 nm. 

 

Fig. (11). Optical absorption spectra of MgO single crystals in the 

UV–VIS–NIR region. 

 The ICP-AES analytical technique is a non-destructive 
analytical method which uses no chemicals for dissolution. It 
can achieve the detection limits below 0.01 ppm level for 
most of the impurity elements and it can also be used to trace 
impurity elements quantity in the crude as well as refined 
MgO powder. ICP-AES results are summarized in Table 4. 

 From the table you can see the overall purity of MgO 
single crystal was increased from 99% to 99.99%. In case of 
MgO melting, 96% of total Ca, Al, and Fe impurities were 
removed. On the same lines, the metallic impurities were 
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reduced by 99% when compared to the initial impurities in 
crude MgO powder. ICP-AES analysis results of the MgO 
single crystals showed excellent removal effect of interstitial 
and metallic impurities due to the fact that the high 
temperature helped in better vaporization of metallic 
impurities as well as interstitial gases. 

Table 4. ICP-AES Results of the MgO Crystal 

 

Items Testing Value ICP Wave-Length 

Al 2ppm 396.153 

Ca 32ppm 317.933 

Si 0 251.611 

Fe 18ppm 238.204 

Na 46ppm 589.592 

Im
p

u
r
it

y
 

K 30ppm 766.490 

 

 Fig. (12) showed the production of the MgO single 
crystals. Fig. (13) showed the surface map of the MgO single 
crystal which had been cut and polished. The average size of 
the single crystals was about 6-8cm, much bigger than those 
prepared by manual operation, and the MgO single crystal 
output rose from 300 kg to 800 kg per heat. 

 

Fig. (12). Photograph of the large MgO single crystal grown using 

adaptive neuro-fuzzy inference system. 

5. CONCLUSIONS 

 FEM was effective to study the temperature distribution 
in the preparation process of MgO single crystal. The 
temperature in the furnace could be precisely estimated 
according to the time of operation and process parameters by 
FEM. This would help to study the single crystal growth 
theory of MgO, and proposed evidences to the process 
control of preparation of MgO singe crystal. Based on the 
results of the study of FEM and practical experiences, a 
temperature controller with adaptive neuro-fuzzy inference 
system (ANFIS) was developed to regulate the positions of 
two electrodes and the voltage of the power. The result of  
 

 

experiments proved that using the adaptive neuro fuzzy 
control system can improve the quality and the quantity of 
the MgO single crystal production. It indicated that the 
temperature controller with ANFIS was suitable to control 
the preparation process of MgO singe crystal. 

 

Fig. (13). Surface map of the MgO single crystal after cut and 

polished. 
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