LiMnPO₄ Olivine as a Cathode for Lithium Batteries

Zhumabay Bakenov¹,⁸ and Izumi Taniguchi*,²

¹Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, Ontario, Canada
²Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan

Abstract: The olivine structured mixed lithium-transition metal phosphates LiMPO₄ (M = Fe, Mn, Co) have attracted tremendous attention of many research teams worldwide as a promising cathode materials for lithium batteries. Among them, lithium manganese phosphate LiMnPO₄ is the most promising considering its high theoretical capacity and operating voltage, low cost and environmental safety. Various techniques were applied to prepare this perspective cathode for lithium batteries. The solution based synthetic routes such as spray pyrolysis, precipitation, sol-gel, hydrothermal and polyol synthesis allow preparing nanostructured powders of LiMnPO₄ with enhanced electrochemical properties, which is mostly attributed to the higher chemical homogeneity and narrow particle size distribution of the material. Up-to-date, the LiMnPO₄/C composites prepared by the spray pyrolysis route have the best electrochemical performance among the reported in the literature.

Keywords: Spray pyrolysis, LiMnPO₄, lithium secondary batteries, cathode materials.

1. INTRODUCTION

Since Radhi et al. [1] first introduced LiFePO₄ olivine as a cathode for rechargeable lithium batteries, the olivine structured transition metal phosphates, LiMPO₄ (M = Co, Fe, Mn) have attracted tremendous attention of the researchers worldwide due to its low cost, nontoxic and environmentally friendly nature. In phospho-olivines, all of the oxygen ions form strong covalent bonds with P⁴⁺ to form the PO₄⁻ tetrahedral polyanion and stabilize the entire three-dimensional framework, which provides improved stability and extreme safety under abusive conditions [2]. However, this structure restricts the electrochemical reaction kinetics in phospho-olivines due to the insulation effect of the polyanion. Therefore, almost a decade past before LiFePO₄ olivine cathode for lithium batteries was developed and successfully commercialized. There were systematic works of many research groups worldwide to adopt various processes and methods to overcome the main disadvantage of LiFePO₄ restricting its application, low electronic conductivity. Various methods have been applied, including different synthesis techniques, coating by a conductive layer of carbon [3-6] and dispersed metal particles [7], preparation of LiFePO₄/carbon composites [5, 8-11], preparing smaller particles of cathode material [5, 7, 12]. Nowadays, LiFePO₄ cathode has become one of the main commercial cathode materials for lithium batteries.

The successful development of a high performance and environmentally safe LiFePO₄ cathode encouraged the great interest of researchers to another olivine structured cathode, LiMnPO₄, which is even more attractive than lithium iron phosphate because of its higher theoretical energy density due to the higher operating voltage of 4.1 V, which is comparable with that of the present LiCoO₂ cathode, and lies within the stability window of the common non-aqueous electrolytes. This advantage is especially important for the large scale applications, e.g. electric transportation and power back-up systems. There are several general review papers published recently on the cathode materials for lithium batteries including LiFePO₄ olivine [13-15]. Here, we would like to overview the recent publications on LiMnPO₄ cathode for lithium batteries by the authors of this manuscript and other groups. We would like to summarize the available literature data on this promising cathode and highlight the main problems and possible approaches to overcome them.

2. STUDIES ON HIGH-PERFORMANCE LiMnPO₄ OLIVINE CATHODE

Fig. (1) presents the schematics of the LiMnPO₄ olivine structure. LiMnPO₄ has an olivine structure, where Mn and Li occupy octahedral 4c and 4a sites, and P atom is in 4e site, respectively. The O atoms are in a hexagonal close-packed arrangement. The MnO₆ octahedra are separated by PO₄ tetrahedra that leads to the significant reduction of the electrical conductivity of the material. It results in a poor rate capability and a slow utilization of Li ions in the olivine host structure. Therefore, similarly to LiFePO₄, the successful preparation of high performance LiMnPO₄ cathode could be achieved through the preparation of the conductive composites of fine particles of this material. However, the current durability of Li,MnPO₄ is orders-of-magnitude inferior to that of Li,FePO₄ [16], which makes the preparation of the high conductive LiMnPO₄/C composites more difficult than in the case of the lithium-iron phosphate.
Although there are tremendous efforts to develop a practical LiMnPO₄ cathode, only limited literature data on this cathode material for LIBs are available [17, 20-26]. There are several synthetic techniques applied to prepare LiMnPO₄/C composites. Carbon additives to synthetic precursors were first proposed by Ravet et al. [18]. Along with acting as a conductive agent, carbon prevents the oxidation of the electrochemically active species during heat treatment and prevents the particles agglomeration [19]. Li et al. [17] reported the preparation of the carbon-containing LiMnPO₄ compounds prepared using a solid-state reaction by adding carbon black to the synthetic precursors. All the samples were identified as LiMnPO₄ with an ordered olivine structure indexed by orthorhombic Pnmb space group. The defined lattice constants were $a = 6.106(1)$ Å, $b = 10.452(1)$ Å, and $c = 4.746(1)$ Å. The synthesis temperature greatly affected the cathode performance and the samples synthesized at 500 °C had the greatest discharge capacity. The authors showed the reversible extraction-insertion of lithium into LiMnPO₄, which resulted in a flat plateau about 4.1 V vs lithium in charge-discharge profiles. The material exhibited an overall reversible capacity of 140 mAh g⁻¹ at room temperature. The limiting factor in MnPO₄/LiMnPO₄ redox reaction is mostly its low ionic and/or electronic transport within the LiMnPO₄ particles rather than the slow charge-transfer kinetics [20]. This prevents the successful operation of the cathode at high charge-discharge rates and an acceptable discharge capacity could be achieved only at the low rate galvanostatic charge-discharge operation or in a constant current-constant voltage charge mode or trickle mode conditions when a higher charge state is achievable. Delacourt et al. [21] synthesized ~100 nm particles of LiMnPO₄ by precipitation, which delivered a reversible capacity of 70 mAh g⁻¹ at 0.05C. Kwon et al. [22] prepared LiMnPO₄/C composite of 130 nm average diameter via a sol-gel method followed by dry ball milling with a carbon source, which delivered a reversible capacity of 134 mAh g⁻¹ at 0.1C. They showed that the smaller particles were more preferable for the higher C-rates. Fang et al. [23] prepared LiMnPO₄ by a hydrothermal method. The Mn²⁺ disorder on Li⁺ sites was depressed by increasing the synthesis temperature, and the highest discharge capacity achieved is 68 mAh g⁻¹ at a current density of 1.5 mA g⁻¹. The increase in carbon content up to 50% during the ball milling prepared LiMnPO₄ improves the conductivity of material as well as destroys big agglomerates and allowed about 30% of the theoretical capacity at C/5 [24]. Wang et al. [25] reported a polyl synthesis of the platelet morphology of 30 nm thick LiMnPO₄. Using the trickle mode conditions, they achieved a discharge capacity of 141 mAh g⁻¹ at 0.1C at room temperature. LiMnPO₄ nanoparticles synthesized by the same method exhibited a discharge capacity of about 140 mAh g⁻¹ at 0.1C under the trickle mode conditions [26]. Irrespective to the preparation technique, in order to prepare a conductive composite, the most of works above used post-synthesis ball milling of the LiMnPO₄ powders with carbon.

The partial substitution of Fe for Mn in LiFeₓ₋ₓMnPO₄ was considered to improve the cathode electrochemical performance [27-29]. These compounds have two voltage regions of the electrochemical activity corresponding to the redox couples of Fe²⁺/Fe³⁺ and Mn³⁺/Mn⁴⁺. It was shown that the cation-doping of LiMnPO₄ by electrochemically non-active metals seems to be more attractive than the mixed Mn-Fe compounds, because along with its electrochemical performance improvement this provides a constant voltage operation of the material based on a single redox reaction Mn³⁺/Mn⁴⁺ [30]. It was shown that the most effective dopant for LiMnPO₄ is Mg [31].

Powder properties and the electrochemical performance of cathode material are strongly affected by the preparation technique. It also affects the cathodes cost and production rate. Conventional solid state reaction has several drawbacks. High-energy consumption due to the prolonged multi-step high temperature processes, heterogeneous composition and
severe agglomerations of particles are only some of those disadvantages. As it was shown above, several techniques were adopted to prepare nanostructured LiMnPO_4 cathode with narrow particle size distribution. The best results were obtained for LiMnPO_4 prepared via sol-gel, hydrothermal and co-precipitation routes. However, these techniques use the very low concentration of starting materials, which leads to the very low production rate. Thus, these processes are very difficult to be used for the commercial production of cathode materials. Therefore, it is crucial to develop an easy to scale-up and cost-effective technique, which will allow producing high-performance nanostructured LiMnPO_4, which is chemically and morphologically homogeneous, has narrow particle size distribution (monodispersed) and requires the simplest and cheapest producing apparatuses.

3. PREPARATION OF LiMnPO_4 BY SPRAY PYROLYSIS AND ITS ELECTROCHEMICAL PERFORMANCE

Among other synthesis methods of cathode materials, spray pyrolysis (SP) is well-known as single step, continuous and easy scale-up technique [32, 33]. This method produces fine spherical particles with homogeneous chemical composition in a short time [34, 30]. In our systematic research on the preparation of cathode materials for lithium batteries using SP technique [32, 33, 35-37], we have shown that various lithium metal oxides and phosphates nanoparticles could be successfully prepared by SP and these nanoparticles exhibited enhanced electrochemical performance.

The details of the SP facility are described elsewhere [32, 33]. Mainly the SP facility consists of an ultrasonic nebulizer, a laminar flow aerosol reactor and an electrostatic precipitator. The sprayed droplets are carried to the reactor, heated by an electric furnace, by air and converted into solid oxide particles through the process of evaporation of a solvent, precipitation of solute, drying, pyrolysis and sintering within the laminar flow aerosol reactor. The resulting particles were collected at the reactor exit by the electrostatic precipitator at 150 °C (this temperature avoids the water condensation in the precipitator). Among the other advantages, this synthetic technique allows an easy control of the resulting powder properties and morphology. The final product consists of non-agglomerated spherical particles.

Nanostructured LiMnPO_4 particles could be successfully synthesized by SP at wide range of the synthesis temperatures from 400 to 800 °C [38]. The precursor solution consisted of the water solution of lithium and manganese nitrates and phosphoric acid in the stoichiometric ratio. While the sample prepared at 400 °C was amorphous, the XRD patterns of the samples obtained at the temperatures 500 °C and higher were single phase olivine structures with an orthorhombic Pnma space group. The crystallinity of powders increased with the SP synthesis temperature. The SP powders were spherical in shape (Fig. 2). The as-prepared samples were dry ball-milled with carbon and heat treated at 500 °C to prepare LiMnPO_4/C composites, which were tested as cathodes for lithium batteries. At a charge/discharge rate of 0.05 C, the cell exhibited first discharge capacities of 70 mAh g\(^{-1}\) at room temperature and 140 mAh g\(^{-1}\) at 55 °C.

The Mg-doped lithium manganese phosphate cathode materials of a general formulae LiMg\(_{x}\)Mn\(_{1-x}\)PO\(_4\) (x = 0, 0.02, 0.04, 0.12) were prepared by SP at 400 °C using a N\(_2\) + 3% H\(_2\) mixture as a carrying gas [30]. In order to increase the materials conductivity, the as-prepared samples were subjected to wet ballmilling (WBM) with acetylene black (AB) and heat-treated at 500 °C in a N\(_2\) + 3% H\(_2\) gas media for 4 h in a tubular furnace. The heat-treatment of as-prepared and wet ballmilled samples resulted in the formation of the single-phase orthorhombic structure with a Pnmb space group, which was confirmed by the XRD spectra (XRD, Rigaku, Ultima IV with D/teX Ultra, Cu Ka radiation) presented in Fig. (3). It was shown, that the relation between the lattice parameters and the Mg substitution level follows Vegard’s Law [39], and an increase in x in LiMg\(_{x}\)Mn\(_{1-x}\)PO\(_4\) lead to a lattice parameter decrease. The carbon added during WBM allowed formation of the LiMg\(_{x}\)Mn\(_{1-x}\)PO\(_4\)/C composites with about 100 nm particles of active material connected with each other by a few nanometers thick carbon layers as it was shown by field-emission scanning electron microscopy (FE-SEM) and transmission electronic microscope (TEM) data. It was suggested that the addition of carbon during WBM could improve the electrical contact between the electrode material particles and reduce the particles agglomeration. The composite particles had a narrow particles size distribution with a mean particle size around 100 nm.

Fig. (2). SEM images of the LiMnPO_4 prepared by SP.

Fig. (3). XRD patterns of LiMg\(_{x}\)Mn\(_{1-x}\)PO\(_4\)/C (x = 0, 0.02, 0.04, 0.12) composites prepared by a combination of SP with WBM and heat-treated at 500°C.
The composite cathodes were successfully cycled in a lithium cell under galvanostatic conditions [30]. The highest discharge capacity of 91 mAh g\(^{-1}\) was shown by the Li\(_{50.96}\)Mn\(_{0.04}\)PO\(_4\)/C cathode when cycled to 4.4 V cutoff voltage. The charge cutoff voltage increased to 4.9 V lead to the cell capacity increase, and the Li\(_{50.96}\)Mn\(_{0.04}\)PO\(_4\)/C cathode at 0.1C charge-discharge rate exhibited a discharge capacity of 154 mAh g\(^{-1}\), which is more than 93% of the theoretical value for this compound. The cathode materials exhibited a good rate capability under the galvanostatic charge-discharge.

In our recent work [36], the effect of various cutoff voltages on the electrochemical performance of LiMnPO\(_4\) cathode was studied. The cathode material was prepared by a combination of SP with wet ball milling. The carbon content in the final LiMnPO\(_4\)/C composite was 10 wt%. The composite cathode was prepared by doctor blade technique by mixing the LiMnPO\(_4\)/C carbon composite with PVdF binder and the additional amount of carbon, which led to the total carbon content of 20 wt% in the composite cathode. The cathode was cycled in lithium half-cell. Fig. (4a) shows the dependence of the cell discharge capacity on the upper cutoff voltage for this composite cathode. The discharge capacity increases with the charge cutoff voltage. The cell discharge capacity increased for about 64% when the upper cutoff voltage was expanded from 4.4 (91 mAh g\(^{-1}\)) to 4.9 V (149 mAh g\(^{-1}\)). It was suggested, that the discharge capacity increase was due to a higher level of the Li ion extraction and a longer charge stage at a higher charge cutoff voltage favored more Li ion involvement in the electrochemical process. The cell exhibited stable cycling performance under galvanostatic charge-discharge as shown in Fig. (4b). Fig. (4c) presents the discharge profiles of the cell at various discharge rates after trickle charge at 0.2 C to 4.4 V. The cell exhibited a good rate capability under these conditions, achieving about 90 mAh g\(^{-1}\) at 5 C.

Various kinds of carbon are used as a conductive agent to prepare the composite cathodes for lithium batteries. Both the abilities of the conductive carbon to conduct electrons and transport lithium ions are crucial for the electrochemical performance of the composite cathodes. From this point of view, the investigation of the effect of different conductive carbon used in the LiMnPO\(_4\)/C composite on its electrochemical properties is very important [40, 41]. Different carbon additives have different physical properties such as particle size, absorption ability and specific surface area. Each of these characteristics of the conductive carbon might have a significant effect on the overall conductivity of the electrode, the electrolyte absorption and, as a result, influence the overall electrochemical performance of the cell. Kuroda et al. [40] studied the effect of different conductive carbons such as ketjen black (KB), AB, and graphite on the electrochemical performance of LiCoO\(_2\) cathode. It was shown that KB has a larger surface area and dibutyl phthalate (DBP) adsorption number, and the use of KB as a conducting agent in the composite electrode enhanced the cathode performance due to the extremely high mesoporous area and electrical conductivity of KB. Xing et al. [41] reported that a large mesopore specific surface area of carbon could provide favorable and quick pathways for ions to penetrate. The electrolyte adsorbed in mesoporous carbon provides intimate contact between lithium ions and the cathode material particles and improves the composite cathode conductivity [42]. Therefore, a high conductive mesoporous carbon with a larger specific surface area is a preferable choice of a conductive agent for composite cathode for the LIBs application.

LiMnPO\(_4\)/C composites using different conductive carbons (AB and 2 types of KB) were prepared by a
electrochemical tests were carried out for the Li|1M LiPF$_6$ in used as cathode active materials for lithium batteries, and the of 166 mAh g$^{-1}$ when the cell was charged to 4.9 V. This is easy penetration and quick Li-ion transport into the electrode KB2 have a high ability to absorb the electrolyte and provide the first discharge capacity of 165 mAh g$^{-1}$, which is about 97% of the theoretical value for LiMnPO$_4$. Moreover, the cells showed fair good cyclability over 100 cycles. The preparation technique based on a combination of spray pyrolysis with ball milling is now employed by other research groups for the nanostructured particles preparation including LiMnPO$_4$ cathode materials. LiMnPO$_4$/C composite was prepared by Oh et al. [45] and the effect of calcinations temperature on the microstructure and electrochemical performance of C-LiMnPO$_4$ was investigated. The cathode prepared at 650 °C by SP exhibited the highest capacity of 118 mAh g$^{-1}$. The same technique was used to prepare LiMnPO$_4$ at 400 °C in the most recent work of the same group [46]. The as-prepared LiMnPO$_4$ was heat treated at 500 °C in air then mixed with various amount of AB, which followed by heat treatment in for 1 h in an Ar gas flow. The composite cathode with about 32 wt.% of carbon exhibited the initial discharge capacity of 158 mAh g$^{-1}$ at 0.05 C under the trickle mode charge-discharge tests.

CONCLUSION

The development of the high performance, low cost and environmentally friendly portable power sources is crucial for the zero-emission transportation and energy back-up technologies. Among the other possible candidates to replace the current commercial Co-based cathodes, which are expensive and toxic, the LiMnPO$_4$ olivine is one of the most promising materials. A brief literature survey has shown that there are tremendous efforts to develop a high-performance LiMnPO$_4$ cathode for lithium batteries. The remarkable progress has been achieved in this work, and several preparation techniques were used for the preparation of this cathode material. A combination of spray pyrolysis with ball milling is a versatile technique to prepare a LiMnPO$_4$/C composite cathode with narrow particle size distribution and chemical and physical homogeneity, and improved strong C-to-LiMnPO$_4$ adhesion. Therefore, LiMnPO$_4$/C cathode prepared by this technique has the best performance reported to date. The preparation technique advantages allowed achieving up to 97% of the theoretical capacity for this material.

REFERENCES