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Abstract: The response of electro-magneto-elastic long fiber composites containing periodically distributed reinforced 

phases under antiplane shear load coupled with inplane electromagnetic load, which lead to the antiplane deformation 

mode, is dealt with. There are three different electro-magneto-elastic materials in the unit cell (3-phase model), a rigorous 

analytical method is developed by using the generalized eigenstrains concept integrated with the doubly quasiperiodic 

Riemann boundary value problem theory. The expressions of electro-magneto-elastic fields in each phase of composites 

are obtained. As an important application of the presented solution, the effective electro-magneto-elastic moduli are 

predicted by using the average field theorem and compared with the results derived from the generalized self-consistent 

method. 
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1. INTRODUCTION 

 The electro-magneto-elastic composites, which possess 
excellent magneto-electric coupling effect, have recently 
attracted much attention due to the extensive applications for 
broadband magnetic field probes, electronic packaging, 
medical ultrasonic imaging, sensors, and actuators [1-2]. 
Boyd et al. [3] presented a method for using arrays of micro-
electro-mechanical systems electrodes and electromagnets to 
achieve micro scale positioning of piezoelectric and 
piezomagnetic particles in liquid polymers, which would 
then be solidified to make a polymer matrix magneto-electric 
composite. This ability would reduce concentrations of 
stress, electric field, and magnetic field, thereby increasing 
effective threshold properties such as strength, electric 
breakdown field, and magnetic saturation field. Recently, by 
using finite element analysis and volumetric averaging 
technique, a study on the effective electro-magneto-elastic 
properties of composites containing a doubly periodic 
arrangement of piezoelectric and piezomagnetic phases was 
finished by Lee et al. [4]. In their analysis, complicated 
periodic boundary conditions of the displacement, electric 
potential and magnetic potential were subjected to the 
boundaries of the unit cell. However, the research results 
have been reported rarely for electro-magneto-elastic 
composites with periodic microstructures. 

 The present paper deals with the electro-magneto-elastic 
composites containing doubly periodic parallelogram 
arrangement of reinforced phases under antiplane shear load 
coupled with in plane electromagnetic load, which lead to 
the antiplane deformation mode. A analytical method is  
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developed, the effective electro-magneto-elastic moduli are 
predicted by using the average field theorem and compared 
with the results derived from the generalized self-consistent 
method (GSCM). 

2. STATEMENT OF THE PROBLEM 

 As shown in Fig. (1a), the parallelogram P00 denotes an 

unit cell with the boundaries = 1 + 2 + 3 + 4 , which 

contains a circular cross-section fiber with an annulus 

interphase. The unit cell is periodically arranged in the 

complex plane z = x1 + ix2 , which denote the cross-section 

of an electro-magneto-elastic composite (see Fig. 1b). In the 

unit cell, let f
0 , p

0 , m
0

 denote the regions occupied by the 

fiber bounded by the contour L0
0

, interphase bounded by the 

contours L0
0 , L1

0
 and matrix, respectively. f , p , m  

represent the union of f
0 , p

0 , m
0

 and its periodic congruent 

regions, and L0 , L1  represent the union of L0
0 , L1

0
 and its 

periodic congruent contours, respectively. R0 ,R1  denote the 

internal and external radius of the interphase annulus. 2 1  

and 2 2  denote two fundamental periods, the vertices of the 

unit cell are 1 + 2 , 1 + 2 , 1 2  and 1 2 , 

respectively. The electro-magneto-elastic composite is 

subjected to the far-field antiplane shear stresses 13 , 23  

coupled with inplane electrical displacements D1 , D2  and 

magnetic inductions B1 , B2 , which lead to the antiplane 

deformation mode of composites and are not depicted in the 

Fig. (1b). 

3. ANALYSIS AND SOLUTION 

 For an electro-magneto-elastic composite under antiplane 

shear coupled with in plane electric field and magnetic field, 
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there are only the non-trivial antiplane displacement w, strain 

components 13  and 23 , stress components 13  and 23 , 

electric potential ,  electric field components E1  and E2 , 

electric displacement components D1 and D2 , magnetic 

potential , magnetic field components H1  and H 2 , 

magnetic induction components B1  and B2 , with all field 

quantities being only the functions of coordinates x1 and x2. 

w,  and  can be expressed by three analytical potential 

functions F(z) , (z)  and (z) , respectively. 

W(z) = ReU(z) =
1

2
U(z) + U(z)           (1) 

where W(z) = w(z) (z) (z){ }
T

is the generalized 

displacement, U(z) = F(z) (z) (z){ }
T

. 

 The constitutive equations of the problem can be 
expressed as [5] 

1 i 2 =M(Z1 iZ2 ) =M
dU(z)
dz

          (2) 

where k = k3 Dk Bk{ }
T

is the generalized stress, 

Zk = k3 Ek Hk{ }
T

 is the generalized strain, k=1,2. 

M is the property matrix of the electro-magneto-elastic 

materials 

M =

C44 e15 q15
e15 11 d11
q15 d11 μ11

           (3) 

where C44 , 11,μ11 denote the elastic, dielectric and magnetic 

permeability moduli, e15 ,q15 ,d11  denote the piezoelectric, 

piezomagnetic and magneto electric moduli, respectively. 

 For the following analysis, we introduce 

T = ( 2A

B
dx1 1dx2 ) = Im MU(z)[ ]A

B
          (4) 

 To formulate the problem, the concepts of the 
generalized eigenstrain and equivalent medium are 
introduced. Consider two equivalent electro-magneto-elastic 
cases: 

 Case 1: An infinite homogeneous electro-magneto-elastic 

solid with material properties Mm (the same as the matrix) is 

subjected to uniform far-field generalized stresses k , from 

here and afterward, if not mentioned specifically, k=1,2. 

Apparently, in the entire plane, the generalized stresses are 

uniform, i.e., k
0
= k . From Eq. (2), the generalized strains 

Zk
0
=Mm

1
k
0

 are also uniform. For an actual electro-

magneto-elastic fiber composite, the presence of the doubly 

periodic regions f  and p  with property matrix Mf and 

Mp disturbs the uniform generalized strains and stresses. The 

disturbance field quantities being denoted by k , f
' ,Zk , f

'
 in 

f , k ,p
' ,Zk ,p

'
 in p , k ,m

' ,Zk ,m
'

 in m , then total 

generalized stresses and strains are k
0
+ k , f

'
,Zk

0
+ Zk , f

'
 in 

f , k
0
+ k ,p

'
,Zk

0
+ Zk ,p

'
 in p , k

0
+ k ,m

'
,Zk

0
+ Zk ,m

'
 in 

m , respectively. 

 Case 2: An infinite homogeneous electro-magneto-elastic 

solid with property matrix Mm, which is the same as the 

matrix, is subjected to uniform far-field generalized stress 

k . Instead of dealing with the presence of actual doubly 

periodic fibers and interphases with different property matrix 

Mf and Mp, we introduce suitable generalized eigenstrain 

fields Zk , f
*

 in f  and Zk ,p
*

 in p , such that the equivalent 

homogeneous solid has the same electro-magneto-elastic 

coupling fields. The introduction of the generalized 

eigenstrains disturbs the uniform electro-magneto-elastic 

fields, with the disturbance field quantities being denoted by 

           (a) a unit cell P00    (b) the cross-section of composites 

 

Fig. (1). A unit cell and the cross-section of composites. 
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k , f
'' ,Zk , f

''
 in f , k ,p

'' ,Zk ,p
''

 in p , k ,m
'' ,Zk ,m

''
 in m , then 

total generalized stresses and strains are k
0
+ k , f

''
,Zk , f

"
 in 

f , k
0
+ k ,p

''
,Zk

0
+ Zk ,p

*
+ Zk ,p

''
 in p , k

0
+ k ,m

"
, 

Zk
0
+ Zk ,m

''
 in m , respectively. 

 Let Zk , f
*

+ Zk , f
''

= Zk , f
'

 in f , Zk ,p
*

+ Zk ,p
''

= Zk ,p
'

 in p  

and Zk ,m
''

= Zk ,m
'

 in m , as the generalized eigenstrains 

Zk , f
*

and Zk ,p
*

 are not related to the generalized stresses, the 

conditions of the equivalence for case 1 and case 2 require 

(M f Mm )[(Z1
0
+ Z1, f

'' ) i(Z2
0
+ Z2, f

'' )]+M f (Z1, f
* iZ2, f

* ) = 0

in f               (5) 

(M p Mm )[(Z1
0
+ Z1,p

'' ) i(Z2
0
+ Z2,p

'' )]+M p (Z1,p
* iZ2,p

* ) = 0

in p               (6) 

 According to Eqs. (5) and (6), we need to determine four 

unknown generalized strain vectors Z1, f
'' ,Z2, f

''
,Z1,p

'' ,Z2,p
''

 

induced by the generalized eigenstrainZ1, f
* ,Z2, f

*
,Z1,p

* ,Z2,p
*

. 

 Let W '' (z) = w '' (z) '' (z) '' (z){ }
T

and  

U '' (z) = F '' (z) '' (z) '' (z){ }
T

  

denote the generalized displacement vector and potential 

function vector of the electro-magneto-elastic fields induced 

by the generalized eigenstrain Zk , f
*

 andZk ,p
*

, respectively. 

Define potential function vector  

U f
* (z) = Ff

*(z) f
* (z) f

* (z){ }
T

  

corresponding to the generalized eigenstrain Zk , f
*

 and 

expand it into Taylor series in f
0

 

U f
* (z) =

Ff
*(z)

f
* (z)

f
* (z)

=

Ak
f

Bk
f

Ck
f

zk

k=1

 z f
0

         (7) 

 From Eq. (2), the generalized eigenstrain can be 
expressed as 

(Z1, f
* iZ2, f

* ) =
dU f

* (z)

dz
=

Ak
f

Bk
f

Ck
f

kzk 1

k=1

 z f
0

         (8) 

 Noting Eq. (1), the generalized eigen-displacement 

vector Wf
*(t)  can be derived on L0

0
 

 

 

Wf
*(t) =

wf
* (t)

f
* (t)

f
* (t)

=
1

2
U f
* (t) + U f

* (t)

=
1

2

Ak
f

Bk
f

Ck
f

t k +

Ak
f

Bk
f

Ck
f

R0
2k 1

t kk=1

 t L0
0

         (9) 

 Define potential function vector 

U p
* (z) = Fp

*(z) p
* (z) p

* (z){ }
T

 corresponding to the 

generalized eigenstrain Zk ,p
*

, which can be expanded into 

Laurent series in p
0

 

U p
* (z) =

Fp
*(z)

p
* (z)

p
* (z)

=

Ak
p

Bk
p

Ck
p

zk +

A k
p

B k
p

C k
p

z k

k=1

 z p
0

 (10) 

 The generalized eigenstrain can be expressed as 

(Z1,p
* iZ2,p

* ) =
dU p

* (z)

dz
= k

Ak
p

Bk
p

Ck
p

zk 1
A k
p

B k
p

C k
p

z (k+1)

k=1

 z p
0

 (11) 

 The generalized eigen-displacement vector can be 

derived on L0
0

 and L1
0
 

Wp0
* (t) =

1

2

Ak
p

Bk
p

Ck
p

+
1

R0
2k

A k
p

B k
p

C k
p

t k

+ R0
2k

Ak
p

Bk
p

Ck
p

+

A k
p

B k
p

C k
p

1

t k

k=1

 t L0
0

 (12) 

Wp1
* (t) =

1

2

Ak
p

Bk
p

Ck
p

+
1

R1
2k

A k
p

B k
p

C k
p

t k + R1
2k

Ak
p

Bk
p

Ck
p

+

A k
p

B k
p

C k
p

1

t k

k=1

 t L1
0

 (13) 
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 The jump conditions of W '' (z)  on L0  and L1  can be 

written as 

[W '' (t)]+ [W '' (t)] =WP0
* (t) Wf

*(t)  t L0        (14) 

[W '' (t)]+ [W '' (t)] = WP1
* (t)  t L1         (15) 

where the superscripts “+” and “-” signify the corresponding 

boundary values of the physical quantities as approached 

from the interior and the exterior regions of the contour L0  

or L1 . 

 From Eqs. (1) and Eqs. (14), (15), we have 

[U '' (t)]+ + [U '' (t)]+( ) [U '' (t)] + [U '' (t)]( ) = 2[Wp0
* (t) Wf

*(t)]  

t L0             (16) 

[U '' (t)]+ + [U '' (t)]+( ) [U '' (t)] + [U '' (t)]( ) = 2Wp1
* (t)  

t L1             (17) 

 The continuity conditions of the resultant generalized 

stress on L0   and L1  can be written as 

T+ (t) = T (t)  t L0  and L1         (18) 

 The substitution of Eq. (4) into Eq. (18) yields 

[U '' (t)]+ [U '' (t)]+( ) = [U '' (t)] + [U '' (t)]( )  t L0  and L1    (19) 

 From Eqs. (16), (17) and (19), it is seen that 

[U '' (t)]+ [U '' (t)] =Wp0
* (t) Wf

*(t)  t L0        (20) 

[U '' (t)]+ [U '' (t)] = Wp1
* (t)  t L1         (21) 

 According to the results for the doubly quasi-periodic 
Riemann boundary problem [6], the general solutions of Eqs. 
(20) and (21) in unit cell P00 can be expressed as

 

U '' (z) =

F '' (z)
'' (z)
'' (z)

= Cz +
1

2 i

Wp0
* (t) Wf

*(t) (t z)dt
L0
0

+ WP1
* (t) (t z)dt

L1
0

 (22) 

where ( )  is Weierstrass Zeta function, C = C1,C2 ,C3{ }
T

 

is complex constant vector to be determined. 

 Substituting Eqs.(9), (12) and (13) into Eq.(22), U '' (z)  

can be derived 

U '' (z) =

Cz + U f ,1(z) + UP,1(z) + UP,3 (z)

Cz + U f ,2 (z) + UP,2 (z) + UP,3 (z)

Cz + U f ,2 (z) + UP,2 (z) + UP,4 (z)

       

z f
0

z p
0

z m
0

 (23) 

 

 

 

 

 

where 

U f ,1(z) =
1

2

Ak
f

Bk
f

Ck
f

zk +

Ak
f

Bk
f

Ck
f

( 1)k

(k 1)!
R0
2k [ (z)

1

z
](k 1)

k=1

 (24) 

U f ,2 (z) =
1

2

Ak
f

Bk
f

Ck
f

( 1)k

(k 1)!
R0
2k (k 1) (z)

k=1

       (25) 

U p,1(z) =
1

2

Ak
p

Bk
p

Ck
p

+
1

R0
2k

A k
p

B k
p

C k
p

zk +
( 1)k

(k 1)!

R0
2k

Ak
p

Bk
p

Ck
p

+

A k
p

B k
p

C k
p

[ (z)
1

z
](k 1)

k=1

 (26) 

U p,2 (z) =
1

2

( 1)k

(k 1)!
R0
2k

Ak
p

Bk
p

Ck
p

+

A k
p

B k
p

C k
p

(k 1) (z)
k=1

 (27) 

U p,3 (z) =
1

2

Ak
p

Bk
p

Ck
p

+
1

R1
2k

A k
p

B k
p

C k
p

zk

+
( 1)k

(k 1)!

R1
2k

Ak
p

Bk
p

Ck
p

+

A k
p

B k
p

C k
p

[ (z)
1

z
](k 1)

k=1

 (28) 
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U p,4 (z) =
1

2

( 1)k

(k 1)!
R1
2k

Ak
p

Bk
p

Ck
p

+

A k
p

B k
p

C k
p

(k 1) (z)
k=1

 (29) 

 

where the superscript (k-1) denotes the (k-1) order derivative 
with respect to z. 

 For the generalized eigenstrain problem, no generalized 

stress at infinity is applied. According to the periodicity, the 

resultant generalized stress vanishes on each boundary k  

(k=1, 2,3,4) of the unit cell P00. From Eq.(4), it follows that 

[U '' (z) U '' (z)]
k
= 0           (30) 

 Constant vector C can be determined by Eq. (30) 

C =

C1
C2

C3

=
R0
2

2S

A1
f

B1
f

C1
f

2

A1
f

B1
f

C1
f

+
2S

(R1
2 R0

2 )(

A1
p

B1
p

C1
p

2

A1
p

B1
p

C1
p

)

      (31) 

 Noting Eq.(2) and completing the first derivative of 

U '' (z) , we can obtain the disturbed generalized strains Zk , f
''

 

in f
0

, Zk ,p
''

 in p
0

, Zk ,m
''

 in m
0

, respectively. The complex 

constants Ak
f ,Bk

f ,Ck
f
, Ak

p ,Bk
p ,Ck

p
, A k

p ,B k
p ,C k

p
 (k=1,2,…) 

can be uniquely determined by Eqs. (5) and (6). Then the 

total generalized stress and strain in case1 and case2 can be 

obtained, they are equivalent. 

4. ELECTRO-MAGNETO-ELASTIC EFFECTIVE 
MODULI 

 Consider a multiphase electro-magneto-elastic composite 

subjected to homogeneous generalized stress boundary 

conditions . The average stress theorem of elasticity can 

be generalized to show 

= i i
i=1

N

+ m m =          (32) 

where the bracket denote the volume average, which can be 

calculated in the fundamental cell P00 for the doubly periodic 

problem under consideration. The subscript m denotes the 

matrix and i(i=1,2,…,N) is used for numbering the dispersed 

phases. i  denotes i-th phase volume fraction. 

 The effective properties of the electro-magneto-elastic 
composite are defined as relations between the volume 
average of the generalized stress and the generalized strain. 
Noting Eq. (32), we have 

= =M* Z          (33) 

where M*  is the electro-magneto-elastic effective moduli. 

Z  also can be written as the volume-weighted average of 

Z over each phase 

Z = i Zi
i=1

N

+ m Zm          (34) 

 Noting 

Zm =Mm
1

m , Zi =Mi
1

i        (35) 

from Eqs. (32)-(34), it is obtained that 

(M*
1 Mm

1 ) = i (Mi
1 Mm

1

i=1

N

) i        (36) 

5. EXAMPLES AND ANALYSIS 

 Electro-magneto-elastic effective moduli play an 

important role in the design of electro-magneto-elastic 

composites. Once the averaged generalized stress is 

determined in each dispersed phase by the present method, 

electro-magneto-elastic effective moduli M*  can be 

determined by Eq. (36). As an important application of the 

presented solution, the effective electro-magneto-elastic 

moduli are predicted and compared with the results derived 

from the GSCM. Material properties are listed in Table 1. 

 Example 1: Consider two arrays of reinforced phases, 

i.e., the square and hexagonal arrays as shown in Fig. (2). 

Table 1. Material Properties 

 

 BaTiO3 (Piezoelectric) CoFe2O4 (Piezomagnetic) Epoxy (Pure Elastic) 

C44 (GPa)  43 45.3 1.28 

e15 (C / m
2 )  11.6 0 0 

q15 (N / Am)  0 550.0 0 

11 (10
9C 2 / Nm2 )  11.2 0.08 0.1 

d11 (10
9 Ns /VC)  0 0 0 

μ11 (10
6 Ns2 /C 2 )  5.0 -590.0 1.0 
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The total volume fraction of piezoelectric phase and 

piezomagnetic phase is 0.6. The change of effective electro-

magneto-elastic moduli with volume fraction of 

piezomagnetic phase  for the square and hexagonal arrays 

are shown in Fig. (3). The dilute, self-consistent, Mori-

Tanaka, differential and generalized self-consistent methods 

have been extensively used for predicting the effective 

properties of composites. Generally, the results predicted by 

the generalized self-consistent method (GSCM) are in good 

agreement with the experiment data. As a comparison with 

the presented method, the results predicted by GSCM are 

also depicted in Fig. (3). 

         (a) Square   (b) Hexagonal 

 

Fig. (2). Fiber square and hexagonal arrays and unit cell (three-

phase model). 

(a) Effective elastic modulus 

 

(b) Effective piezoelectric modulus 

 

 

 

 

 

 

 

(Fig. 3) contd….. 

(c) Effective piezomagnetic modulus 

 

(d) Effective dielectric modulus 

 

(e) Effective magneto-electric modulus 

 

(f) Effective magnetic permeability modulus 

 

Fig. (3). Results and comparisons of effective electro-magneto-

elastic moduli. 
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 From Fig. (3), it is seen that the results are different between 

square array and hexagonal array, some reasons for this 

behavior has been discussed by Pettermann and Suresh [7]. It is 

also seen that the results predicted by the GSCM are almost in 

exact agreement with those for the hexagonal array predicted by 

the present method. It appears that the GSCM reflects “the 

idealized even distribution” of inclusions and in the doubly 

periodic arrays the hexagonal array approaches most “the 

idealized even distribution”. When = 0  and = 0.6 , the 

reinforced phase is piezoelectric phase (BaTiO3) or piezo-

magnetic phase (CoFe2O4), there in no magneto-electric 

coupling effect, effective magneto-electric modulus is zero. When 

0 < < 0.6 , the three-phase electro-magneto-elastic composite 

contain a non-zero magneto-electric modulus. When  is about 

0.5, the magneto-electric coupling effect is maximum. 

 Example 2: The hexagonal array of fibers is adopted in 

this example. Take the fiber and matrix as the piezoelectric 

phase BaTiO3 and the piezomagnetic phase CoFe2O4, 

respectively. A pure elastic coating Epoxy is between the 

fiber and matrix, as shown in Fig. (4). The dimensionless 

coating thickness = (R1 R0 ) / a = 0.01 . The coating elastic 

modulus C44
C
= 1.28GPa (different value of  denotes 

different coating elastic modulus). The variations of the 

electro-magneto-elastic effective moduli with  for 

different fiber volume fraction  are depicted in Fig. (5). 

 

Fig. (4). An unit cell with Epoxy coating. 

(a) Effective elastic modulus 

 

(Fig. 5) contd….. 

 (b) Effective piezoelectric modulus 

 

(c) Effective magneto-electric modulus 

 

(d) Effective magnetic permeability modulus 
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(Fig. 5) contd….. 

 (e) Effective piezomagnetic modulus 

 

(f) Effective dielectric modulus 

 

Fig. (5). Effect of the coating elastic moduli on the magneto-

electric effective moduli. 

 From Fig. (5), the effective elastic increase monotono-
usly with the increase of the coating stiffness. The effective 
piezoelectric and magneto-electric moduli increase no 
monotonously with the increase of the coating stiffness, 
which can be interpreted by the fact that a stiff or a soft 
coating is disadvantageous to transfer strain from matrix 
(piezomagnetic phase CoFe2O4) to fibers (piezoelectric 

phase BaTiO3). When coating is too stiff or too soft, the 
strain in fibers is very little, and the effective piezoelectric 
and magneto-electric moduli are close zero. Numerical 
results also indicate that the coating stiffness has very little 
influence on the effective magnetic permeability, 
piezomagnetic and dielectric moduli. 

5. CONCLUSIONS 

 For the electro-magneto-elastic composites with a doubly 
periodic parallelogram array of reinforced phases under far-
field antiplane shear coupled with inplane electromagnetic 
load, a rigorous analytical method is developed by 
introducing the concepts of generalized eigenstrain 
integrated with the doubly quasi-periodic Riemann boundary 
problem. Numerical results show the difference between 
square array and hexagonal array of reinforced phases. A 
comparison of the present solution with results from GSCM 
demonstrates the efficiency and accuracy of the present 
method. 
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