1

Research on High Performance Fe₃Si-Si₃N₄-SiC Composite Used for Blast **Furnace**

Yong Li, Xiaoyan Zhu, Yawei Zhai, Jiaping Wang, Wendong Xue^{*}, Junhong Chen and Jialin Sun

School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract: Excellent Fe₃Si-Si₃N₄-SiC composites were successfully prepared with FeSi75 and SiC as main starting materials by nitridation reaction(at 1300°C for 8Hrs). The material properties were studied; the ferrosilicon nitridation mechanism was analyzed through chemical thermodynamics; phase composition, microstructure, corrosion resistance of products were also investigated. The results are shown that the comprehensive properties of Fe₃Si-Si₃N₄-SiC are outstanding. The nitridation products are fiber-like α -Si₃N₄ and rod-like β -Si₃N₄, which makes better mechanical behavior due to fiber reinforcement; a great deal of Fe₃Si intermetallic compounds uniformly distribute in matrix, which is one of the products of Fe-Si nitridation and as a plastic phase forming in grain boundary optimizes the performance of products. Chemical thermodynamic analysis is shown that the fiber-like α -Si₃N₄ is formed by SiO(g) and N₂(g) reaction which also increases the rate of nitridation. Fe₃Si-Si₃N₄-SiC material has high corrosion resistance. Now it has been successfully applied to one 2000M³ domestic steel plant, the blast furnace operation goes well.

Keywords: Fe₃Si-Si₃N₄-SiC composite, nitridation mechanism, plastic phase Fe₃Si, corrosion resistance, blast furnace.

1. INTRODUCTION

Due to their excellent properties such as high temperature strength, low thermal expansion coefficient, high refractoriness under load and good chemical stability, silicon nitride bonded silicon carbide (Si₃N₄-SiC) materials have been used increasingly as a refractory in blast furnaces [1-10]. However, Si₃N₄-SiC possesses some weaknesses, such as great brittleness, poor thermal shock resistance and bad thermal conductivity, which restricts its further application. In order to farther improve properties of the material, a metallic plastic phase Fe₃Si was introduced into the grain boundary of Si₃N₄-SiC composite. For the sake of compounding metal with ceramic aggregates, preparation of Fe₃Si-Si₃N₄-SiC composites by nitriding ferrosilicon alloy based on Si₃N₄-SiC is proposed. Si₃N₄-SiC materials with uniformly dispersed metallic plastic phase is expected to have higher thermal conductivity and thermal shock resistance in favour of enhancing blast furnace cooling rate. At present, the research on Fe₃Si-Si₃N₄-SiC materials is rarely reported in domestic and oversea research [11-14], this research hopes to provide some useful reference.

2. EXPERIMENT

2.1. Raw Materials Preparation

The starting materials used in this study were SiC (5 \sim 3 mm, $3 \sim 1$ mm, $1.5 \sim 0$ mm, <0.088 mm.), ferrosilicon alloy powder (Namely FeSi75) (<0.088 mm,), Si₃N₄ (<0.088 mm, $Si_3N_4 \ge 97wt\%$), thermosetting resins and high purity nitrogen (ϕ (N₂) \geq 99.99%). The chemical composition of FeSi75 and SiC was listed in Table 1.

Table 1. Chemical Composition of Main Materials wt %

Material	SiC	Fe ₂ O ₃	Al ₂ O ₃	Si	Fe	Al	F.C
SiC	99.05	0.23	0.55	/	/	/	0.01
FeSi75	/	/	/	74.6	24.6	0.5	/

2.2. Experimental Formula

SiC and Si₃N₄ have different properties at high temperature. In order to maintain their virtues, some synthesized Si_3N_4 powder as starting materials was added to samples directly, which can not only increase the content of Si₃N₄ but also compare with Si₃N₄ generated through reaction, so 8wt% Si₃N₄ powder was added to samples uniformly.

The composition of samples was shown in Table 2. Ferrosilicon powder content of samples was 12 wt%; the corresponding sample number was 1 # 0 # was a blank sample without ferrosilicon. Thermosetting resin was binder.

2.3. Experimental Procedure

Specimen preparation can proceed as follows: after ball milling, mixing and 24 hours aging, the mixture of raw ingredients was pressed into green bodies by 1,000 tons of moulding press. The green bodies were fully dried, and then fired in flowing N₂ atmosphere (maintained at low positive pressure) in a furnace at 1300°C for 8 hours.

Physical properties such as bulk density, apparent porosity, cold crushing strength and high temperature flexural strength of the nitridation products were measured by standard method(GB/T 2997-2000, GB/T 5072-2008, GB/T 3002-2004). The phase compositions of products were analyzed by X-ray diffraction (Rigaku D/MAX-RB), microstructures and microcomponents of the products were examined by scanning electron microscope (PHILIPS XL30 type and Leica S440i) and

^{*}Address correspondence to this author at the School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; Tel: +86-10-62332666; Fax: +86-10-62332666; E-mail: xuewendong@ustb.edu.cn

Table 2.Composition of Samples wt %

Sample Number	SiC			Ferrosilicon	Si ₃ N ₄	Additive	
	5-3 mm	3-1 mm	1.5-0 mm	50µm	74µm	50µm	83µm
0	10	35	20	24	0	8	3
1	10	35	20	12	12	8	3

energy dispersive spectroscopy (EDS). The resistances of nitridation products to alkali corrosion, slag attack and hot metal penetration were tested by Research and Development Center of WuHan Iron and Steel Corp (abbreviation: WISGDRC).

3. RESULTS AND DISCUSSION

3.1. Performances of Fe₃Si-Si₃N₄-SiC Products

Physical properties of products are shown in Table 3.

From the above results, the experimental prepared $Fe_3Si-Si_3N_4$ -SiC products have excellent comprehensive performance. The composites contained metal plastic phase are better evidently than blank sample(0#). It means that metal plastic phase in Si_3N_4-SiC composite plays an important role for improving the performance of materials. Thus preparation of $Fe_3Si-Si_3N_4$ -SiC composites by nitriding ferrosilicon is feasible. In order to give further explanation on the outstanding properties of $Fe_3Si-Si_3N_4$ -SiC composites, their phase composition and microstructure need to be further analyzed.

3.2. Phase Composition of Fe₃Si-Si₃N₄-SiC Products

Phase composition of FeSi75 alloy powder and nitrided products were examined by XRD, the result is shown in Fig. (1). It shows that the main phases of FeSi75 are elemental Si and FeSi₂, which is consistent with Fe-Si binary system equilibrium phase diagram. SiC, α -Si₃N₄, β -Si₃N₄ and Fe₃Si are the main phases of Fe₃Si-Si₃N₄-SiC. α -Si₃N₄ is the primary nitridation reaction product, conversely β -Si₃N₄ is less, both of them are binder phases. Fe can not be nitridized [15] which finally exists as the form of Fe₃Si intermetallic compound.

3.3. Microstructure of Fe₃Si-Si₃N₄-SiC Products

Microstructure of $Fe_3Si-Si_3N_4$ -SiC composites is shown in Fig. (2).

It reveals that the micro-morphologies of products are fiberlike and rod-like. Combined with the analysis of XRD, these substances are Si_3N_4 as binder phases. All the above microscopic appearances are the typical morphologies of Si_3N_4 -

Table 3.	Properties of Fe ₃ Si-Si ₃ N ₄ -SiC Products
----------	---

SiC. So the ferrosilicon nitridation is similar to the Si nitridation. Generally, α -Si₃N₄ is fiber-like, while β -Si₃N₄ is rod-like [16]. Due to the existence of fiber-reinforced Si₃N₄ which makes crack deflection and healing, Fe₃Si-Si₃N₄-SiC composites have excellent mechanical behavior (shown in Table **3**). As binder phases, Si₃N₄ makes Fe₃Si-Si₃N₄-SiC composites dense.

Fig. (1). XRD patterns of FeSi75 and specimen nitridized at 1 300 °C.

According to SEM and EDS analysis (shown in Fig. 3), the gray areas (represented by A) with well-preserved morphologies in Fig. (3) are SiC particles because of their low reactivity. While the gray areas (represented by B) with irregular morphologies are Si_3N_4 added as raw material and some produced by nitridation reaction. There are many white bright substances distributing in matrix (Fig. 3), which is proved to be ferrosilicon intermetallic compounds Fe₃Si by EDS analysis (Fig. 3). Those Fe₃Si substances are spherical and less than 10µm because of their bad wettability with Si_3N_4 . There is no obvious residual Si in matrix. The one of nitridation products—ferrosilicon intermetallic compound Fe₃Si is as a plastic phase

Sample Number Test items	0#	1#
Apparent porosity (%)	12.3	9.7
Bulk density (g/cm ³)	2.75	2.87
Cold crushing strength (MPa)	114	181
High temperature flexural strength at 1400 °C (MPa)	16.79	27.43
High temperature flexural strength at 1200°C (MPa)	18.00	36.33
High temperature flexural strength at 1000°C (MPa)	23.44	39.76

Fig. (2). SEM photographs of Fe₃Si-Si₃N₄-SiC composites.

to improve greatly the properties of products as shown in Table **3**. The existence of Fe₃Si can enhance the thermal conductivity of Fe₃Si-Si₃N₄-SiC composites and realize the fast cooling of blast furnace.

3.4. Chemical Thermodynamic Analysis of FeSi75 Nitridation

The flowing N₂ (φ (N₂) \geq 99.99%) has trace O₂ and green bodies are put in saggers without vacuum-pumping, so there is still a small amount of O₂ in the furnace. When green bodies fired in flowing N₂ atmosphere (maintained at low positive pressure) in the furnace at 1300°C for 8 hours, some reactions which may occur in this condition have been plotted as $\Delta G_T^{\Theta} \sim T$ relationship in Fig. (4) to show their reation order [17, 18]. Because the FeSi75 contains two phases : Si and FeSi₂, FeSi75 nitridation can be divided into two parts: Si nitridation and FeSi₂ nitridation.

It can be seen from Fig. (4) that the reaction order is SiO_2 forming firstly, then to form $SiO(g) \rightarrow (Si_3N_4 + Fe_3Si) \rightarrow Si_3N_4$ as the oxygen partial pressure decreases gradually. Two points must be paid attention: (a) When oxygen partial pressure P_{O_2} in the system is reduced by forming SiO_2 to a low value, SiO(g)

can be formed through follows reaction:

 $3Si(s) + 1.5O_2(g) = 3SiO(g)$ (1)

This reaction will create a condition (P_{O_2} reducing farther) for realization of Si direct nitriding and prepares the raw material for nitridation farther as Reaction (2) and (3).

$$3Si(s) + 2N_2(g) = Si_3N_4(s)$$
 (2)

$$3SiO(g) + 2N_2(g) = Si_3N_4(s) + 1.5O_2(g)$$
(3)

Actually, Reaction (2) can be got from Reaction (1) plus (3). It means Si_3N_4 can be formed by two formats: direct nitridation of Si through Reaction (2) and indirect nitridation through Reaction (1) and (3). Moreover the rate of the latter reaction will be higher than former, because the indirect nitridation contains a gas-gas reaction which increases the reaction rate, so the trace O_2 is catalyst. Also the product α -Si₃N₄ of the latter reaction becomes fiber-like [19-21], because it is separate out from gaseous.

(b) Si_3N_4 and Fe_3Si can be generated by nitriding $FeSi_2$ at very low P_{O_2} through the reaction as follows:

Fig. (3). SEM photographs and EDS analysis of Fe₃Si-Si₃N₄-SiC composites.

$$9/5FeSi_2 + 2N_2(g) = 3/5Fe_3Si + Si_3N_4(s)$$
(4)

It is clearly from Fig. (4) that this reaction is easier to occur than Reaction (2).

Fig. (4). Relationship between free energy ΔG_T^{Θ} and temperature of the reactions.

3.5. Existent Form of Fe

There are various Fe-Si intermetallic compounds. The following reaction may take place in nitridation process(listed in Table 4).

We can see from Table 4. that only Reaction (8)(9)(10) can occur at 1573 K. It means the products of nitriding ferrosilicon are Fe₃Si and Si₃N₄(s). Fe₃Si plays a role of plastic phase in the composite, which highly improves the performance of Fe₃Si-Si₃N₄-SiC composites.

3.6. Corrosion Resistance Tests

Blast furnace lining brick plays an important role for the blast furnace to obtain a long lining life. In the ironmaking process, the refractory lining is not only exposed to high temperature corrosion, more importantly, it will suffer from chemical corrosion of molten slag, molten iron and alkali metal oxides. Obviously only testing conventional properties of refractories cannot meet the performance requirements of blast furnace under working conditions, so operational performance of the refractory materials used for blast furnace needs to be detected. In this experiment, the resistances of $Fe_3Si-Si_3N_4$ -SiC materials to alkali corrosion, slag attack and hot metal penetration were commissioned to test by Research and

Development Center of WuHan Iron and Steel Corp (abbreviation: WISGDRC) which is a professional testing center of refractory material in China.

According to the national standard test method(GB/T 14983—2008, GB/T 8931—2007, GB/T 24201—2009)[23], the corrosion resistance of Fe₃Si-Si₃N₄-SiC materials is measured, the results are listed in Table 5. It indicates that the corrosion resistance of Fe₃Si-Si₃N₄-SiC materials is excellent.

During ironmaking process, the surface of Si_3N_4 and SiC particles is likely to form SiO_2 oxidation film when Si_3N_4 -SiC materials are applied to blast furnace. These SiO_2 will react with alkali metal oxides (K₂O, Na₂O) and molten slag (i.e. CaO, MgO) in blast furnace at high temperature and form low-melting-point eutectics, which would reduce materials high-temperature strength, cause materials volume expansion or spalling and finally result in lining materials failure [24]. Hot metal drops along the furnace wall and make the refractory erosion and wear.

Due to the uniformly dispersed metallic plastic phase Fe_3Si , $Fe_3Si-Si_3N_4$ -SiC composites have high thermal conductivity, which will benefit blast furnace cooling. When brick linings temperature is lowered, the molten slag attack, alkali corrosion, hot metal penetration will be slowed down and even all the erosive substance becomes solidified, so reactions between erosive substance and refractories are stopped. Moreover the intermetallic compound Fe_3Si is preferentially oxidized in comparison with Si_3N_4 and SiC, so Si_3N_4 and SiC can be better reserved to resist corrosion [25, 26]. Besides, $Fe_3Si-Si_3N_4$ -SiC composites are dense so the erosive substance is difficult to penetrate into refractory. Therefore, the corrosion resistance of $Fe_3Si-Si_3N_4$ -SiC materials is excellent.

3.7. Industrial Trial

Based on the excellent properties of $Fe_3Si-Si_3N_4$ -SiC materials, they have been successfully applied to one 2000M³ blast furnace installed in Sep.2009 in a domestic steel plant. So far, the blast furnace operates well. It shows that Fe-Si_3N_4-SiC materials are outstanding refractory materials for blast furnace.

CONCLUSIONS

 Excellent Fe₃Si-Si₃N₄-SiC composites are successfully prepared with FeSi75, Si₃N₄ and SiC as main starting materials by nitridation reaction (at 1300°C for 8Hrs).

Reaction	$\Delta G_T^{\boldsymbol{\Theta}} (\mathbf{J} \bullet \mathbf{mol}^{-1})$	T _{conversion} (K)	No.
$3Fe_3Si+2N_2(g) \rightarrow Si_3N_4(s)+9Fe$	$\Delta G_T^{\Theta} = -204\ 208 + 657.396T$	310.6	(5)
$Fe_5Si_3+2N_2(g) \rightarrow Si_3N_4(s)+5Fe$	$\Delta G_T^{\Theta} = -496\ 704 + 340.961T$	1456.8	(6)
$3FeSi+2N_2(g) \rightarrow Si_3N_4(s)+3Fe$	$\Delta G_T^{\Theta} = -507\ 628 + 377.967T$	1343.0	(7)
$9Fe_5Si_3+8N_2(g)\rightarrow 4Si_3N_4(s)+15Fe_3Si$	$\Delta G_T^{\Theta} = -3\ 449\ 298\ -\ 218.333T$	15798.0	(8)
$9FeSi+4N_2(g)\rightarrow 2Si_3N_4(s)+3Fe_3Si$	$\Delta G_T^{\Theta} = -1\ 318\ 676 + 476.507T$	2767.4	(9)
$9\text{FeSi}_2\text{+}10\text{N}_2\text{(g)} \rightarrow 5\text{Si}_3\text{N}_4\text{(s)} + 3\text{Fe}_3\text{Si}$	$\Delta G_T^{\Theta} = -3\ 467\ 760 + 1131.8T$	3063.9	(10)

 Table 4.
 Changes of Gibbs Free Energy in Nitridation of Ferrosilicon Intermetallic Compounds [22]

Table 5.	Test Results of Corr	rosion Resistance	from WISGDRC

	Original cold crushing strength		120.59
	Post cold crushing strength	MPa	132.37
Alkali resistance of Fe ₃ Si-Si ₃ N ₄ -SiC	Change rate of strength	%	+9.77
	Change rate of volume	%	0.52
	Sample appearance		No crack
	Evaluation		Excellent
Slag corrosion rate of test sample	weight change	%	5.98
Hot metal corrosion rate of test sample	weight change	%	0.53

- (2) The main phases of $Fe_3Si-Si_3N_4$ -SiC composite are SiC, α -Si₃N₄, β -Si₃N₄ and Fe₃Si. The morphologies of α -Si₃N₄, β -Si₃N₄ are fiber-like and rod-like and the intermetallic compund Fe₃Si distributes uniformly in grain boundary.
- (3) Chemical thermodynamic anlysis is shown that Si and FeSi75 can be nitridized to form Si₃N₄ and Fe₃Si. The processing of nitridation incluing two ways, direct nitriding and indirect nitriding. In the latter format SiO(g) is a middle product, which increases the rate of reaction and makes the product α-Si₃N₄ becomes fiberlike to improve greatly the performance of composite.
- (4) Ferrosilicon alloy nitridation is easier than Si and the product Fe₃Si plays a role of plastic phase which also improves the mechanical properties of composite.
- (5) Fe₃Si-Si₃N₄-SiC material has high corrosion resistance. Now the Fe₃Si-Si₃N₄-SiC composites have been successfully applied to one 2000M³ domestic steel plant, the blast furnace operation goes well.

REFERENCES

- Bocanegra-Bernal MH, Matovic B. Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures. Mater Sci EngA 2010; 527: 1314-38.
- Bocanegra-Bernal MH, Matovic B. Dense and near-net-shape fabrication of Si₃N₄ ceramics. Mater Sci Eng A 2009; 500: 130-49.
- [3] Yong L, Jun B, Zhang JF, Xiongzhang L. Evolution and properties of nonoxide composite refractories for large-size blast furnaces in China. Naihuo Cailiao 2009; 43: 140-4. (In Chinese).
- [4] Yong L, Jun B, Zhang JF. Effect of reactive sintering temperature on properties of Si₃N₄-SiC refractories. Naihuo Cailiao 2009; 43: 175-8. (In Chinese).
- [5] Hou CL, Liu HP, Li TX, Shao SY. Properties and application of bricks mixed with Si₃N₄ and SiC. Energy Saving of Non-ferrous Metallurgy 2007; 1: 26-8. (In Chinese).
- [6] Jiang DL, Li LS, Ouyang SX, Shi JL. China Materials Engineering Ceremony IV, inorganic material engineering. Chemical Industry Press: Beijing; 2005. (In Chinese).
- [7] Yue HZ, Peng DY, Wen HJ. Current research situation of nitride bonded silicon carbide. Naihuo Cailiao 2004; 38: 435-8. (In Chinese).
- [8] Wen GY. Composition & Microstructure Design and Property Analysis of Si₃N₄ Bonded SiC. MSc. Thesis, Northwest Industry University, Xi'an, China, 2004. (In Chinese).

Revised: February 6, 2011

© Li et al.; Licensee Bentham Open.

- [9] Xu GT, Xiao JM, Yang JK, Sun PA. Development the Resarches of Nitrogen Bond Silicon Carbide Refractories. Ceramic Science & Art 2003; 2: 40-2. (In Chinese).
- [10] Shao SY. Study on RBSN bonded SIC refractory. MSc. Thesis, Wuhan university of science and technology, Wuhan, China, 2002. (In Chinese).
- [11] Zhang Y, Peng DY, Wen HJ. Sintering Process of Special Ceramics Fe-Si₃N₄ Bonded SiC. J Iron Steel Res 2002; 14: 25-8. (In Chinese).
- [12] Han JH. Thermodynamic analysis and experiment research in synthesis process of Si₃N₄, Fe-Si₃N₄. MSc. Thesis, Xi'an University of Architecture and Technology, Xi'an, China, 2006. (In Chinese).
- [13] Vlasova MV, Lavrenko VA, Dyubova LY, Gonzalez-Rodriguez JG, Kakasey MG. Nitriding of Ferrosilicon Powders. J Mater Synth Process 2001; 9: 111-7.
- [14] Chukhlomina LN, Maksimov YM, Vitushkina OG, Golobokov NN, Vereshchagin VI. Compsition and Morphology of Products of Combusition of Ferrosilicon in Nitrogen. Glass Ceram 2007; 64: 63-5.
- [15] Liu ZJ. Synthesis of Fe-Si₃N₄and its effect on Properties of A1₂O₃-SiC-C refractories. MSc. Thesis, Xi'an University of Architecture and Technology, Xi'an, China, 2003. (In Chinese).
- [16] Zymla V, Zymla A, Guillot JB. Kinetics and Mechanism of Silicon Powder in Mixture with Silicon Carbide. 4th International Symposium on Nitrides; Mons, Belgium; 2003.
- [17] Chen ZY. Chemical thermodynamics of Refractories. Metallurgical Industry Press: Beijing; 2005. (In Chinese).
- [18] Blegen K. Equilibrium and kinetics in the systems Si-N and Si-N-O. 6th Symposium on Special Ceramics. British Ceramic Research Association, 1974.
- [19] Moulson JA. Review Reaction Bonded Silicon nitride: Its Formation and Properties. J Mater Sci 1979; 14: 1017-51.
- [20] Jennings HM. Review on reaction between Silicon and Nitrogen. J Mater Sci 1983; 18: 951-67.
- [21] Ziegler G, Heinrich J, Wotting G. Review Relationship between processing, microstructure and properties of dense and reaction-bonded silicon nitride. J Mater Sci 1987; 22: 3041-86.
- [22] Chen JH. The composition and stucture of Fe-Si₃N₄ and its effect on high temperature performance of Al₂O₃-SiC-C composite refractories. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2005. (In Chinese).
- [23] The national refractory standardization technical committee, and the fifth editorial office of China standards press, Refractory standard assembly (part iii), 4th ed. China standards press: Beijing; 2010.
- [24] Tang HL. Study on Breakage Mechanism of SiC Brick for BF and Prolonging Its Life. Angang Technology 1997; 8: 1-5. (In Chinese).
- [25] Chen CX. Structure and Properties of Al₂O₃-Si₃N₄-SiC Composite for Blast Furnace. MSc. Thesis, University of Science and Technology Beijing, Beijing, China, 2009. (In Chinese).
- [26] Zhao HS. Preparation of Fe₃Si Based Intermetallic Compounds and Investigation of their Oxidation Resistance. MSc. Thesis, Lanzhou University of Technology, Lanzhou, China, 2008. (In Chinese).

Received: October 29, 2010

Accepted: February 7, 2011

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.