Cryogenic Cooling

1. INTRODUCTION

Titanium alloy is widely applied in modern advanced equipment manufacturing industry because of its superior comprehensive performance, especially the aerospace field. But with the features of small thermal conductivity, low modulus of elasticity, strong chemical activity, and easily reacting with surrounding medium under the cutting temperatures, which reduce the cutting performance of titanium alloy greatly, and limiting its applications in many important areas. Now turning is still the most important methods in titanium alloy processing, where many scholars have engaged researches, most of the work focused on the following three aspects: the cutting tool material, cutting parameter optimization and cooling approaches. Researchers have showed that the control of cutting temperature is the key to prolong tool life, improve the machining efficiency and quality. High pressure and large flow cutting fluid is commonly used in early titanium alloy’s cutting to reduce the temperature of cutting area, inhibit the high temperature chemical activity of titanium alloy, and thus prolong tool life. With the deepening of the research, people found that by reason of titanium alloy’s poor thermal conductivity and small cutting contact area, it is easy to bring about stress and thermal concentration, additionally, the penetration ability of traditional cutting fluid is poor, thus, traditional cooling cannot meet the production requirements with the increase of cutting speed. In recent years, with the introduce of the concept of green manufacturing, many scholars who committed to strong air cooling cutting, low temperature freezing cutting, liquid nitrogen (LN2) cooling cutting, MQL (Minimal Quantity Lubrication) and other new type of cooling method research, have achieved positive results. The LN2 cooling with its good cooling and lubricating effect and environmental-friendly character has attracted many attentions from researchers.

Researchers on LN2 cooling cutting TC4 (Ti-6Al-4V) started earlier, Hong [1, 2] and other scholars study the effects of different cooling location in cutting process of titanium alloy with LN2, founding that the main cutting edge with a local concentration of liquid nitrogen cooling can achieve a better result of temperature control. However, due to changes in the hardness and strength of the material under the strong cooling conditions, the cutting force is slightly increased compared to dry cutting. Pradeep kumar used a special tool with liquid nitrogen nozzle for TC4 cutting experiment, the results showed that compared with water base cutting fluid, LN2 cooling can reduce the temperature by 61-66%, and lower cutting force by 35-42% [3]. Domestic scholars Zhao Wei, Meng Chun also researched the cutting properties of titanium alloy under liquid nitrogen cooling condition [4, 5]. The feasibility of finite element method (FEM) in cutting simulation has been proved by many scholars, but the simulation of TC4 cutting under LN2 cooling conditions has been rarely studied due to its complex relationship of thermodynamics and heat transfer boundary definition. Hong, li wei and other scholars established robust two-dimensional finite element model of orthogonal cutting of titanium alloy in their respective research, but there are limitations. The finite element model of Hong et al. has perfect heat transfer boundary setting and experimental basis, but it does not contain material constitutive model, the cutting force and other data is directly measured by experiment, and the finite element model of li wei et has no experimental data to prove its correctness, and also a two-dimensional finite element model of orthogonal cutting simulation has limitations itself.

Cutting Properties Analysis of Titanium Alloy (Ti-6Al-4V) Base on Cryogenic Cooling

Tang Rui1,2, Hou Li1*, Zhang Qi1,3 and Zhou Bo1

1School of Manufacturing Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
2Panxi Technology Innovation Center, Panzhihua University, Panzhihua, Sichuan 617000, China
3School of Mechanic Engineering, Panzhihua University, Panzhihua, Sichuan 617000, China

Abstract: This paper studied the cutting properties of Ti-6Al-4V under cryogenic cooling to find a solution of improvement in tool load-carrying, thermal stress, tool life and finish quality. Firstly, this paper established a 3-D cutting model of Ti-6Al-4V under cryogenic cooling with liquid nitrogen, and then set the parameters of material, friction model and cutting conditions. Based on this model, the results of chips’ shape, cutting forces and temperature distribution were obtained in the simulation with different cooling approaches. The results reveal that the cryogenic cooling with liquid nitrogen can slightly increase the main cutting force but it can efficiently cool the cutting area, and the cooling will contribute to the deformation of chips and improving the finish quality.

Keywords: Cryogenic, cutting temperature, friction model, Ti-6Al-4V (TC4), tool life.

1. INTRODUCTION

Titanium alloy is widely applied in modern advanced equipment manufacturing industry because of its superior comprehensive performance, especially the aerospace field. But with the features of small thermal conductivity, low modulus of elasticity, strong chemical activity, and easily reacting with surrounding medium under the cutting temperatures, which reduce the cutting performance of titanium alloy greatly, and limiting its applications in many important areas. Now turning is still the most important methods in titanium alloy processing, where many scholars have engaged researches, most of the work focused on the following three aspects: the cutting tool material, cutting parameter optimization and cooling approaches. Researchers have showed that the control of cutting temperature is the key to prolong tool life, improve the machining efficiency and quality. High pressure and large flow cutting fluid is commonly used in early titanium alloy’s cutting to reduce the temperature of cutting area, inhibit the high temperature chemical activity of titanium alloy, and thus prolong tool life. With the deepening of the research, people found that by reason of titanium alloy’s poor thermal conductivity and small cutting contact area, it is easy to bring about stress and thermal concentration, additionally, the penetration ability of traditional cutting fluid is poor, thus, traditional cooling cannot meet the production requirements with the increase of cutting speed. In recent years, with the introduce of the concept of green manufacturing, many scholars who committed to strong air cooling cutting, low temperature freezing cutting, liquid nitrogen (LN2) cooling cutting, MQL (Minimal Quantity Lubrication) and other new type of cooling method research, have achieved positive results. The LN2 cooling with its good cooling and lubricating effect and environmental-friendly character has attracted many attentions from researchers.

Researchers on LN2 cooling cutting TC4 (Ti-6Al-4V) started earlier, Hong [1, 2] and other scholars study the effects of different cooling location in cutting process of titanium alloy with LN2, founding that the main cutting edge with a local concentration of liquid nitrogen cooling can achieve a better result of temperature control. However, due to changes in the hardness and strength of the material under the strong cooling conditions, the cutting force is slightly increased compared to dry cutting. Pradeep kumar used a special tool with liquid nitrogen nozzle for TC4 cutting experiment, the results showed that compared with water base cutting fluid, LN2 cooling can reduce the temperature by 61-66%, and lower cutting force by 35-42% [3]. Domestic scholars Zhao Wei, Meng Chun also researched the cutting properties of titanium alloy under liquid nitrogen cooling condition [4, 5]. The feasibility of finite element method (FEM) in cutting simulation has been proved by many scholars, but the simulation of TC4 cutting under LN2 cooling conditions has been rarely studied due to its complex relationship of thermodynamics and heat transfer boundary definition. Hong, li wei and other scholars established robust two-dimensional finite element model of orthogonal cutting of titanium alloy in their respective research, but there are limitations. The finite element model of Hong et al. has perfect heat transfer boundary setting and experimental basis, but it does not contain material constitutive model, the cutting force and other data is directly measured by experiment, and the finite element model of li wei et has no experimental data to prove its correctness, and also a two-dimensional finite element model of orthogonal cutting simulation has limitations itself.
This paper put forward a three-dimensional finite element model considering the heat transfer characteristics of cutting, frictional properties of LN2 cooling conditions. Based on this model, we compared the cutting force and tool temperature with the influence of different cooling part of the cutting area (cooling rake face and flank face respectively). The establishment of this model can provide a prediction reference for the cutting forces, temperature and frictional properties of TC4 cutting under LN2 cooling, also providing foundations for further simulation research, such as temperature, surface residual stress and tool wear.

2. THE ESTABLISHMENT OF THE TITANIUM ALLOY CUTTING MODEL WITH LN2 COOLING

Correct finite element model depends on a proper meshing size, accurate material constitutive equation, and a good definition of thermal boundary conditions, see ref [1, 4, 6], this paper established a three-dimensional finite element model with Deform-3D.

2.1. 3D Model and Mesh

3D model of the tool and the workpiece we used are shown in Fig. (1), INSERTS CNMA432, WC and uncoated. The MCLNR tool holder is used to creates a geometrical configuration of the inclination angles of the major cutting edge and the minor cutting edge i=8°, insert nose angle δ=80°, and side angle of the major cutting edge θ=95°, which is widely used in the United States Air titanium machining. Based on literature [7], tool mesh number is 155023, rigid, tetrahedron, minimum grid side length is 0.01 mm. Workpiece material is considered as plastic perfect, with the grids for 136,630, the minimum mesh side length is 0.03 mm.

![Fig. (1). 3D model of the blade and the workpiece and meshing.](image)

2.2. Material Parameters and Constitutive Model

When cutting titanium alloy, the temperature is relatively low and material deformation rate is high in the first strain zone. The second strain zone, on the other hand, although the material strain rate decreased, but the tool-chip contact usually generate high temperatures and concentrated stress which results in a big gradient of temperature and stress in the deformation zone. Therefore, the material constitutive model should reflect strain, strain rate, the influence of temperature on the material yield stress and flow stress. Researchers have shown that Johnson - Cook constitutive equation can reach a good agreement with the experiment when simulate the cutting process of TC4, which is shown in equation (1):

\[
\sigma = (C_1 + C_2 \varepsilon^m) \cdot \left[1 + C_3 \ln \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \right) \right] \left[1 - \left(T - T_0 \right)^{n_m} \right]^{1/\nu} \tag{1}
\]

The parameters are set according to the literature [7], the yield strength of the \(C_1= 850\) MP, stress constant \(C_2=350\) MP, material hardening exponent \(n=0.16\), strain rate hardening coefficient \(C_3=0.025\), thermal softening coefficient \(m=0.5\). Where: \(\sigma\) is the material flow stress, \(\varepsilon\) is the strain, \(\dot{\varepsilon}\) is strain rate, \(\dot{\varepsilon}_0\) is reference strain rate, and set its value to 1. Since the thermal conductivity, heat capacity of Ti-6Al-4V change greatly with temperature, in this paper, the calculation relationship curve is shown in Fig. (2a).

![Fig. (2a). Curve of thermal conductivity change.](image)

2.3. 3D Heat Transfer Equation and Thermal Boundary Definition

When machining TC4, chips continuously separated from the blank body, Deform-3D achieves the chip separation through re-meshing process. The heat conduction in the cutting progress is governed by a 3D heat transfer equation, expressed as follow:

\[
\nabla \cdot \left(k \nabla T \right) + \frac{\partial}{\partial x} \left(k_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial T}{\partial z} \right) + \dot{q} = \rho c \frac{\partial T}{\partial t} \tag{2}
\]
where T is the object’s temperature, \dot{q} represents strength of the heat source produced by a volume unit inside the object within a time unit, ρ is material density, c is specific heat, k_x, k_y, k_z are the thermal conductivity in the three axial direction respectively.

Thermal boundary definition is of vital importance in this study, on the basis of previous study, this paper gives the following definition: boundary ABCDEFGHIKLA (as shown in Fig. 3) can be divided into four different thermodynamic boundary: T_r (constant temperature boundary), T_a (air convection boundary), T_n (liquid nitrogen cooling boundary), T_i (adiabatic boundary).

Dry cutting, the boundary conditions are defined as follows:

$$
\{
GH, HI \in T_r \\
KL, BC, CD, FG \in T_i \\
IJ, JK, LA, AB, ED, EF \in T_a
\} \tag{3}
$$

Rake surface with LN2 cooling cutting, the boundary conditions are defined as follows:

$$
\{
GH, HI \in T_r \\
IJ, JK, DE, EF \in T_a \\
KL, BC, CD, FG \in T_i
\} \tag{4}
$$

Since this study take tool as a rigid body, so we need just consider the heat transfer parameters of the tool material in contact with the chip as well as its own thermal conductivity and so on.

2.4. The Friction Model of the Tool Chip Contact

The frictional condition in the cutting area within tool surface contact with the chip and work piece is very complex, because of the stress and temperature concentration. At present, the majority of scholars usually divided it into slide area and bonded area, using the Zorve [8] friction model for numerical calculation, specific as follows:

$$
\tau_{fr} = \begin{cases}
\delta \sigma_n, & \tau_{fr} < \tau_{max} \quad \text{(slide area)} \\
\tau_{max}, & \tau_{fr} \geq \tau_{max} \quad \text{(bonded area)}
\end{cases}
$$

where: τ_{fr} is the friction stress of contact area, σ_n is the normal stress, τ_{max} is the workpiece material critical shear yield strength, δ is the coefficient of friction stress. According to the literature [6], take $\delta=0.82$. The contact between chip and tool rake face largely affect the tool temperature, heat transfer coefficient between the two directly determines the tool temperature calculation, thereby affecting the tool life and cutting forces. In the finite element simulation, some scholars put forward to reach thermal equilibrium quickly by changing the heat transfer coefficient between the tool and chip [7-10]. According to literature [9], it is in good agreement with the experimental results when the heats transfer coefficient is set to 2000KW/(m²·K).

3. SIMULATION RESULTS AND DISCUSSION

3.1. Differences in Serrated Chip

On the basis of 3D cutting model proposed in this paper, the cutting parameters are: cutting speed $V_c=90$ m/min, feed rate $f=0.254$ mm/rev, back engagement $a_p =0.254$ mm. Simulation of serrated chip, as shown in Fig. (4), is caused when the entire first deformation zone slips and occurs to form a zigzag structure where thermoplastic instability occurs, which is common in cutting of difficult-to-machine materials such as titanium alloy. Simulation of dry cutting serrated chip is shown in Fig. (4a), liquid nitrogen cooled rake and flank face are respectively shown in Fig. (4b, c), it can be seen that under the effect of liquid nitrogen cooling, the serrated structure of chip becomes more intensive than dry cutting.
3.2. Analysis of the Cutting Force

Even if the cutting force reaches steady state, there is still a certain degree of instability, as shown in Fig. (5). It can be seen from the graph, the LN2 cooling has made no obvious influence on cutting force, and the main cutting force has a tendency to rise due to the change on strength of the titanium alloy affected by cooling.

In order to compare, we concluded the average main cutting force under different cooling ways after reaching steady state: Dry Cutting $F = 808.4$ N, rake liquid nitrogen cooling $F = 891$ N, flank liquid nitrogen cooling $F = 916$ N, and these tendency coincide with Hong’s experiment [2].

3.3. Analysis of the Tool Temperature

The temperature distribution of the simulation step 350, respectively for different cooling mode of the tool, are shown in Fig. (6). As we can see from the graph, the difference between the maximum temperatures with different cooling methods is small; respectively $T_{dry} = 510^\circ\text{C}$, $T_{flank} = 478^\circ\text{C}$, $T_{rake} = 470^\circ\text{C}$, which is within 7% compared with each other. The reason is that in a small tool-chip contact area, for the high pressure and high contact stresses, the spraying of liquid nitrogen cannot penetrate the area to achieve effective cooling.

CONCLUSION

From the analysis of the simulation results, we can get the following conclusions:

1. The three-dimensional cutting model established in this paper is feasible in the treatment of thermal boundary and selection of parameters, the simulation results and experiment are consistent, laid the foundation for further three-dimensional cutting simulation.

2. Under the effect of liquid nitrogen cooling, serrated chips produced by cutting TC4 compared to dry cutting is more intensive, and this is conducive to the chip curl and chip breaking, reducing friction between the chip and the rake face, helping improve the surface quality.

3. The cutting force increases slightly when the titanium alloys is cooled by outside spray liquid nitrogen. Since the cooling lead to the changes in material intensity, its main cutting force has increased slightly compared to dry cutting, where rake face cooling rising 10.2%, flank face cooling rising 13.3%.

4. Liquid nitrogen cooling can effectively reduce the average temperature of the tool, the cooling effect on rake face is better than flank face, but the maximum temperature of the surface is less affected.
The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported the key laboratory of Vanadium and titanium resources comprehensive utilization of Sichuan Province (No. 2013ZD-04), Panzhihua city (No. 2013TX - 8), and Panzhihua University (No. 2014YB017).

REFERENCES

© Rui et al.; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.