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Abstract: Fusarium oxysporum isolates (Foxy 2 and PSM197) are potential, highly host specific mycoherbicides for the 

control of the parasitic weeds Striga hermonthica and S. asiatica. Their target weeds, Striga spp., are major biotic con-

straints in cereal and legume production in semi-arid tropical Africa, where they adversely affect livelihood of millions of 

subsistence farmers. The aim of this study was to characterize and sequence the Striga mycoherbicides Foxy 2 & PSM197 

in order to more clearly distinguish them from other morphologically similar pathogenic Fusarium oxysporum strains. The 

fungal isolates were cultivated on PDA medium and characterized based on the analysis of partial DNA sequence of the 

internal transcribed spacer (ITS) regions of the nuclear ribosomal RNA gene. Both isolates were identical in their ITS-

sequence. The unique and identical ITS-sequence of the two isolates obtained, compared to the sequences of Fusarium 

oxysporum forma speciales deposited in GenBank along with the host specificity to Striga demonstrated in previous stud-

ies, provides strong evidence to propose these pathogens of Striga as a new forma specialis (f. sp. strigae). The possibility 

to clearly distinguish between the new forma specialis and all pathogenic Fusarium oxysporum strains sequenced so far 

will facilitate and encourage the acceptance and introduction of Striga-mycoherbicides for practical field application by 

regulatory authorities and farmers. 
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INTRODUCTION 

 Globally, root parasitic weeds of the genus Striga, par-
ticularly S. hermonthica (Del.) Benth., have a greater impact 
on human welfare than any other parasitic angiosperm, be-
cause their hosts are cereal crops of subsistence farmers in 
areas marginal for agriculture in the Sahelian and the Savan-
nah zones of Africa. In infested areas, yield losses associated 
with S. hermonthica infestation on sorghum (Sorghum bicol-
our (L.) Moench) and maize (Zea mays L.) are often signifi-
cant, ranging from 40 to 100% [1-3], and aggravate hunger 
and poverty. Control of Striga is particularly difficult due to 
its special biology and intimate physiological interaction 
with its hosts. In addition, significant damage is done to the 
host before parasite shoots emerge from soil. So far, no eco-
nomically feasible single method can solve the problem, and 
therefore an integrated approach, in which biocontrol could  
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be a crucial component, appears to be the most promising 
strategy for reducing Striga infestations. 

 Mycoherbicides are particularly attractive, since they can 
be weed-specific, have low environmental impact and are of-
ten cost-effective [4]. Biological control of S. hermonthica by 
soil application of a mycoherbicide containing Fusarium ox-
ysporum Schlecht., has been reported to have several advan-
tages. It attacks the target weed before emergence [5-8], just 
before most of the damage to the host occurs. This reduces the 
Striga seed bank in the soil, prevents production of new seeds 
and increases the grain yield of the crop in the same cropping 
season. Additionally, it is assumed to be cost-effective, requir-
ing no changes in crop rotation and, if applied as a seed treat-
ment, no additional labour is needed [9]. Two fungal stains, 
Foxy 2 and PSM197 of F. oxysporum, isolated from diseased 
S. hermonthica plants from Ghana and Nigeria, respectively, 
are specific towards their hosts, highly aggressive against all 
developmental stages of S. hermonthica including seeds and 
can be mass-produced using agricultural by-products [7, 8, 10, 
11]. Thus, these fungal isolates are well suited to be developed 
into a specific mycoherbicide, to support and enhance the ex-
isting Striga control measures. Both isolates exhibited poten-
tial efficacy in controlling S. hermonthica and improving crop 
performance under controlled and field conditions of West 
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Africa when developed into Pesta granular formulations or 
delivered as seed treatment on crops [9, 12-14]. Further, both 
mycoherbicides maintained excellent viability on Pesta prod-
ucts and treated seeds after one year of storage, sufficient for 
their use under practical conditions of storage, handling and 
delivery [9, 15]. 

 The acceptance and implementation of inundate biologi-
cal control by regulatory authorities are based on safety is-
sues which include avoidance of any non-target adverse ef-
fects associated with the use of biological control agents 
whether the agent be indigenous or non-indigenous, naturally 
occurring or genetically modified. It is very important that 
host specificity testing and risk assessment methodologies 
should both lead to prevention of the release of any organism 
that is likely to have detrimental impacts on non-target plants 
or on environment. Several approaches have been used to 
provide the required information for proper risk assessment 
including: quantifying the relative susceptibility of the target 
and non-target plant species [16]; microscopic and histologi-
cal examination of infection events [17]; measuring relative 
plant damage [18]; morphological and molecular compari-
sons between foreign and indigenous organisms [19]; and 
epidemiology [20]. In two studies [10, 21] it was shown that 
the Striga pathogenic strains Foxy 2 and PSM197 are non-
pathogenic to all sorghum varieties tested and also to all 
other crops tested. Among these were 25 (for Foxy 2) and 17 
(for PSM197) non-target plant species including cereals, 
legumes, fruits, vegetables, oilseeds and fibrous crops. To 
further investigate the possibility that the two strains might 
be a new forma specialis, a molecular phylogenetic approach 
was used to characterize the two potential mycoherbicide 
strains. 

 Molecular markers have proven to be powerful tools for 
the characterization and identification of several plant patho-
genic fungi. With the advent of polymerase chain reaction 
(PCR), inexpensive DNA sequencing, and a relatively large 
databank of ribosomal DNA sequences, it is now possible to 
more objectively characterize and identify fungal species on 
the basis of sequence stretches commonly used for calculat-
ing molecular phylogenies or for identifying pathogens. 
Among these sequences are different regions of the nuclear 
ribosomal DNA (nrDNA) cistron, in particular the internal 
transcribed spacers [22], of which numerous sequences from 
F. oxysporum isolates are deposited in GenBank. The objec-
tive of this study was to characterize and sequence the poten-
tial Striga mycoherbicides Foxy 2 and PSM197 in order to 
test, if they can be clearly distinguished from other morpho-
logically similar pathogenic F. oxysporum strains. 

MATERIALS AND METHODS 

Origin of Fungal Isolates 

 The isolates Foxy 2 and PSM197 used for this study were 
obtained from severely diseased S. hermonthica collected in 
North Ghana [5] and in Samaru, Nigeria [8], respectively. 
Taxonomic identification of the isolates was confirmed by 
the Federal Biological Research Centre for Agriculture and 
Forestry, Berlin, Germany, for Foxy 2, where the isolate was 
deposited under accession number BBA-67547-Ghana, and 
the International Mycological Institute (IMI), Egham, UK, 
for PSM197 which is deposited at Medical Research Coun-
cil, Tygerberg, South Africa under accession number MRC 

8537. Since then the isolates were preserved on Special Nu-
trient poor Agar (SNA) medium [23] with 5% (v/v) glycerol 
at -40

o
C in the Institute of Plant Production and Agroecology 

in the Tropics and Subtropics, University of Hohenheim, 
Stuttgart, Germany. All investigations were performed with 
a single-spore isolate of either Foxy 2 or PSM197. 

Fungal Cultures 

 Mycelial and conidial cultures of Foxy 2 and PSM197 
were prepared on Potato Dextrose Agar (PDA) medium. 
Four PDA Petri-dishes (i.e. 4 replicates) were aseptically 
inoculated each with one agar disc (Ø 0.6 cm) of active 
growing fungal colony of Foxy 2 or PSM197. Additionally, 
four Petri-dishes (i.e. 4 replicates) were aseptically inocu-
lated each with one sorghum seed coated with dried chlamy-
dospores of Foxy 2 or PSM197 using Arabic Gum (40%) as 
an adhesive [9] and placed in the centre of the Petri-dish. 
Thereafter, the inoculated Petri dishes were incubated in the 
dark at 25 ºC for 7 days. 

DNA-Extraction and PCR 

 For DNA extraction, 5 mg of hyphae of each of the sam-
ples were disrupted in a mixer mill (Reetsch, Germany) us-
ing two magnetic balls of 3 mm in diameter. DNA-extraction 
was done using the QIAquick Plant DNA extraction kit 
(Qiagen, Germany), according to the manufacturer’s instruc-
tions. PCR was done on an Eppendorf Mastercycler (Eppen-
dorf, Germany) using the universal primers ITS1 and ITS4 
[24], with the conditions described there. The amplicons 
obtained were separated on 1 % agarose gels, stained with 
ethidium bromide and cut from the gel using sterile scalpels. 
The PCR products were cleaned using the QIAquick Gel-
Extraction Kit (Qiagen, Germany) according to the manufac-
turer’s instructions. Sequencing was done by a commercial 
sequencing company (GATC, Germany) with the primers 
used for PCR amplification. 

Data Analysis 

 Because a high sequence similarity was observed, align-
ments were done with clustalX, version 1.8 using the factory 
settings. From the alignment obtained, all gaps present in 
more than half the samples were removed. For molecular 
phylogenetic reconstruction, Mega 3.1 [25] was used. Gaps 
were treated as pairwise deletion. Minimum Evolution 
analysis was performed using the Tamura-Nei substitution 
model [26] and a starting tree obtained by Neighbor-joining 
[27], keeping only one of the best trees obtained. Maximum 
Parsimony analysis was done using the applicable parame-
ters mentioned above. In both cases, all parameters not men-
tioned equalled the factory settings of the program. In both 
cases, 1000 bootstrap replicates [28] were conducted. 

RESULTS 

PCR and Sequencing 

 PCR resulted in bright, single fragments of about 680 bp 
in length. Partial ITS sequence obtained from these frag-
ments was 596 bp. The ITS sequences obtained were depos-
ited in GenBank under accession numbers EU264073 and 
EU264074, for Foxy 2 and PSM197, respectively. A blast 
search [29] revealed a unique ITS-sequence of the two iso-
lates compared to any other F. oxysporum sequence of com-
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parable length. Sequence similarity among F. oxysporum 
isolates was generally high (above 99 %). 

Molecular Phylogenetic Reconstructions 

 The single best tree obtained by Minimum Evolution 
(ME) analysis is presented in Fig. (1). The topology of the 
consensus tree of the 435 most parsimonious trees with a tree 
length of 40 is in concordance with the major groups shown 
in the ME tree. The first and the second number above the 
branches indicate bootstrap support in Maximum Parsimony 
(MP) and ME analysis, respectively. Bootstrap values below 
33 are not shown. 

 Sister-group relationship of F. oxysporum and F. subglu-
tinans is well supported in both analyses performed. Within 
the Fusarium oxysporum, resolution was generally low and 
the support for the different lineages weak. However, the 
clade containing the new forma specialis and F. oxysporum 
f. sp. cubense as well as f. sp. radicis-lycopersici was found 
in 89 % of the most parsimonious trees and was supported 
by a support value of 74 in interior branch tests for ME (data 
not shown). The other clades present in the majority consen-
sus tree of the MP analysis were also present in the ME tree, 
although with lower frequency. Only the partition that re-
ceived a bootstrap support of 53 in the ME analysis was not 
resolved in the MP consensus tree. 

DISCUSSION 

 The mycoherbicides F. oxysporum Foxy 2 and PSM197 
are highly pathogenic and host specific to S. hermonthica 
and non-pathogenic to a wide range of crops tested [10, 21]. 
In addition, these strains do not produce any toxic com-
pounds that present health risks [30]. Hence, these isolates 
are of great interest as promising potential mycoherbicide 
candidates for the control of Striga species. However, the 
safety of non-target cultivated and wild plants must be en-
sured prior to release of the agents in the field, irrespective 
of potential benefits of the biological control agents. Host 
specificity is an important part of risk assessments for plant 
pathogens in weed biocontrol, since its assessment is the best 
way of predicting both direct and indirect effects on non-
targets [31]. Our recent results showed that the host range of 
Foxy 2 and PSM197 is restricted to the genus Striga, and 
none of the tested non-target plant species showed any 
symptoms of infection [10, 21]. The tested species com-
prised some selected poaceous crops related to sorghum, 
crop species reported to be highly susceptible to Fusarium 
diseases in tropical and subtropical regions, as well as other 
economically important crops cultivated in the regions of 
Striga infestation. The category of the highly susceptible 
species to F. oxysporum diseases tested included: banana 
(Musa textilis Née), chickpea (Cicer arietinum L.), cotton 
(Gossypium barbadense Mill.), cucumber (Cucumis sativus 
L.), egg plant (Solanum melongena L.), faba bean (Vicia 
faba L.), okra (Abelmoschus esculentus (L.) Moench), pea 
(Pisum sativum L.), soybean (Glycine max (L.) Merr.), rosel-
le (Hibiscus sabdariffa L.) and tomato (Lycopersicon lyco-
persicum (L.) Karsten ex Farw.). In other host-range studies, 
the indigenous F. oxysporum isolates from Burkina Faso, 
Mali and Nigeria were also found to infect only Striga spp. 
and none of the crops and vegetables tested [6, 32]. Those 

results confirm the restriction of pathogenicity of F. ox-
ysporum isolated from Striga spp. to the target species. 

 The use of nrDNA sequences often allows unequivocal 
determination of fungal species [33]. In this study it was 
shown that it was possible to distinguish Foxy 2 and 
PSM197 from other morphologically similar, pathogenic F. 
oxysporum strains by ITS-sequencing, which is applicable 
for their routine identification. The ITS-sequence obtained 
from the two strains was not identical to any ITS-sequence 
deposited in GenBank, a fact that, in combination with their 
host specificity (so far infectiveness could only be demon-
strated to species of Striga), clearly indicates that the two 
strains belong to a new forma specialis. The high similarity 
between the two isolates can be linked to their high specific-
ity towards Striga and maybe their geographic origin [34]. 

 Although the resolution of the phylogenetic reconstruc-
tion within F. oxysporum was generally low, it should be 
noted that the clade consisting of the two strains pathogenic 
to Striga and F. oxysporum f. sp. radicis-lycopersici as well 
as F. oxysporum f. sp. cubense was the only clade consis-
tently supported, although with weak support, in both Mini-
mum Evolution and Maximum Parsimony analyses. It is 
noteworthy that the highly susceptible target hosts of the 
most closely related formae specialis, F. oxysporum f. sp. 
radicis-lycopersici Jarvis & Shoemaker (tomato) and F. ox-
ysporum f. sp. cubense (E. F. Sm.) W. C. Snyder & H. N. 
Hansen (banana) showed no symptoms after inoculation with 
Foxy 2 and PSM197, even at high levels of pathogen pres-
sure [10, 21]. Both hosts showed immunity to the new forma 
specialis and none developed any symptoms of disease infes-
tation (e.g. wilting, dieback, necrosis and chlorosis normally 
caused by F. oxysporum). In addition, no direct or indirect 
negative effects on their vegetative growth parameters, in-
cluding number of leaves, plant height, photosynthetic rate, 
and root and shoot biomass, were recorded after inoculation 
with Foxy 2 and PSM197. On the contrary, some positive 
effects on vegetative growth of tomato as a result of inocula-
tion were observed. This demonstrated convincingly that 
tomato and banana are not hosts of the new forma specialis 
of F. oxysporum [10, 21]. 

 Gerlach and Nirenberg [35] have reported that Fusarium 
spp. are mostly specific at the host family or genus level, and 
such pathogens are taxonomically classified as formae spe-
ciales. Thus, the high specificity of the two isolates Foxy 2 
and PSM197 to the genus Striga and their unique ITS-
sequence, which allows their molecular characterization, 
provides convincing evidence to propose these pathogens of 
Striga as a new forma specialis. This new forma specialis is 
named Fusarium oxysporum f. sp. strigae Elzein et Thines, 
f. sp. nova. The strain of Foxy 2, deposited at the Federal 
Biological Research Centre for Agriculture and Forestry, 
Berlin, Germany, under accession number BBA-67547-
Ghana, is designated here as the type culture of Fusarium 
oxysporum f. sp. strigae. 

 The possibility to characterize F. oxysporum f. sp. strigae 
by its host range and, perhaps even more important, by its 
unique ITS-sequence, will greatly improve the acceptance of 
its use as a mycoherbicide by farmers and officials, because 
it allows its unequivocal identification and differentiation 
compared with other F. oxysporum isolates so far sequenced. 
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Fig. (1). Single best tree obtained by Minimum Evolution (ME) analyses of the nrITS of several Fusarium oxysporum isolates. The first and 

the second number above the branches indicate bootstrap support in Maximum Parsimony and ME analysis, respectively. Bootstrap values 

below 33 not shown. 
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