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Abstract: Biofilm formation is often considered to be the underlying reason why treatment with an antimicrobial agent 
fails and as an estimated 65-80% of all infections is thought to be biofilm-related, this presents a serious challenge. 
Considerable attention has been devoted to the development of modified materials that prevent (or at least drastically reduce) 
microbial biofilm formation. In this review we present an overview of the approaches that have been used to prevent biofilm 
formation by the fungal pathogen Candida albicans.  

Keywords: Candida albicans, biofilm, prevention, treatment, impregnation, functionalisation. 

MICROBIAL BIOFILMS 

 Biofilms are highly structured, hydrated microbial com-
munities containing sessile cells embedded in a self-pro-
duced extracelllular polymeric matrix (containing poly-
saccharides, DNA and other components) [1,2]. In compa-
rison to their planktonic counterparts (i.e. free floating cells 
in suspension), sessile cells are often much more resistant to 
antimicrobial agents and this increased resistance has a 
considerable impact on the treatment of biofilm-related 
infections [2-5]. Several mechanisms are thought to be 
involved in biofilm antimicrobial resistance including (i) 
slow penetration of the antimicrobial agent into the biofilm, 
(ii) changes in the chemical microenvironment within the 
biofilm, leading to zones of slow or no growth, (iii) adaptive 
stress responses, and (iv) presence of a small population of 
extremely resistant “persister” cells [2,4,5]. The development 
of a biofilm occurs in several distinct phases [1,2,6]. 
Adhesion between cell-surface components and another 
surface is mediated by reversible hydrophobic and 
electrostatic forces and microbial attachment is the result of a 
balance between attraction and repulsion. Adhesion to 
abiotic surfaces is primarily mediated by hydrophobic 
interactions, whereas microbial adherence to biological 
surfaces is controlled by adhesins, e.g. lectins. Adherence is 
not limited to one single species as most biofilms in nature 
are polymicrobial [7]. For more information on the 
pathogenesis of polymicrobial biofilms, the readers are 
directed to the review of Jabra-Rizk in this special issue. 
Shortly after colonization, the adhered cells already show an 
altered phenotype (e.g. reduced motility, increased 
resistance). Secondly, the cells start to multiply and 
aggregate into communities. Microcolonies are formed on 
the surface and these will further develop and form complex, 
three-dimensional structures. This premature biofilm is 
anchored to the surface by more irreversible forces such as 
Van der Waals forces. The subsequent phase is characterized 
by the production and secretion of polymers, which form the 
extracellular polymeric substance (EPS). In later stages,  
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micro-organisms can detach from the surface (either as 
single cells or in aggregates), become planktonic and 
colonize new surfaces (dispersal of the biofilm). The mature 
biofilm provides a three-dimensional network of cells 
entrapped in a polymer matrix on a colonized surface. The 
organization and structure of a biofilm highly depend on the 
species involved and the surface on which the biofilm is 
formed. Several factors affect the formation of a biofilm and 
its final architecture, including the substrate, the micro-
organism, oxygen supply, availability of nutrients, the 
presence of saliva or a conditioning film and the EPS [6,8,9].  

RESISTANCE OF BIOFILM CELLS 

 Life in a microbial biofilm offers considerable advant-
ages over the planktonic mode of growth. Biofilm cells are 
significantly more tolerant to antibiotics and biocides. The 
biofilm provides protection for embedded cells against 
external stress such as antibacterial and/or antifungal agents 
and to human defense mechanisms in cases of biofilms 
formed in the human body. Considerable differences in 
susceptibility to antimicrobial agents between planktonic and 
biofilm cells have been reported and various underlying 
mechanisms for the increased resistance of biofilm cells have 
been described/proposed. First, environmental gradients 
within the biofilm structure may result in different antibiotic 
concentrations reaching the individual cells. Moreover, 
chemical and pH gradients may affect the antimicrobial 
activity [5,10]. The increased resistance of biofilm cells has 
been explained by a delayed penetration of the antimicrobial 
agent through the biofilm matrix. Antimicrobial agents have 
to diffuse through the extracellular matrix via water channels 
in order to reach the cells. The matrix may acts as a barrier to 
antimicrobial compounds as the target cells are located in the 
biofilm biomass [11]. In addition, matrix components may 
also bind antimicrobial agents directly [12-14]. Another 
hypothesis is that metabolically quiescent sessile cells grow 
more slowly than their planktonic counterparts, making them 
refractory to antimicrobial treatment. Furthermore, nutrient 
limitation and the production of toxic metabolites are 
thought to favor the formation of a biofilm [15]. Finally, the 
presence of persisters may underlie the resistance of biofilms 
to antimicrobials. Persister cells are phenotypic variants of 
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wild-type strains and can survive concentrations of 
antibiotics or antifungal agents far above the MIC [16]. They 
occur in both planktonic cultures and bacterial biofilms 
produced by Pseudomonas aeruginosa, Escherichia coli and 
Staphylococcus aureus [17] and may account for more than 
1% of the population [18,19]. Highly antifungal tolerant cells 
have been identified in Candida albicans biofilms but not in 
planktonic cell suspensions [20]. 

BIOFILM FORMATION BY CANDIDA ALBICANS 

 Candida spp. occur as asporogenous yeast cells but can 
also form hyphae or pseudohyphae under certain conditions 
[21]. In the human body, Candida species occur as 
commensals on the skin as well as in the oral cavity, the 
gastrointestinal tract, the urogenital tract and the vagina [21]. 
Under certain circumstances these micro-organisms become 
pathogens and cause infections ranging from superficial 
mucous membrane infection (candidiasis) to life-threatening 
systemic diseases [22], particularly in immunocompromised 
patients with AIDS, cancer and diabetes mellitus [6,23]. 
Virulence factors of C. albicans include proteases, adhesins 
and the morphological conversion from a budding yeast to a 
filamentous form. The increasing use of indwelling medical 
devices in conjunction with an ageing/increasingly immuno-
compromised population has resulted in a surge of hospital 
acquired Candida spp. infections, C. albicans ranking high 
among nosocomial pathogens. Candida infections are 
frequently associated with the formation of biofilms on 
implantable medical devices [15]. These devices readily 
support biofilm formation and are responsible for a 
considerable percentage of clinical candidiasis cases. Several 
experimental parameters such as the nature of the surface 
material [24,25], the growth medium [26,27] and conditions 
of incubation [28,29] influence C. albicans biofilm 
formation and structure [15]. Chandra et al. studied C. 
albicans biofilm formation on PDMS and polymethyl-
methacrylate (PMMA) and found that for both polymers 
biofilm formation typically occurs in three distinct phases, 
i.e. an early (0 to 11 h), intermediate (12 to 30 h) and late (12 

to 30 h) phase [30]. The development of a biofilm starts with 
the adhesion of primarily blastospores (yeast cells) to a 
surface. This adherence is mediated by non-specific hydro-
phobic and electrostatic interactions and specific adhesins on 
the fungal cell surface, e.g. glycoproteins belonging to the 
agglutinin-like sequence family (ALS family) [31-34]. The 
blastospore layer is in close contact with the surface and will 
anchor the final three-dimensional structure to the colonized 
substrate. The initial adherence is followed after appr. 3 to 4 
h by the formation of microcolonies on the colonized 
surface. After 11 h, a thick fungal C. albicans growth can be 
observed. The intermediate phase (12-24 h) is mainly 
characterized by the synthesis of the extracellular matrix, 
covering the C. albicans cells of the premature biofilm and 
increasing with longer incubation times [30]. After 24 to 48 
h of incubation, a complex network of yeast cells, pseudo-
hyphae and true hyphae is established, with the upper layers 
of the biofilm mainly consisting of hyphae. Mature Candida 
biofilms show an extensive spatial heterogeneity, with a 
typical microcolony/water channel architecture and cells 
embedded in an extracellular polymer matrix. The 
heterogeneous build-up of mature biofilms allows an influx 
of water and nutrients and efflux of metabolites/waste 
products [35,36]. Based on non-destructive inspection of the 
biofilm structure using CLSM, the thickness of mature 
biofilms has been estimated to range from 25 up to more 
than 250 µm [30,35]. 

IN VITRO BIOFILM MODEL SYSTEMS  

 Several model systems have been described in the 
literature to grow biofilms in vitro on a variety of surfaces. 
Basically, these systems can be divided into so-called static 
(e.g. microtiter plate [MTP]) and dynamic (e.g. Modified 
Robbins Device [MRD] and Centers for Disease Control 
[CDC] bioreactor) systems.  

Microtiterplate (MTP) 

 In these systems, biofilms are either grown on the bottom 
and the walls of the microtiter plate (most commonly a 96-

 
Fig. (1). Close-up of the Modified Robbins Device (MRD) loaded with PMMA disks. 
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well plate) or they are grown on the surface of a coupon 
placed in the wells of the microtiter plate (most commonly a 
6, 12 or 24-well plate) [see for example references 37-40]. 
Microbial cell suspensions are added to the wells and the 
plate is incubated to allow adherence of the cells. After the 
adhesion phase, the cell suspensions are removed and the 
wells are rinsed to remove non-adherent cells. Finally, 
growth medium is added and biofilms are allowed to develop 
[38]. In this high throughput system, biofilms are formed 
with increasing incubation times but during their formation 
the growth medium is typically not replaced.  

Modified Robbins Device (MRD) 

 Unlike static systems, colonized surfaces in a dynamic 
model system are exposed to a flow of a liquid medium, 
continuously removed by means of a peristaltic pump. The 
MRD (Fig. 1) and CDC bioreactor (Fig. 2), are two 
examples of dynamic biofilm model systems. 
 The set-up used in our research group consists of six 
homemade, separate stainless steel devices [41] to study the 
biofilm formation on disks. Prior to use, the disks are 
decontaminated (with ethanol) or sterilized (by autoclaving). 
One MRD contains six individual ports in a linear array 
along a channel of rectangular cross-section. Each port 
accepts a press-fit plug holding a disk. The six MRDs, 
containing the disks (36 in total) are placed in an aluminium 
heating block. Feedback from a Pt electrode placed in the 
heating block ensures a constant temperature in the MRDs. 
The tubing, valves and MRDs are washed, assembled and 
autoclaved prior to each run. Assembly is done in a Laminar 
Air Flow cabinet to prevent contamination and the tubing is 
connected to a peristaltic pump. Bottles either with growth 
media or inocula are connected to the MRDs and the setup 
includes a bypass to allow rinsing of the tubing at the inlet 
side of the devices and the removal of air bubbles. At the 
outlet side, a clamp placed on the tubing prevents the 

drainage of the liquid when the pump is switched off (e.g. 
during adhesion). After introduction of the inoculated 
solutions into the MRDs, the latter are flipped over to 
improve the adhesion of the planktonic cells to the disks. 
Once the devices are filled with the suspensions, the tubing 
at the inlet and outlet side is clamped off and the remaining 
cell suspension in the tubing at the inlet side is flushed out 
through the bypass. After the adhesion, the devices are 
flipped back, the clamps are loosened and the pump is 
started to allow a continuous flow of the growth medium and 
biofilm development on the disks. The set-up of the MRD 
allows a comparison of biofilms simultaneously grown under 
various conditions or on different surfaces. Antibiofilm 
strategies, e.g. strategies to prevent Pseudomonas 
aeruginosa biofilm formation have been studied in MRDs 
[42,43]. The potential of antibiotic lock therapy to remove 
biofilms from colonized surfaces has been evaluated in the 
MRD [44-46]. In the MRD, surfaces releasing active 
compounds can be tested in parallel without affecting 
biofilm development on control (unmodified) surfaces. To 
create a closed circuit, MRDs can be connected to glass 
vessels, such as a chemostat, in which the micro-organisms 
are grown continuously before they are introduced in the 
device [47-51].  

Centers for Disease Control (CDC) Biofilm Reactor 

 The CDC biofilm reactor (Fig. 2) consists of a glass 
vessel, in which three coupons (or polymer surfaces 
containing the developing biofilms) are held by each of eight 
rods. Each polypropylene rod is adjusted in such a way that 
the coupon is perpendicular to the rotating baffle [52]. In this 
reactor, the magnetic stirrer in the center of the vessel 
provides a continuous flow of nutrients (introduced in the 
reactor by means of a peristaltic pump) over the colonized 
surfaces [53]. As all surfaces are exposed to the same growth 
medium in one and the same bioreactor, this model system 

 
Fig. (2). Set-up of the CDC reactor. 



12     The Open Mycology Journal, 2011, Volume 5 Coenye et al. 

lends itself very well to monitor biofilm formation as a 
function of time [54-56].  

Calgary Biofilm Device (CBD) 

 The Calgary Biofilm device (CBD) is an in vitro biofilm 
model system which has been extensively used to test the 
susceptibility of biofilm cells to antibiotics. The CBD has 
been described by Ceri et al. (2001) and is a 96-well plate 
based two-part reaction vessel : the top component consists 
of a lid with 96 pegs, while the bottom part of the vessel 
serves to channel the flow of growth medium, hence creating 
a consistent shear force at each biofilm-developing peg site. 
After biofilm formation, the biofilms on the pegs can be 
removed by sonication for cell counting or the lid with the 
biofilm-containing pegs can be introduced in a standard 96-
well MTP for susceptibility testing. This in vitro biofilm 
model system has been widely used for studying biofilm 
formation by one [57] or multiple bacterial species [58], and 
by Candida spp. [59], as well as for the efficacy testing of 
disinfectants [60], antibiotics [61] and antimicrobial peptides 
[62]. The CBD is commercially available as the MBEC 
assay system to be used for testing the susceptibility of 
biofilm cells to antibiotics and biocides [63]. 

IN VIVO BIOFILM MODEL SYSTEMS  

 Although in vitro systems are frequently used, they also 
have their limitations, the major one being that they do not 
include the interaction between biofilms and the host 
immune system. In addition, the milieu surrounding the 
implanted medical device is extremely complex, which 
makes it difficult to mimic in vivo conditions using in vitro 
models. Therefore, animal model systems are necessary to 
study the pathogenesis of C. albicans biofilm-related 
diseases. Several animal models have been developed so far, 
utilizing rabbits [64], rats [65,66] or mice [67]. The model 
systems developed to mimick central venous catheter (CVC) 
infections [64,65,67] involve the placement of a CVC, 
followed by direct inoculation of C. albicans into the lumen 
of the catheter. In the subcutaneous rat (SCR) model, 
catheter segments are incubated with C. albicans prior to 
implantation [66]. Nett et al. recently described an in vivo C. 
albicans biofilm denture model in rats [68].  
 In vivo grown biofilms are structurally similar to biofilms 
described in vitro, except for the possible presence of host 
cells in the biofilm. In the CVC rat model it was shown that 
biofilm formation results in seeding of the kidneys with C. 
albicans, demonstrating that biofilms provide a niche for 
disseminated disease [65]. Despite the strengths of in vivo 
model systems, they are expensive, labour intensive and not 
easy to implement in the laboratory. 

SUBSTRATES PRONE TO BIOFILM FORMATION 

 Several medical devices have been introduced in the 
human body. They include indwelling vascular catheters, 
cardiac pacemakers, artificial heart valves, peritoneal dia-
lysis catheters, prosthetic hips, joints and tracheo-oeso-
phageal voice prostheses (VPs). However, their increased 
use in healthcare settings has been accompanied by the 
formation of microbial biofilms at their surface, ultimately 

resulting in device-related infections. In medical settings, 
biofilms readily form on polymer substrates such as 
polydimethylsiloxane (PDMS) (also called “silicone”). 
PDMS is frequently used in the production of tracheo-oeso-
phageal VPs [69]. Other polymers used in medical devices 
and susceptible to biofilm development are polyurethane 
(central venous catheters), natural rubber used for the 
production of urinary catheters [70] and polymethyl-
methacrylate (PMMA) in denture acrylics [71]. In addition, 
bacteria can easily form biofilms on stainless steel surfaces 
used in the food industry [72]. Infections associated with the 
use of medical devices can be localized at the site of 
insertion or be disseminated to the blood (septicaemia) and 
the organs (e.g. endocarditis). Both diagnosis and treatment 
of biofilm-associated infections are difficult. Moreover, 
antimicrobial therapy is usually ineffective [73]. 

C. ALBICANS BIOFILMS AND DEVICE-RELATED 
INFECTIONS 

Introduction 

 With an ageing population, the demand for medical 
devices such as catheters and prostheses has increased 
considerably over the last years. Commonly used medical 
devices prone to C. albicans colonization and biofilm 
formation include central venous catheters, joint prostheses, 
dialysis materials, prosthetic heart valves, pacemakers, cen-
tral nervous system shunts, urinary catheters, intra-uterine 
devices, tracheo-oesophageal VPs and dental prostheses 
(dentures) [15,36,74-76]. Half of all nosocomial infections 
are associated with the use of medial devices, i.e. the 
insertion of foreign, indwelling devices into the human body. 
Medical device related infections are extremely difficult to 
treat as microbial cells are protected from external influences 
inside the biofilm structure. Consequently, these infections 
are often life threatening and can also lead to failure of the 
device. Often, once a Candida biofilm has been formed in 
vivo, removal of the device is almost always required to fully 
eliminate the infection [36]. 
 In Table 1 an overview of the relative infection risk 
associated with implantable devices in or on which Candida 
spp. biofilms develop frequently is shown [36]. C. albicans 
and C. parapsilosis are the most common cause of fungal 
biofilms on medical devices. 

Tracheo-oesophageal voice prosthesis 

 Laryngopharyngectomy or total laryngectomy is the 
common treatment of laryngeal or hypolaryngeal carcinoma 
[77]. Malignant tumors of the vocal cords in humans are 
mostly removed by a total laryngectomy. Voice restoration 
can be achieved in alaryngeal speakers with oesophageal 
speech, the use of an electrolarynx and tracheo-oesophageal 
speech, using an artificial device. In the past few decades, 
the latter has been the preferred method for voice rehabili-
tation [78]. In order to restore speech of laryngectomized 
patients, Blom and Singer have created a tracheo-oeso-
phageal puncture between the posterior wall of the 
tracheostome and the upper oesophagus, for placement of a 
VP [79]. This tracheo-oesophageal puncture is also called 
shunt or fistula. Tracheo-oesophageal speech is produced 
during expiration, i.e. air from the trachea is shunted into the 
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pharynx through the VP containing a one-way silicone valve. 
Vibration of the oesophageal wall and articulation of the 
produced sound using the tongue, teeth and lips create 
artificial tracheo-oesophageal speech. The first VPs were 
designed as non-indwelling devices, so that they could be 
removed by the patient for cleaning. The second generation 
involves the indwelling VPs, including Blom-Singer, Panje, 
Staffieri, Groningen buttons, Bordeaux and Provox 1 and 2 
VPs. They are surgically inserted between the trachea and 
the oesophagus by an otolaryngologist, under local anaes-
thesia [78,80]. Nowadays Provox VPs are widely used in 
laryngectomees. Provox 1 VPs are placed in a retrograde 
manner, which is generally uncomfortable for the patient and 
which can be complicated in case of stenosis of the pha-
ryngo-oesophageal segment. A Provox 2 VP is inserted in an 
anterograde manner. Blom-Singer VPs are similarly inserted 
in the tracheo-oesophageal puncture using a dissolvable gel 
cap. The Blom-Singer VP has been described in 1979 by 
Blom and Singer and the Provox VP by Hilgers and 
Schouwenburg in 1990 [81]. The Provox VP is commonly 
used in Europe, while the Blom-Singer device is more 
popular in the US [81]. Leakage around indwelling VPs is 
found in 13% up to 27% of all replacements. Custom fit 
Blom-Singer VPs with enlarged flanges have been designed 
to prevent periprosthetic leakage after tracheo-oesophageal 
voice rehabilitation [82]. In addition, fluid leakage through 
the valve is one of the most common problems related to the 
maintenance of the tracheo-oesophageal puncture and the 
functioning of the VP. Deformities on the VP surface and/or  
 

a negative pressure in the oesophagus (due to swallowing) 
may open the one way valve, so that liquid enters the 
respiratory tract. All VPs are highly susceptible to coloniza-
tion by microorganisms, particularly by Candida spp., 
growing in biofilms on the surface [83,84]. Microbial exa-
mination of early explanted devices showed a predominance 
of C. albicans, as opposed to C. tropicalis isolates for late 
explanted VPs [85]. These biofilms cause malfunctioning of 
the valve, an increase in air flow resistance and possibly 
fluid leakage [86,87]. Consequently, frequent replacement of 
the VP is necessary [88]. The life span of VPs is different for 
each patient but generally not more than 3 months.  

Dentures 

 Candida spp. including C. glabrata, C. tropicalis and 
particularly C. albicans are frequently recovered from the 
oral cavity. C. albicans easily colonizes inserted surfaces 
such as acrylic dentures. There is strong evidence that 
stomatitis, an infection of the oral mucosa, is associated with 
the use of dentures in the presence of Candida spp. in the 
mouth (Candida-associated denture stomatitis) [89]. A pro-
per maintenance of the device and a correct hygiene are 
prerequisites for the prevention of stomatitis. Mouth rinses 
containing topical antifungal agents (nystatin or ampho-
tericin B) to treat oral candidosis have limited efficacy. 
Moreover, they can lead to side effects and recurrent 
stomatitis if antifungal therapy is discontinued [90-92]. 

Table 1. Implantable Devices Prone to Formation of Candida spp. Biofilms (Taken from Reference [36]) 
 

Device Usage per year in the US Infection risk (%) Species involved 

Central and peripheral venous catheters 5 million 3-8 
C. albicans 
C. glabrata 

C. parapsilosis 

Hemodialysis and peritoneal dialysis catheters 240,000 1-20 
C. albicans 

C. parapsilosis 

Urinary catheters Tens of millions 10-30 
C. albicans 
C. glabrata 

Endotracheal tubes Millions 10-25 C. albicans 

Intracardiac prosthetic devices 400,000 1-3 

C. albicans 
C. glabrata 

C. parapsilosis 
C. tropicalis 

Prosthetic joints 600,000 1-3 
C. albicans 
C. glabrata 

C. parapsilosis 

Neurosurgical shunts 40,000 6-15 C. albicans 

Voice prostheses thousands 50-100 
C. albicans 
C. tropicalis 

Dentures > 1 million 5-10 
C. albicans 
C. glabrata 
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PREVENTION OF MICROBIAL BIOFILM BUILD-UP 
ON POLYMERIC SURFACES 

 The resistance of biofilm cells to conventional antibiotics 
or antifungals has prompted researchers to focus on the 
nature of the medical device rather than on attempts to 
remove or kill the micro-organisms. These approaches aim at 
altering the polymer surface using passive or active 
strategies for the prevention of biofilm formation. 

Passive Antifouling Coatings to Inhibit Surface-
Associated Microbial Life 

 An early step in the development of a biofilm is the 
adhesion of bacteria and/or fungi to surfaces, initiated by the 
interaction between compounds in the cell wall and the 
surface. Coatings have been developed to alter the physico-
chemical properties of the surface so that micro-organism/ 
substrate interactions are reduced or even prevented and that 
subsequent biofilm development is inhibited [93]. Various 
polymers have been coated by applying a passive coating, 
e.g. alkanethiols on gold [94] and fish protein coatings on 
glass or vinyl plastic coverslips [95]. These coatings are 
"passive" because their effect is not due to antimicrobially 
active functional groups [96]. Polymers have also been 
modified using passive coatings of other polymers, e.g. 
polyethylene glycol, polyethylene oxide brushes and 
hydrophilic polyurethanes. However, the efficacy of these 
approaches is limited because the coatings are rapidly 
masked by adsorbed conditioning films [96]. 

Prevention of Biofilm Development by Antimicrobial 
Compounds Released from Modified Surfaces 

 Various antimicrobial compounds have been incor-
porated in polymers. They include antibiotics [97-101], 
antifungals [37,102], polyethyleneimines, quaternary ammo-
nium compounds, silver ions or silver nanoparticles [103-
105], antibodies [106-108] and nitric oxide [96,109-112]. In 
several studies the in vivo effect of catheters impregnated 
with antibiotics (often rifampicin) was evaluated (for an 
extensive review see reference 113). Negatively charged 
antibiotics can be electrostatically bound to a surface con-
taining an adsorbed cationic surfactant, e.g. tridodecyl-
methylammonium chloride. The latter is immobilized by 
hydrophobic interaction between the long alkyl chain of the 
surfactant and alkyl groups on the surface. In a second 
procedure for preparing drug impregnated catheters, the 
antimicrobial compound is incorporated in the polymer by 
adding it prior to injection molding or extrusion (admixture) 
[37,114-116]. Finally, polymers can be soaked or dipped in 
solutions to load the antimicrobial in the polymer network 
(impregnation). Modified material should release high 
concentrations of the antimicrobial in early phases, to 
combat early colonization and preferably sustain this release 
over a sufficiently long period of time. 
 The effect of this approach on the ability of C. albicans 
to form biofilms on silicone was investigated by De Prijck et 
al. [37]. Biofilm formation on unmodified silicone was 
compared to biofilm formation on silicone loaded with 
nystatin (prepared both by admixture and impregnation) and 
silicone impregnated with miconazole, tea tree oil and zinc 
pyrithione. Nystatin-medicated silicone disks exhibited a 

concentration-dependent inhibitory effect on biofilm forma-
tion in a MTP but not in a MRD, indicating that a small 
fraction of free nystatin was released, which killed C. 
albicans cells in the limited volume of a MTP well. In 
contrast, biofilm inhibition amounted to more than 90% in 
the MRD on disks impregnated with miconazole, tea tree oil, 
and zinc pyrithione. In another study, polyethylene (PE) and 
polypropylene (PP) were functionalized at their surfaces 
with cyclodextrins (CDs) [102]. Functionalization with CDs 
provided PE and PP with the capability to incorporate the 
anti-fungal drug miconazole leading to reduced C. albicans 
biofilm formation in a MRD (up to 97% reduction). 

Quaternary Ammonium Compound Coatings 

 Quaternary ammonium compound (QAC) coatings have 
been immobilized onto titanium surfaces by immersing the 
substrates in QAC containing solutions. Results showed an 
overall reduction of 98.8% of adhered cells for 4 C. albicans 
and 2 Streptococcus mutans isolates. Moreover, the results 
suggested that QAC-titanium exhibited its antimicrobial 
action through at least two mechanisms. The octadecyl chain 
inhibited initial adherence and the quaternary ammonium 
salt resulted in the killing of the cells that did manage to 
adhere, resulting in delayed or reduced microbial growth 
[117]. 

Silver Coatings 

 The antimicrobial properties of silver are well document-
ted and its mechanism of action has been explained in 
multiple ways. Nucleophilic sulfhydryl, hydroxyl and amino 
groups present in proteins, enzymes and membranes easily 
form coordination bonds with silver cations (Ag+). This 
results in the disruption of cell membranes and the loss of 
essential protein and enzyme functions, finally leading to 
cell death. Furthermore, silver cations are able to displace 
other positively charged ions, e.g. zinc (Zn2+) and calcium 
(Ca2+) cations, which are crucial for regulating cellular 
functions. The broad antibacterial spectrum of silver and the 
rare development of resistance together with its nontoxic 
effect on mammalian tissues, make it useful for 
antimicrobial coating of medical devices. Silver has found 
application in urinary catheters and in the management of 
wounds and burn wounds (dressings) [118]. Silver 
sulfadiazine is currently the most widely used topical 
antimicrobial agent for treatment of burn wounds [119]. 
Central venous catheters and orthopaedic fixation pins have 
also been coated with silver and have been shown to reduce 
adhesion of bacteria in vitro, but not in vivo. These coatings 
are probably unable to release the oxidized form of silver, 
which is believed to be responsible for the antibacterial 
effect. Surfaces coated with metallic silver do not release 
Ag+. Silver loaded polymers, designed to act as a reservoir of 
Ag+, are able to release this cation for extended periods of 
more than three months. Silver ions have been incorporated 
into polyamide via a melt-mix process [104] and medical 
grade PDMS has been loaded with organic silver complexes 
(nanoparticles) [120]. Silver has also been immobilized in 
various polymers using carriers such as zeolite [121,122] or 
zirconium phosphate [123]. Zirconium phosphate carrying 
multivalent silver, having the molecular formula 
AgNaZr6(PO4)9.H2O (with a +2 valence for silver) showed 
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both in vitro (susceptibility testing) and in vivo (in a rat burn 
wound model) a higher antimicrobial effect against various 
bacteria (S. aureus, P. aeruginosa and E. coli) than silver 
sulfadiazine [124]. Roe et al. [120] have modified the 
surface of central venous catheters with a combination of 
silver nitrate, a surfactant and tetramethylethylenediamine. 
These silver nanoparticle coated catheters released silver 
ions over a period of more than 10 days and prevented 
biofilm formation by both Gram-positive and Gram-negative 
bacteria as well as yeasts, including coagulase-negative 
staphylococci, Enterococcus spp., E. coli, P. aeruginosa, S. 
aureus and C. albicans [120]. Statically grown 72 h old 
biofilms were inhibited for 95% (E. coli), 95% (S. aureus), 
86% (coagulase-negative staphylococci), 91% (P. aerugi-
nosa) and 98% (C. albicans), respectively. To increase the 
life span of the Blom-Singer tracheo-oesophageal VP, 7% 
silver oxide has been incorporated into the silicone matrix of 
the flap valve. In vivo results indicated a markedly longer 
mean lifetime of the silver coated VP, increasing from 36 
days (uncoated VP) to 110 days [125]. The use of VPs with a 
valve containing silver oxide would be advantageous for 
laryngectomized patients requiring a frequent VP replace-
ment due to fungal growth on the one way valve [126]. 

PREVENTION OF BIOFILM FORMATION ON 
POLYMERIC SURFACES FUNCTIONALIZED WITH 
ANTIMICROBIAL GROUPS 

 The purpose of covalent binding or grafting is to 
functionalize a surface, hence providing the material with 
specific properties such as enhanced hydrophilic, antimicro-
bial or biocompatible characteristics. Polymeric materials 
with antimicrobial activities, so called polymeric biocides 
can be prepared in different ways. A first method consists of 
synthesizing polymers with biocidal functional groups at 
their surface, e.g. by covalent binding of antimicrobial 
moieties on a preformed polymer network (grafting). The 
methods used can be plasma-induced or photo-induced 
polymerization or covalent binding using amino moieties. 
The second method is copolymerization. The antimicrobials 
are covalently bound to a surface by adding them as a block 
monomer during the polymerization process (see Table 2). 

Covalent Binding of Antimicrobial Moieties on a 
Preformed Polymer  

 Photo-induced grafting or photo-induced polymerization 
has gained a prominent place in surface modification, i.e. for 
the functionalization of polymeric materials. This technique 

Table 2. Examples of Functionalized Surfaces with Activity Against C. albicans 
 

Compound  Substrate Procedure Organism Evaluation of the effect Refs. 

    Non-biofilma 
(% reduction) 

Biofilmb 

(% reduction)  

3-(trimethoxysilyl)propyl 
dimethyloctadecyl 

ammonium 
Silicone Argon plasma 

polymerization 

C. tropicalis 
C. albicans 

Bacteria 
- 

Parallel plate flow 
chamber 

(64 % [total 
bacteria]) 

(88 % [total yeast]) 

[144] 

Fluoroalkyltrichlorosilanes Silicone Argon plasma 
polymerization 

C. tropicalis 
C. albicans 

Bacteria 
- 

Parallel plate flow 
chamber 
(< 90%) 

[145] 

N-alkylated PEI 
Cotton, wool, nylon, 

PET, glass slides with 
amino groups 

Acylation 
C. albicans 
S. cerevisiae 

Bacteria 

Agar overlay 
method 

(90-99 %) 
- [146] 

Peptides (homopolymers) Silicone Coupling with AFB C. albicans - MRD (up to 93%) [141] 

Peptides (salivary peptide histatin 5 and 
synthetic variants Dhvar 4 and Dhvar 5) Silicone Coupling with AFB C. albicans - MRD (up to 96%) [141] 

QAP 
Linear copolymer 

CEVE + VBC 
 

Copolymerization 
C. albicans 

Bacteria 

Cut plug method 
Survival ratio 
C. albicans 
(71-100 %) 

- [143] 

QAP 
Crosslinked copolymer 
MMA + VBC + DVB 
CEVE + VBC +DVB  

Copolymerization 
C. albicans 

Bacteria 

Cut plug method 
Survival ratio 
C. albicans 

(100 %) 

- [142] 

Quaternised 
dimethylaminoethylmethacrylate Silicone Grafting C. albicans - MRD (up to 92%) [140] 

Quaternised PEI Silicone Grafting C. albicans - MRD (up to 74%) [140] 

Quaternised PEI PMMA Grafting C. albicans - MRD (up to 74%) [140] 
a : procedures not involving growth in a biofilm model system 
b : procedures involving growth in a biofilm model system effects are expressed as percent or log reduction. 
Abbreviations: PET : polyester [poly(ethylene terephtalate)] ; ATRP : atom transfer radical polymerization, QAP : quaternary ammonium and phosphonium compounds, CEVE: 
chloroethylvinylether; VBC : vinylbenzylchloride ; MMA : methylmethacrylate ; DVB : divinylbenzene ; MPC : 2-methacryloyloxyethyl phosphorylcholine ; AFB : 4-azido-2,3,5,6-
tetrafluoro-benzoic acid 
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allows the introduction of graft chains to a polymer without 
changing its bulk properties [127]. For surface modification, 
various polar, hydrophilic monomers have been grafted onto 
hydrophobic surfaces, such as polyolefins using photo-
initiated polymerization. These hydrophilic monomers 
include acrylic acid, hydroxypropyl acrylate, methacrylic 
acid and methylmethacrylate [128]. Another method for 
grafting polymer chains, containing the biocide onto 
polymeric materials is plasma-induced graft polymerization. 
Poly(2-methacryloyloxyethyl phosphorylcholine) has been 
grafted onto the surface of PDMS using argon plasma as an 
activator of the surface [129] and onto the surface of Co-Cr-
Mo alloys using oxygen plasma [130]. Oxygen and 
atmospheric plasma were used to graft acrylic acid or vinyl 
sulfonic acid onto solvent cast chitosan membranes [131] 
and polyethylene terephthalate [132]. Copper metallization 
(using poly[4-vinylpyridine] as metal ion trapping polymer) 
of polytetrafluoroethylene surfaces was carried out using 
helium plasma to design the interface of electronic devices 
[133]. Other examples of plasma-induced polymerization 
include graftings onto PDMS [134], polytetrafluoroethylene 
membranes [135], polyvinylidene surfaces [136] or poly-
urethanes [137]. An oxalate degrading enzyme, i.e. oxalate 
oxidase has also been covalently bound to PDMS. It was 
hypothesized that the enzymatic activity of oxalate oxidase 
could reduce the amount of oxalate crystals near the PDMS 
surface, hence preventing calcium oxalate crystal formation 
and subsequent encrustation of urinary catheters [138]. 
Various microbicidal surfaces have been synthesized by 
introducing positively charged groups on glass slides or 
nanoparticles. To this end, alkylated polyethyleneimines 
(PEIs) have been coupled by acylation to glass slides 
containing amino groups [139]. N-alkylated PEI containing 
glass showed a high bactericidal efficacy (93%) against 
airborne S. aureus with the highest reduction observed for 
octadecyl derivatized PEI moieties [139]. De Prijck et al. 
[140] evaluated whether quaternised PEI covalently bound to 
silicone or PMMA could reduce C. albicans biofilm for-
mation. Although the use of C1 or C4-quaternised PEI re-
duced biofilm formation to some extent (reductions ranging 
from 35 to 74%), reductions were lower than expected based 
on sensitivity of planktonic cells. Several cationic peptides 
were covalently bound to silicone by De Prijck et al. [141]. 
The salivary peptide histatin 5 and two synthetic variants 
(Dhvar 4 and Dhvar 5), as well as polylysine, polyarginine, 
and polyhistidine were used to prepare peptide func-
tionalized silicone surfaces. Dhvar 4 functionalized silicone 
yielded the highest reduction of the number of sessile C. 
albicans cells in the MRD. Poly-D-lysine PDMS, in parti-
cular the homopeptides with low molecular weight (2500 
and 9600) showed the highest activity against C. albicans 
biofilms, with reductions of 93% and 91%, respectively. De 
Prijck et al. [140] covalently bound dimethylaminoethyl-
methacrylate (DMAEMA) and PEI moieties to silicone and 
PMMA surfaces and subsequently and subsequently qua-
ternized these moieties. Covalently bound quaternized 
polyDMAEMA and PEI inhibited C. albicnas biofilm 
growth, with reductions up to 92%.  

Copolymerization 

 In copolymerization, a polymerizable monomer, which 
contains the biocide is mixed with another monomer. Most 

attention has been paid to the polymeric quaternary “onium” 
salts. Both phosphonium and ammonium containing copoly-
mers have been prepared [142,143]. A series of compoly-
mers (Fig. 3) derived from the monomer dimethylamino-
ethylmethacrylate with four different hydrophobic mono-
mers (ethyl, butyl, cyclohexyl, octyl methacrylates) has been 
synthesized using free radical copolymerization with azobis-
isobutyronitrile (or benzophenone) at a temperature of 60°C. 
The resulting copolymer was further modified with 1,3 
propanesulfone to yield polysulfopropylbetaine derivatives. 
Broth dilution methods showed antibacterial activities 
against S. aureus and E. coli, with MIC values ranging from 
1125 to 2000 µg per ml. 

Fig. (3). Copolymer consisting of 2-dimethylaminoethylmetha-
crylate, with different hydrophobic methacrylate monomers (inset). 

CONCLUDING REMARKS 

 Prevention or reduction of biofilm formation by anti-
microbial compounds covalently bound to a surface requires 
that the antimicrobial moieties are effectively immobilized, 
densily grafted, remain stably bound to the surface long 
enough and are available to cells that freshly adhere to the 
surface (i.e. are not "masked" by the build-up of a layer of 
dead cells). The number of new candidate molecules for 
covalent binding to polymers is restricted, as several anionic, 
cationic, hydrophilic and hydrophobic compounds immo-
bilized on polymers have previously been studied. Grafting 
of antimicrobially active compounds is preferred over their 
incorporation in the polymer as biofilm development is a 
process which occurs at the surface and not in the bulk. The 
overall reductions of the number of sessile cells in a biofilm 
are usually not higher than 90%. However, further research 
is needed to increase the density of antimicrobial compounds 
on the surface. In addition, antibiofilm effects will have to be 
determined not only against monospecies biofilms but also 
against biofilms consisting of more than one microbial 
species. Cytotoxicity tests are necessary to demonstrate that 
the modified substrates are not toxic when introduced in 
patients. Besides using grafting strategies, polymers can be 
modified by incorporation of compounds in the bulk 
polymer. For this purpose, solvent-based approaches are 
mostly used which may result in residues inside the polymer. 
Innovative impregnation approaches should focus on 
solvent-free approaches (e.g. using supercritical carbon 
dioxide).  
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