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Abstract: We analyze the propagation of electromagnetic plane waves through a dielectric film endo-wed with a nano 
doped permittivity made of a sequence of Dirac delta pulses.  
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1. INTRODUCTION 

The propagation of electromagnetic plane waves through 
homogeneous and periodically stratified films has been the 
subject of several important works since the first edition of 
the Born-Wolf book [1] and after Arzéliès’ publications [2]. 
We are interested here in the beha-viour of TE, TM har-
monic plane waves incident on the z = 0 face of a dielectric 
film 0  z  d with a nano doped permittivity, the nanodop-
ing being obtained from a sequence of delta Dirac pulses. 
We also consider succinctly magnetic composite films nano-
doped with magnetic hol-low nanospheres.With the light 
velocity c = 1, the permeability  = 1, the permittivity 1, n1 
= 1 and exp( i t) implicit, the components Ey, Hx, Hz of 
the incident TE wave are [1] in z  0  

Ey
i
 = Ae i(x,z) , Hx

i
 =  Ae n1cos i i(x,z),  

Hz
i
 = Ae n1sin i i(x,z) (1) 

i(x,z) = exp[i n1(x sin i + z cos i)] (1a) 

while , since r =   i, the reflected field is 

Ey
r
 = Re r(x,z) , Hx

r 
= Re n1cos i r(x,z),  

Hz
r
 = Re n1sin i r(x,z) (2) 

r(x,z) = exp[i n1(x sin i  z cos i)] (2a) 

Ae, Re are the field amplitudes and we have similarly for 
the TM field with components Hy, Ex, Ez 

Hy
i
 = Am n1 i(x,z), Ex

i
 =  Am cos i i(x,z),  

Ez
i
 = Am sin i i(x,z) (3) 

Hy
r
 = Rm n1 r(x,z) , Ex

r
 = Am cos i r(x,z),  

Ez
r
 = Rm sin i r(x,z) (4) 

with the expressions (1a), (2a) of i, r. 

2. TE, TM FIELDS INSIDE A FILM WITH  

NANODOPED PERMITTIVITY 

We consider a dielectric film with permittivity nano 
doped according to the relation 

 
 

*Address correspondence to this author at the Institut Henri Poincaré,  
86 Bis Route de Croissy, 78110 Le Vésinet, France; Tel: 33139766401;  
E-mail: pierre.hillion@wanadoo.fr 

(z) = 0 +  m=1
M (z/ z0 m) , 0  z  d , Mz0  d (5) 

= 0 + z0 m=1
M (z mz0) (5a) 

0 ,  , z0 > 0 are constant parameters and  the Dirac distri-
bution.This permittivity has the property to have a first de-
rivative null , the relation f(x) ’(x) = f’(x) (x) implying 
’(z) = 0 

since z0 is constant. 

Now, inside the film, the Maxwell equations are with  = c = 
1 and exp( i t) implicit 

(6, 7) 

For the TE field, depending only on x,z, the equations (6, 
7) reduce to 

zEy
† =  i  Hx

† , xEy
† = i  Hz

†,  

zHx
†  x z

† + i  (z) Ey
† = 0 (8a) 

and for the TM field 

zHy
† = i (z) Ex

† , xHy
† =  i  (z) Ez

† , 

zEx
†  xEz

†  i  Hy
† = 0 (8b) 

These fields are consistent with (1-4), just changing (z) 
into 1 and using (1a), (2a). 

Eliminating Hx
†, Hz

† from (8a) and taking into account 
’(z) = 0 gives for Ey

† the same wave equation as that ob-
tained for Hy

† by eliminating Ex
†, Ez

† from (8b) 

[ x
2
 + z

2 + 2 n2(z)]{ Ey
† , Hy

†} = 0 , n2 (z) = (z) (9) 

We look for the solutions of Eq.(9) in the form 

Ey
†(x,z) = Te exp(i n0x sin †) (z)   a) 

Hy
†(x,z) =  n0Tm exp(i n0x sin †) (z)  b) (10) 

 n0 = 0 and Te, Tm are the field amplitudes. Substituting 
(10) into (9) gives the differential equation satisfied by (z) 

z
2 (z) + 2 [n2(z) n0

2 sin2 †] (z) = 0 (11) 

The solutions of (11) are discusssed in Appendix A and 
assuming  << 1 we get to the 0( 2) order 
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(z) = 0(z) +  m=1
M m(z) + 0( 2) (12) 

with 

0(z) = exp(in0 cos † z) (12a) 

and 

m(z) = (i z0/2  n0 cos †) exp[i n0 cos †  

{mz0 + |z  mz0|}] (12b) 

Now, in the dielectric film, the field reflected on the z = d 
face has to be taken into account so that according to (10) the 
components Ey

†(x,z), Hy
†(x,z) are  

Ey
†(x,z) = †(x) [Te

1
(z) + Te

2 ({d z})] a) 

Hy
†(x,z) =  n0 

†(x) [Tm
1

(z) + Tm
2 ({d z})] b) (13) 

in which  
†(x) = exp(i n0 x sin †) (14) 

Substituting (13a) into (8a) gives  

Hx
†(x,z) = i  †(x) [Te

1 ’(z) + Te
2 ’({d z})] a) 

Hz
†(x,z) = n0 sin † †(x) [Te

1
(z) + Te

2 ({d z})]  b) (15) 

Similarly with (13b) substituted into (8b) 

Ex
†(x,z) = [in0/ (z)] †(x) [Tm

1 ’(z) +  

Tm
2 ’({d z})]  a)  

Ez
†(x,z) = [n0

2/ (z)] sin † †(x)  

[Tm
1

(z) + Tm
2 ({d z})] b) (16) 

We now have all the ingredients to analyze the electro-
magnetic plane wave propagation through the nano doped 
dielectric film.  

3. ELECTROMAGNETIC WAVE PROPAGATION 

3.1. TE Field 

 The amplitudes of the TE field must satisfy boundary 
conditions at z = 0 and z = d. Then, noting first that the Des-
cartes-Snell relation n1 sin i = n0 sin † transforms (14) into 

†(x) = exp(i n1x sin i) (17) 

we have at z = 0 

Ey
i
(x,0) + Ey

r
(x,0) = Ey

†
(x,0) ,  

Hx
i
(x,0) + Hx

r
(x,0) = Hx

†
(x,0) (18) 

and, taking into account (1), (1a), (2), (2a) and (13a), (15a) 
together with (17), we get from (18) 

Re + Ae = Te
1 (0) + Te

2 (d) 

n1 cos i (Re  Ae) = i[Te
1 ’(0) + Te

2 ’(d)] (19) 

Now, to get the TE field Ey
t, Hx

t, Hz
t outside the film for z 

> d, one has just to change in (1) the amplitude Ae into At,e so 
that the boundary conditions at z = d are 

Ey
t
(x,d) = Ey

†
(x,d) , Hx

t
(x,d) = Hx

†
(x,d) (20) 

and, still using (1), (1a) and (13a), (15a), (17), we get 

Te
1 (d) + Te

2 (0) =  At,e 

i[Te
1 ’( ) + Te

2 ’(0)] = n1cos i  At,e (21) 

in which 

 = exp(i  n1d sin i) (21a) 

So, we get from (19) and (21) four relations to determine 
the four unknown amplitudes Re,Te

1 Te
2

 ,At,e, this set of equa-
tions is solved in Appendix B. 

3.2. TM Field 

The boundary conditions for the TM field are at z = 0 

Hy
i
(x,0) + Hy

r
(x,0) = Hy

†
(x,0) ,  

Ex
i
(x,0) + Ex

r
(x,0) = Ex

†
(x,0) (22) 

Then, using (3), (4) with (1a), (2a) together with (13b), 
(16a), taking into account (17), we get since (0) = o = n0

2 

n1(Rm + Am) = n0 [Tm
1 (0) + Tm

2 (d)] 

n0 cos i (Rm  Am) = i[Tm
1 ’(0) + Tm

2 ’(d)] (23) 

Now the TM field in z > d has the expression (3) with Am 
changed into At,m so that the boun-dary conditions at z = d 
are  

Hy
t
(x,d) = Hy

†
(x,d) , Ex

t
(x,d) = Ex

†
(x,d) (24) 

implying with  given by (21a) since (d) = o = n0
2 

n0[Tm
1 (d) + Tm

2 (0)] = n1 At,m 

i[Tm
1 ’(d) + Tm

2 ’(0)] = n0 cos i At,m (25) 

We get from (23), (25) four relations to determine Rm, 
,Tm,,1 ,Tm,,2, At,m which is made in Ap-pendix B 

4. DISCUSSION 

High-k dielectrics are used for instance in semi-
conductor manufacturing process to replace silicon gate di-
electrics, allowing a miniutarization of microelectronics 
component with better performances in thin materials such 
as dielectric films. Nano doped dielectrics offer the pos-
sibility of high-k dielectrics. Here for instance, the mean 
value of the dielectric constant is  

 = 1/d 0
d (z) dz (26) 

that is substituting (5) into (26) 

 = 0 + / d [U(z)  U(z d)] m
M (z mz0) 

= 0 + / d m
M [U(mz0)  U(mz0 d)]  

= 0 + M / d (26a) 

taking great values when M/  is high. 

Incidently, the sum in (5) is the truncated series of the 
Dirac distribution [4, 5] 

[sin( z/z0)] = n (z/z0 n) , n integer in ( , ) (27) 

The matrix technique [1,2] used to analyze the propaga-
tion of electromagnetic plane waves through homogeneous 
and periodically stratified dielectric films is not suitable for 
TE, TM fields inside a film with the permittivity (5) which is 
neither homogeneous nor stratified be-cause the dielectric 
constant is only perturbed by the Dirac pulses at local points. 
The impor-tance of ’(z) = 0, to get the wave equation (9) 
must be stressed. 
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We have obtained in Appendix A an 0( 2) approximation 
of TE, TM fields in which the Green’s function of the 1D-
Helmholtz equation intervenes rather naturally. The object of 
this approximation was only to get a perception of the TE, 
TM behaviour, but it is clear that an important numerical 
analysis has to be performed when  is not very small. 

Finally, it has ben assumed that 1D-nano doping may be 
described by a sequence of delta Dirac pulses, the nano dots 
being assimilated to points. This postulat could be general-
ized to 2D and 3D nano doping from the relations [5] 

(r) / r = (x) (y) r = (x2+y2)1/2  

(r) /2 r2 = (x) (y) (z) r = (x2+y2+z2)1/2 (28) 

The following generalization of (5) could be used to de-
scribe nanodoped photonic crystals made of multilayer films 
[6] 

j(z) = = 0 +z0 m=1
M j (z mz0) , j = 1,2…Ï (29) 

in which j is the number of layers.  

5. MAGNETIC NANO COMPOSITE FILMS 

Magnetic nano composite films are used specially to en-
hance the film coercivity [7-11]. that is their resistance to 
becoming demagnetized. The non existence of magnetic mo-
nopoles prevents to imagine the doping of these films as 
made of nano dots and, we have instead to consider magnetic 
hollow nano spheres [12-17]. Then, the permeability (z) in 
0  z  d may be represented by the expansion 

(z) = 0 + m=1
M (mz0) (z mz0) (30) 

mz0 is the center of a hollow nano sphere and (mz0) de-
pends on its nature and on its radius [14, 15]. This permittiv-
ity satisfies also the condittion ’(z) = 0. 

Proceeding as in (26a), we get from (30) for the mean 
value permittivity  of this magnetic nano composite film 
giving the possibility to check its coercivity performance. 

 = 0 + 1/ d m
M (mz0) (30a)  

Then, using(30) and assuming  = 1, it is easily checked that 
the equations (8a,b) for TE,TM fields transform into  

zEy
† =  i  (z)Hx

† , xEy
† = i  (z) Hz

† ,  

zHx
†  x z

† + i  Ey
† = 0 (31a)  

zHy
† = i  Ex

† , xHy
† =  i  Ez

† ,  

zEx
†  xEz

†  i (z) Hy
† = 0 (31b)  

so that since ’(z) = 0, the components Ey
†
 , Hy

† are still so-
lutions of the wave equation (9) in which now n2(z) = (z) 
and they take the form (13) with (z) satisfying the differen-
tial equation (12). Substituting (13) into (31a,b) gives the 
other two components of the TE, TM fields with according 
to (31a)  

Hx
†(x,z) = [i/ (z)] †(x) [Te

1 ’(z) + Te
2 ’({d z})]   a) 

Hz
†(x,z) = [n0/ (z)] sin † †(x)  

[Te
1

(z) + Te
2 ({d z})] b) (32) 

and from (31b) 

Ex
†(x,z) = in0 

†(x) [Tm
1 ’(z) + Tm

2 ’({d z})]   a) 

Ez
†(x,z) = n0

2 sin † †(x) [Tm
1

(z) + Tm
2 ({d z})] b)  (33) 

From there, we may proceed as in Sec.3, using the 
boundary conditions at z = 0 and z = d to get four equations 
to determine the four unknown amplitudes. 

As previously stated, (z) is solution of Eq.(11) with 
n2(z) = (z). Let  = Maxm (mz0) then assuming  << 1 and 
consequently (mz0) << 1 we have to the 0( 2) order 

(z) = 0(z) +  m=1
M m(z) + 0( 2) (34) 

with 0(z), m(z)given by (12a,b). 

This analysis of magnetic nano composite films reposes 
on magnetic hollow nano sphere whose existence requires 
further works. 

APPENDIX A 

We discuss here the solutions of Eq.(11) rewritten for 
convenience 

z
2 (z) + 2[n2(z) n0

2 sin2 †] (z) = 0         (A.1) 

in which, according to (5) : 

n2(z) = n0
2
 + z0 m=1

M (z mz0) , Mz0  d       (A.2) 

We start this analysis with the simple refractive index 

n2(z) = n0
2
 + z0 ( z m z0)           (A.3) 

so that the equation (A.1) becomes 

’’(z) + 2n0
2 cos2 † 

( z) = 2 z0 (z mz0)
 

(z)     (A.4) 

We assume  << 1 very small and we look for the solu-
tions of (A.4) to the 0( 2) order in the 

the form 

(z) = 0(z) +  m(z) + 0( 2)           (A.5) 

Substituting (A.5) into (A.4) gives  

0’’(z)+ 2n0
2 cos2 † 

0(z) +  [ m’’(z)+ 2n0
2  

cos2 † 
m(z)] = 2 z0 (z mz0)

 
0(z)         (A.6) 

supplying the two equations 

0’’(z) + 2 n0
2 cos2 † 

0(z) = 0        a) 

m’’(z) + 2n0
2 cos2 † 

m(z) =  2z0 (z mz0)
 

0(z) b) (A.7) 

Taking as solution of (A.7a) 

0(z) = exp(in0 cos † z)             (A.8) 

the equation (A.7b) becomes  

 m’’(z) + 2n0
2 cos2 † 

m(z) = 2 z0 exp(in0 cos † z) (z 
mz0) = 2 z0 exp(in0 cos † mz0) (z mz0)  (A.9) 

which is in fact the equation satisfied by the Green’s func-
tion of the 1D-Helmholtz equation and this equation has the 
solution [3] for the infinite domain 

m(z) = (i z0/2  n0 cos †) exp  

[i n0cos † {mz0 + |z  mz0| }]         (A.10) 

Now, with the refractive index (A.2), the equation (A.1) 
becomes 

’’(z) + 2 n0
2 cos2 † 

(z)  

= 2 z0 m=1
M (z mz0)

 
(z)         (A.11) 
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and we look for its solutions in the form 

(z) = 0(z) +  m=1
M m(z) + 0( 2)       (A.12) 

Substituting (A.12) into (A.11) supplies the equations 
(A.7a) and (A.7b) for m = 1, 2…M with the solutions (A.10) 
which achieves to determine (A.12) to the 0( 2) order. 

APPENDIX B 

To obtain the amplitudes Re, Te
1, Te

2, At,e for the TE 
field, we introduce the functions 

e(z) = n1 cos i (z)  i ’(z) , e(z) = n1 cos i (z) + i ’( z) 
((B.1) 

Then, eliminating Re from (19) and At,e from (21) gives : 

e(0) Te
1 + e(d) Te

2 = 2 n1 cos i Ae , e(d) Te
1 + e(0) Te

2 
= 0 (B.2) 

from which Te
1 and Te

2 are obtained 

Te
1 = 2n1cos i e e(0) Ae , Te

2 = 2n1cos i e e(d) Ae   (B.3) 

e = [ e(0) e(0)  e(d) e(d)] 1         (B.3a) 

so that we get at once from the first relation (21) 

At,e = 2n1cos i e [ e(0) (d)  e(d) (0)] 1Ae (B.4) 

while eliminating Ae from (19) and taking into account (B3) 
give 

Re = e [ e
2(0)  e

2(d)] Ae             (B.5) 

We proceed similarly for the TM field with the functions 

m(z) = n0
2 cos i (z)  i ’( z) , m(z) = n0

2 cos i (z) + i 
’( z) (B.6) 

Eliminating Rm from (23) and At,m from (25) gives 

m(0) Tm
1 + m(d) Tm

2 = 2 n0n1 cos i Am,  
m(d) Tm

1 + m(0) Tm
2 = 0            (B.7) 

from which we get 

Tm
1 = 2n0n1cos i m m(0) Am ,  

Tm
2 = 2n0n1cos i m m( d)Am            (B.8) 

m = [ m(0) m(0)  m(d) m(d)] 1 (B.8a)  

and, substituting (B.8) into the first relation (25), it comes 

At,m = 2n0
2cos i m [ m(0) (d)  m(d) (0)] 1Am     (B.9) 

while eliminating A from (22) gives taking nto account (B.7) 

Rm = m [ m
2(0)  m

2(d)] Am         (B.10) 

To achieve to determine the TE and TM fields we have 
just to express (0) and (d) in terms of the solutions of Ap-
pendix A. 
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