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Synaptic  Signals  from  Glutamate-Treated  Neurons  Induce  Aberrant  Post-
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Abstract:

Background and Objective:

Glutamate neurotoxicity is associated with a wide range of disorders and can impair synaptic function. Failure to clear extracellular glutamate
fosters additional cycles and spread of regional hyperexcitation.

Methods and Results:

Using  cultured  murine  cortical  neurons,  herein  it  is  demonstrated  that  synaptic  signals  generated  by  cultures  undergoing  glutamate-induced
hyperactivity can invoke similar effects in other cultures not exposed to elevated glutamate.

Conclusion:

Since sequential synaptic connectivity can encompass extensive cortical regions, this study presents a potential additional contributor to the spread
of damage resulting from glutamate excitotoxicity and should be considered in attempts to mitigate neurodegeneration.
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1. INTRODUCTON

Glutamate  is  the  brain's  most  abundant  neurotransmitter
and  its  regulation  is  critical  [1].  Neuronal  dysfunction  and
degeneration  induced  by  excessive  glutamate  is
characteristically  linked  with  acute  conditions,  such  as
ischemia and traumatic  brain injury [2].  However,  glutamate
excitotoxicity  has  also  been  linked  to  chronic
neurodegenerative  disorders,  including  amyotrophic  lateral
sclerosis,  multiple  sclerosis,  Alzheimer’s  disease  and
Parkinson's disease [3 - 6]. A critical increase in extracellular
glutamate  can  impair  synaptic  plasticity  and  long-term
potentiation  [7],  which  may  underlie  the  relationship  of
glutamate  toxicity  to  this  wide  range  of  neurodegenerative
conditions.

Neuroprotective measures for glutamate excitotoxicity are
lacking  [3,  4].  Glutamate  transporters  may  play  a  role  in
mitigating  glutamate  excitotoxicity  since  reduced  glutamate
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transporter  expression  is  observed  in  neurodegenerative
diseases  [1,  7].

Glutamate-induced  hyperexcitation  has  been  studied
extensively  in  cortical  culture  [8  -  10].  These  have  modeled
primary,  secondary,  tertiary,  and quaternary phases  of  injury
and provide the potential for the development of interventions
for  each  of  these  phases  [8].  Reductionist  studies  in  culture
have  demonstrated  that  glutamate  toxicity  induces  aberrant
kinase  activation  and  can  disrupt  the  balance  of  other
neurotransmitters [9, 10]. Herein, the impact of glutamate on
synaptic signaling in cortical cultures was monitored and it was
demonstrated that aberrant signaling resulting from glutamate
toxicity  can  spread  synaptically  to  neurons  not  exposed  to
elevated glutamate.

2. MATERIALS AND METHODS

Primary  murine  embryonic  cortical  neurons  harvested  at
day 17 of gestation from C57BL/6 mice were plated at ≥100
cells/mm2 on poly-d-lysine/fibronectin-coated, Multi-Electrode
Arrays MEAs; Multichannel Systems, Reutlingen, Germany) in
B27-supplemented Neurobasal medium (Invitrogen, Carlsbad,
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CA), as described in previous studies [11, 12]. The sacrifice of
the pregnant female was according to procedures approved by
the  Institutional  Animal  Care  and  Use  Committee  (protocol
number  13-03-02-She).  In  efforts  to  achieve  a  natural
environment relative to in situ conditions, the chamber surface
was  coated  with  a  50-50%  mixture  of  poly-L-
lysine/fibronectin, and no efforts were made to eliminate glial
cells.  In  this  regard,  glial  cells  both  contribute  to  synaptic
development [11, 13] and are involved in secondary damage in
traumatic  brain  injury  [14].  Synaptic  signals  are  routinely
detected as soon as a network of neurites is visible (≤ 2 weeks).
Still,  cultures  are  maintained  for  1  month  prior  to
experimentation to allow for full development and stabilization
of the neuronal network [11, 15].

Mature  networks  were  treated  for  20  min  with  5mM
glutamate.  Glutamate  treatment  was  previously  confirmed to
invoke calcium influx in these cortical cultures [9].

MEAs  were  placed  in  a  MEA-1060-INV  amplifier
(Multichannel) and synaptic activity was recorded prior to and
following  the  addition  of  glutamate  via  a  DT9814  data
acquisition system (Data Translation; Marlborough, MA). Prior
studies  using  combinations  of  excitatory  and  inhibitory
neuronal  antagonists  have  confirmed  the  synaptic  origin  of
signals  [11].  Additional  mature  networks  not  treated  with
glutamate  were  stimulated  with  signals  recorded  from  other

networks  during  glutamate  treatment.  As  in  the  prior  studies
involving  stimulation  of  networks  with  digitized  synaptic
signals,  recorded  signals  were  applied  at  a  singular  MEA
channel  with  an  adjacent  electrode  utilized  as  a  ground;  this
localized  signaling  loop  restricted  the  spread  of  the  signal
among synaptically connected clusters of neurons [11, 12, 15].
Signal frequency and amplitude were monitored via software
(“Raptor”)  developed  in  the  laboratory  (freely  available  on
request) with export to Microsoft Excel [12, 15], where signals
≥1mV deviation from baseline were quantified.

3. RESULTS

Treatment  of  cortical  networks  for  20min  glutamate
increased  high-amplitude  (≥1mV)  signals  by  2.4-fold,
indicating induction of hyperactivity (Fig. (1) left panels). The
additional  networks,  not  treated  with  glutamate,  were
stimulated next with a 5sec segment of a signal recorded from
a glutamate-treated network, which immediately fostered a 1.8-
fold increase in high-amplitude signals (Fig. (1) right panels);
signal patterns returned to normal 30min following stimulation
(not  shown).  The  impact  of  stimulation  with  this  signal
glutamate  signal  contrasts  with  the  prior  studies  in  which
stimulation with a segment of a synaptic signal from a healthy
culture  induced  synchronous  waves  of  low-amplitude  and
organized  bursts,  rather  than  high-amplitude  signals  [11,  12,
15].

Fig.  (1).  Glutamate  perturbs  signaling  in  cortical  neuronal  networks.  Left  panels  depict  a  representative  culture  prior  to  and  20min  after
application of 5mM glutamate. Right panels depict a representative culture before and after stimulation with a signal recorded from a glutamate-
treated culture. Arrow indicates the time at which the network was stimulated.
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4. DISCUSSION

Glutamate neurotoxicity is associated with a wide range of
disorders  and  even  in  the  absence  of  overt  disorders,  it  can
impair synaptic function [3 - 7]. Failure to clear extracellular
glutamate  fosters  additional  cycles  and  spread  of  regional
hyperexcitation [1, 2, 7, 16]. The present findings in the ex vivo
neuronal  networks  suggest  that  regional  glutamate-induced
hyperactivity  can  also  invoke  hyperactivity  in  synaptically
connected  neurons  in  cortical  regions  distal  from  an  area
exposed to elevated extracellular  glutamate.  Since sequential
synaptic  connectivity  can  encompass  extensive  cortical
regions,  the  synaptic  transmission  of  aberrant  signaling
presents  a  potential  additional  contributor  to  the  spread  of
damage, resulting from glutamate excitotoxicity and should be
considered  in  attempts  to  mitigate  neurodegeneration.
Monitoring  signaling  provides  an  opportunity  to  detect  what
may  be  the  earliest  signs  of  trauma,  before  any  serious
consequences  that  will  result  from extensive  calcium influx;
resumption  of  normal  signaling  within  30  min  of  a  single
stimulation with a synaptic signal from a network undergoing
glutamate excitotoxicity supports this line of reasoning.

CONCLUSION

Glutamate  toxicity  can  also  be  induced  by  elevated
homocysteine,  which  itself  can  arise  from  genetic  and/or
dietary  deficiency,  leading  to  aberrant  kinase  activation,
cytoskeletal  compromise,  DNA  damage,  and  neuronal
apoptosis [9]. Underlying genetic or dietary deficiency could,
therefore, potentiate the extent of damage caused by glutamate
following a traumatic injury.

Cell  culture  analyses  also  demonstrated  alterations  in
GABA-mediated signaling following stretch injury, apparently
mediated by kinase hyperactivation [10]. This may result from
glutamate toxicity since glutamate activates this  kinase [17 -
19].  Future  directions  to  assess  the  full  extent  of  glutamate
toxicity  should  include  examinations  of  multiple  additional
neurotransmitters and kinases.
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