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Abstract: Progesterone (P4) plays different physiological roles, including reproductive and non-reproductive actions. 

Most of P4 effects are mediated by its interaction with its nuclear receptor (PR). Among the non-reproductive functions of 

P4, the regulation of the immune response, particularly during pregnancy, is remarkably important. P4 is able to modulate 

the immune response during normal physiological processes, as well as in infectious diseases, including parasitic and viral 

infections. During parasitic infections, P4 not only exerts its action upon the immune system, but also directly acts on the 

parasite, as it has been shown for helminthes and protozoans. Variations of P4 levels during the menstrual cycle could be 

involved in changes in susceptibility to infection, such as that caused by the human immunodeficiency virus (HIV). P4 

could be involved in the acquisition and development of HIV disease, regulating infection susceptibility. Further investi-

gations could open new application fields, where the differential effects of P4 upon the immune response represent the 

keystone of a successful hormonal therapy as well as the design of new drugs with more specific actions on parasites and 

virus. 
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INTRODUCTION 

 Progesterone (P4) is a sex steroid hormone that plays 
different physiological roles, being well documented its ef-
fects on ovulation, establishment and maintenance of preg-
nancy and sexual behavior [1-2]. However, this hormone 
also participates in non-reproductive processes including 
neuronal excitability, neuroprotection, learning and memory, 
sleep, and immune response [3]. P4 functions are mainly 
exerted via its nuclear receptors, the progesterone receptor 
(PR) which modifies gene expression pattern in the cell [1, 2, 
4]. 

 In the case of innate immune response, P4 inhibits the 
activation of the nuclear factor kappa B (NF B) and in-
creases the expression of the suppressor of cytokine signal-
ing (SOCS1) protein in macrophages [5]. 

 P4 has been involved in different immunoregulatory 
functions that allow successful pregnancy. During the first 
trimester, in trophoblasts [6] and mesenchymal stem cells 
(MSCs) [7], P4 up-regulates the expression of several mole-
cules from the major histocompatibility complex class I, 
which are involved in the maintenance of the immune bal-
ance between the mother and the fetus. Other molecules in-
volved in this immune balance such as Human Leukocyte 
Antigen (HLA)-G and HLA-E in JEG-3 are also regulated 
by P4 [7]. 

 In hybridoma B cells, P4 diminishes the interleukin (IL)-
6 induced gp130 expression in a dose-dependent manner, 
whereas the expression of janus kinase (JAK) 1 is not  
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significantly affected. At 10
-6

M concentration, P4 inhibits 
the phosphorylation of gp130 and diminishes the IL-6-
induced Signal transducer activator of transcription (STAT)-
3 phosphorylation and translocation to the nucleus. Maximal 
expression of the progesterone-induced blocking factor 
(PIBF) is observed in hybridoma cells with 10

-10
M P4 [8]. 

The treatment of lipopolysaccharide (LPS)-activated mature 
bone marrow-derived dendritic cells (BMDCs) with P4 sup-
presses production of the pro-inflammatory response-
promoting cytokines tumor necrosis factor-alpha (TNF- ) 
and IL-1  in a dose-dependent manner but it does not affect 
production of the pro-inflammatory response-inhibiting cy-
tokine IL-10. P4 also down-regulates the expression of the 
co-stimulatory molecule CD80 and MHC class II molecule 
RT1B. In addition, P4 promotes maturation of dendritic cells 
[9], and inhibits dendritic cell-stimulated proliferation of T 
cells. The immunoregulatory effects of P4 are primarily me-
diated via its interaction with P4 receptor (PR) and the sup-
pression of pro-inflammatory response-promoting cytokine 
production by P4 is prevented using the PR antagonist 
RU486 [10, 11].  

 In this paper we evaluated the role of P4 during several 
parasitic diseases and viral infections, particularly HIV in-
fection. 

MECHANISM OF ACTION OF P4 

 P4 is mainly synthesized in ovary, adrenal gland, pla-
centa and the central nervous system (CNS) [12]. Once re-
leased, P4 passes to the blood stream where it circulates ei-
ther unbound or bound to plasmatic proteins such as albumin 
or globulin [13]. 

 P4 diverse physiological functions are related to its mul-
tiple mechanisms of action. Two main mechanisms have 
been described: the classical and the non-classical one [14]. 
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In the non-classical mechanism, P4 exerts its actions inter-
acting with PR located in the plasma membrane and in cyto-
plasm, modifying ion conductance and inducing second mes-
sengers production including cAMP and the activation of 
kinases. The classical mechanism of action involves the in-
teraction of P4 with PR. This interaction is followed by a 
conformational change in the receptor that induces the disso-
ciation of heat shock proteins, followed by phosphorylation 
and dimerization of the receptor. The resulting structure pos-
sesses high affinity for specific sequences in the DNA, 
known as P4 response elements (PRE) which are present in 
the promoter region of P4 targeted genes. Once bound to 
PRE, PR is able to recruit coactivator and corepresor pro-
teins [4, 15] regulating gene transcription (Fig. 1) [16]. 

Progesterone Receptor Isoforms 

 PR exists as two main isoforms: a long one PR-B (112-
120 kDa) and a short one PR-A (80-94 kDa). Both PR iso-
forms are encoded by the same gene, but they are transcribed 
from two different promoters, one distal from –711 to +31 
corresponding to PR-B and one proximal from +464 to +737 
for PR-A. In general, PR-B is a stronger activator compared 
to PR-A [17]. It has been shown that PR isoforms are func-
tionally distinct in their capacities to activate transcription of 
target genes and in this way regulate different physiological 
processes [18]. 

 Besides nuclear PR, different P4 receptors have been 
identified in the plasma membrane (mPR). P4 could induce 
rapid nongenomic responses in target cells through the inter-
action with these mPRs which have been located in different 

cells, such as human sperm [19]. mPRs belong to the seven 
transmembrane domains protein family and mediates signal-
ing via G-protein coupled pathways [20]. 

PROGESTERONE EFFECTS DURING PARASITE 
INFECTIONS 

 Recent experimental evidence suggests that sex steroids 
play a key role during parasite infections, mainly through 
two different mechanisms: a) modulation of the host immu-
noendocrine network (IEN) [21-23], and b) direct regulation 
of parasite reproduction and differentiation [24, 25]. 

 The IEN is formed by the dynamic interaction between 
the immune and the endocrine systems that share ligands and 
receptors [21, 26]. A pathogen organism produces a distur-
bance in the IEN balance, with major consequences to the 
host fitness and homeostasis. Among the elements of the 
IEN, sex steroid hormones have been described as critical 
modulators during parasite infections [27]. Particularly, P4 
has received increased attention due to its multiple roles in 
the modulation of the IEN, in response to a pathogen [28-
32]. 

 In physiological conditions, the highest levels of P4 are 
detected during pregnancy. This particular endocrine condi-
tion has serious repercussions on the immune system, and 
concomitantly on the resistance or susceptibility to parasite 
invasions [33, 34]. In fact, pregnant women exhibit a signifi-
cant decrease in the CD4/CD8 cell ratio [29], with a parallel 
increase in the susceptibility to Toxoplasma gondii infection 
[30]. This immune phenotype favors Toxoplama gondii, 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Mechanisms of P4 action. P4 exerts its effects through genomic and non-genomic mechanisms. The former are mediated by nuclear 

PR and produce changes in gene expression whereas the latter are mediated through a variety of pathways including the interaction of P4 

with: membrane receptors, ionic channels, modulatory sites in neurotransmitters receptors, and growth factors and neurotransmitters recep-

tors coupled to G proteins. These interactions produce changes in ionic conductance, second messenger cascade, cAPM production, phospho-

inositide turnover and protein kinase C and MAP kinases activation [16]. 
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probably due to the up-regulation of PIBF, which inhibits 
CD8 and NK cell activity [29, 31, 35], and by the down-
regulation of IL-12 from infected macrophages produced by 
P4 [30]. Furthermore, human pregnancy has also been asso-
ciated to an enhanced helmintho-toxicity against Trichinella 
spiralis larvae, depending in part on P4 and its influence on 
circulating IgG, IgE and IgA antibodies [32]. 

 On the other hand, when wild rodent Calomys callosus 
females were ovarectomized, an increase in the parasitemia 
by the protozoan Trypanosoma cruzi was observed. Interest-
ingly, P4 administration diminished parasite load at the same 
level than in non-infected groups, suggesting that P4 is a 
restrictive factor to T. cruzi establishment and reproduction 
in rodents [36]. 

 This protective effect of P4 is also observed during Schis-
tosoma haematobium infection in the golden hamster 
Mesocricetus aureatus. The administration of the contracep-
tive medroxiprogesterone acetate (an analogue molecule of 
P4) to infected golden hamsters decreases the number of 
recovered worms and egg load, when this progestin is ad-
ministered with the antischistosomal atorvastin (an HMG-
CoA reductase inhibitor) [37]. In addition, P4 administration 
to gonadectomized mice of both sexes prevents against mur-
ine experimental cysticercosis with higher efficiency than 
any other vaccine tested in this parasitism model [38].  

 Moreover, P4 induced an increase in PR-A expression in 
lymphocytes from spleen, with no effects on the expression 
of IL-4 and IL-10. In contrast, ewes infected with the nema-
tode Haemonchus contortus, showed higher number of 
worms when they were treated with P4 [39]. Thus, protective 
or permissive effects of P4 depend on the parasite and the 
host, among other factors [40]. 

 A strong board of evidence suggests that P4 affects the 
outcome of an infection for having direct effects upon the 
parasite, modulating several aspects such as pathogen repro-
duction, differentiation and establishment [25, 40, 41]. Data 
from our laboratory have demonstrated that P4 increases 
asexual reproduction of Taenia crassiceps by inducing para-
site’s budding [41]. Apparently, T. crassiceps presents a PR 
that up-regulates the expression of parasitic c-fos and c-jun, 
which in turns induces proliferation [41, 42]. Moreover, P4 
also augments the T. crassiceps infectivity, when parasites 
are exposed to this hormone before infection in mice of both 
sexes [41]. 

 In contrast, when Trichinella spiralis newborn larvae 
were in vitro exposed to increasing physiologic doses of P4, 
an induction of parasite mortality was observed [28]. This 
effect was abrogated by RU486 [3]. These results suggest 
that P4 can directly affect helminth parasites, having differ-
ential consequences for different parasites, such is the case 
of the cestode T. crassiceps and the nematode T. spiralis. 

 As we have described, the immune system is clearly af-
fected by P4, exhibiting major consequences for parasite 
infection outcome. Concomitantly, P4 also directly acts on 
parasite reproduction and growth. The consideration of this 
knowledge will bring several benefits to our concept of the 
dynamic host-parasite relationship, which include a more 
specific drug design that exclusively affects the parasite with 
minimal secondary effects on the host, as well as a better 

comprehension of the sexual dimorphism of the immune 
response during health and pathogenic processes. 

ROLE OF PROGESTERONE IN THE SYNDROME OF 
HUMAN IMMUNODEFICIENCY (AIDS) 

 Acquired immunodeficiency syndrome (AIDS) is the 
main infectious risk of death in adults across the world. The 
human immunodeficiency virus (HIV) represents one of the 
major infectious agents worldwide. Epidemiological data 
show that worldwide in 2007, 33 million people live with 
HIV (UNAIDS, 2008). 

 The entrance of HIV to the cell requires the interaction of 
the viral protein gp120 with the host CD4 receptor and at 
least the participation of one co-receptor. Several factors of 
the host have been involved in the establishment and devel-
opment of HIV infection [43, 44] such as the presence of 
HIV co-receptors [45, 46]. 

 Diverse HIV co-receptors have been characterized, being 
the most important CCR5 (40 KDa) and CXCR4 (40.5 kDa). 
Both co-receptors are located in the host cell and are used by 
the virus to carry out the fusion of viral envelope and host 
cell membrane [47]. CCR5 is mainly used in the early phase 
of infection by HIV strains that infect macrophages (M HIV-
tropics or R5), while CXCR4 interacts with a strain of the 
virus that infect T lymphocytes (T-HIV tropics or X4) 
mainly to the third advanced stage of infection. It is notewor-
thy that a third type of virus can interact with both co-
receptors (HIV R5X4) [48, 49]. 

 According to the time of infection, progression has 
reached the following classification: rapid progression in 
which the patient develops AIDS 3-5 years after acquiring 
the virus; typical progression (TP) with development of 
AIDS in an estimated time of 7 years and slow progression 
(SP) if patients present symptoms of AIDS approximately 
10-15 years after HIV first infection. 

 Epidemiological data suggest differences in levels of 
viral load and CD4 + T cells related to gender. It has been 
observed that women have a better prognosis in early stages 
of infection compared with men, but once the infection is 
established this behavior is reversed, exhibiting a greater 
progression to AIDS in women than in men [50-52]. 

 Intrinsic factors of the virus and host factors that regulate 
the pathogenesis of HIV, have been described [43, 44], for 
example the presence of CCR5 and CXCR4 co-receptors 
plays an important role in the establishment and develop-
ment of the infection [45, 46, 48]. 

 The levels of sex hormones have been associated with 
viral and immunological factors of HIV. There is scarce data 
on hormone levels among women infected with HIV. 

 Results obtained in our laboratory showed that estradiol 
(E2) and P4 levels are within normal menstrual cycle values 
in seronegative (SN) women and TP during the early prolif-
erative phase (days 2-3 of menstrual cycle). Interestingly, P4 
concentration was higher in SN. Previous studies performed 
in HIV infected women have shown that the length of the 
menstrual cycle and the duration of the menstrual bled were 
not different from non-infected HIV patients, suggesting that 
most HIV-infected women have normal ovulatory and men-
strual cycles and have no significant alterations in the hypo-
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thalamus-pituitary-ovary axis [53]. In agreement with our 
data, Cu-Uvin and cols. reported normal levels of E2 and P4 
during the menstrual cycle in both SN and HIV seropositive 
women [54]. 

EFFECT OF P4 ON THE CONTENT OF CCR5 AND 
CXCR4. 

 There is evidence that indicates a regulation of CCR5 and 
CXR4 by sex hormones both in reproductive tissue and pe-
ripheral blood from healthy subjects [55-58]. Data about 
regulation of CCR5 and CXCR4 by sex hormones and oral 
contraceptives are contradictory and depend on the tissue, 
immunological activation and hormone concentration. 

 In peripheral blood mononuclear cells (PBMCs) from 
healthy women, P4 (50 ng/ml) increases the content of 
CXCR4 mRNA. In addition, in vivo, it has been observed 
that during the secretory phase of the menstrual cycle, when 
P4 levels are high (1.6-23 ng/ml), the number of CXCR4 
positive cells is higher than in the proliferative phase of the 
menstrual cycle when P4 levels are lower (0.15-1.4 ng/ml). 
The number of CCR5 positive cells is higher during the pro-
liferative phase and lower during the secretory phase [56, 
59]. 

 In agreement with previous reports, we have found that 
P4 (10 and 100 nM) exerts a negative effect on CCR5 con-
tent in PBMCs from SN and TP women, while P4 has a posi-
tive regulatory effect on CXCR4 content in PBMC from SN 
women and TP at doses of 3.13 ng/ml (10 nM) and 31.3 
ng/ml (100 nM), contrary to the report of Vassiliadou and 
cols. in PBMC from healthy women treated with higher 
doses of P4 (314.4 ng/ml-3.14 g/ml). 

 It is noteworthy that P4 exerts a dual effect depending on 
the dose. Thus, the decrease in CCR5 content was higher in 
TP compared with SN, both in 10 nM (and 100 nM, while 
the increase in CXCR4 content was higher in SN than in TP 
at 10 nM and 100 nM. 

 The mechanism involved in P4 effects on CCR5 and 
CXCR4 content could implicate the interaction of P4 with 
PR [45]. In mast cells it has been observed that the differen-
tial expression of PR isoforms modifies the migration of 
these cells in response to CXCL12, a specific ligand of 
CXCR4, after treatment with P4 (1 nM-1 μM) [60]. Fur-
thermore, the presence of PR is correlated with nuclear local-
ization of CXCR4. In breast cancer cells without PR, there 
was an increase in nuclear localization of CXCR4 [61], indi-
cating that the PR is important for CXCR4 function. 

Table 1. Progesterone Effects in the Regulation of the Immune Response During Viral and Parasite Infections. P4 regulates Both 

Innate and Acquired Immune Response, Affecting Specific Target Cells, Through Binding to PR-A and PR-B. Participa-

tion of Membrane Receptors in P4-Effects has also been Reported. P4 also Directly Affects Protozoan or Helminth Para-

sites, Through Specific Modulation of Pathogen Reproduction, Differentiation and Establishment Without Mediation of 

the Host Immune System. =Increasing, =Decreasing 

Target cell/tissue Effect Proposed mechanism Reference 

Mesenchimal stem cells Immunomodulation Up-regulation of HLA-G 6 

Trophoblast Immunomodulation Up-regulation of HLA-G 5 

JEG=3 cells Immunomodulation Up-regulation of HLA-G 5 

JEG=3 cells Immunomodulation Up-regulation of HLA-E 6 

Hybridoma B cells  gp130 expression induced by IL-6 Down regulation of gp130 7 

Mature bone marrow-derived dendritic 

cells 

 Pro-inflammatory cytokines Diminishes TNF-  and IL-1  and CD80 and 

MHC class II molecule RT1B 

8 

Dendritic cells  Denditric cell maturation Promotes maturation 8 

T cells  Dendritic cell presentation and matura-

tion 

Lower proliferation of stimulated DC 9 

CD4/CD8  Number of cells Unknown 27 

NK cell  Activity Increases P4-induced PIBF expression 33 

Plasmatic cell  IgG, IgE, IgA plasma levels Unknown 30 

Spleenocytes  IL-4, IL-10 Increasing in the PR-A of spleenocytes 37 

PBMCs in vitro Immunomodulation Down-regulation of CCR5 and CXCR4 56 

PBMCs Immunomodulation Up-regulation of CXCR4 56 

Mastocytes Immunomodulation Up-regulation of CXCR4 58 

T. crassiceps  Reproduction, Infectivity Increasing in c-fos and c-jun transcription factors 40 

T. spiralis  Mortality Mortality induction by expression of a progester-

one receptor-like in the parasite 

26 
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 With these data we suggest that P4 is involved in the ac-
quisition and development of HIV disease. During early 
stages of infection when the viral tropism is mainly directed 
to CCR5, P4 may be a protective factor, while in advanced 
stages of infection, when there is a switch to CXCR4 tro-
pism, P4 may be a permissive factor that promotes disease 
progression. This could be one of the explanations for differ-
ences in susceptibility and AIDS progression between 
women and men. 

CONCLUSIONS AND PERSPECTIVES 

 P4 regulates many functions both in vertebrates and in-
vertebrates, from the well known reproductive functions to 
the recently described immunomodulation in infectious dis-
eases (Table 1). Most P4 effects are mediated by its interac-
tion with nuclear PR, which are expressed in immune cells 
and tissues. Interestingly, P4 effects are not restricted to the 
host; since this hormone is able to directly act upon patho-
gens, playing an important role in regulation, susceptibility 
and progression of infectious diseases. The knowledge of the 
effects and mechanisms of action of P4 on various diseases 
may be helpful to determine the treatment of several infec-
tious diseases. 
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