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Abstract: During motherhood the maternal brain undergoes a collection of adaptive changes including behavioral, neu-

roendocrine, and autonomic responses related to maternal behavior and milk production. Steroid (estradiol, progesterone, 

and corticosterone) and peptide hormone (oxytocin and prolactin) levels fluctuate having an impact in areas of the mater-

nal brain inducing structural and functional changes. Recent reports from our laboratory documented neuroprotection in 

the hippocampus of lactating rats against excitotoxic damage induced by kainic acid. This review focuses on recent stud-

ies about neural plasticity induced by reproduction in the maternal brain, with special focus on lactation as a model for 

neuroprotection, and on the possible involvement of the immune system in this phenomenon.  
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INTRODUCTION 

 A unique feature of mammals is their mammary glands 
and the capacity to feed their newborn litters. Adequate lac-
tation together with the maternal care (provided by the 
mother) are essential for reproduction and survival of mam-
mals as individuals and as species. In accordance with fulfill-
ing the nutritional demand of the pups, care of the offspring 
involves a wide set of behaviors, for which, the mother must 
adapt her physiology to satisfy the demands of the litter as 
well as her own needs [1]. Thus, the maternal brain goes 
through a series of adjustments that synchronize neuroendo-
crine, autonomic and behavioral responses, and can be con-
sidered a natural model for neuroplasticity [2]. Plasticity can 
be defined as an intrinsic property of the nervous system 
retained throughout the lifespan, that involves dynamic, 
functional or morphological changes in the brain that occur 
in response to modifications in the afferent input or the ef-
ferent demand [3]. The establishment of new connections 
through dendritic growth and arborization may follow such 
rapid ongoing changes, and this is the mechanism for devel-
opment, growth, and learning [3].  

 In this sense, lactation represents a state in which internal 
signals trigger a system reorganization that is maintained by 
the afferent stimuli, including suckling, and results in adap-
tive efferent responses. Such reorganization might be de-
monstrable at the level of behavior, anatomy, and physiol-
ogy. Work on plasticity in the maternal brain has focused on 
hypothalamic and limbic structures associated with the 
physiology of lactation [4, 5], expression of maternal behav-
ior [6], and the stress response [7]. Morphological alterations 
induced by lactation include remodeling of cell structure in  
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nuclei of the hypothalamus and other brain areas, especially 
of the limbic system, where functional changes include a 
variety of alterations related to neurotransmission, the stress 
response, anxiety, cognitive performance, learning and 
memory, and particularly those related to maternal behavior 
[8, 9]. Recent studies have examined dynamic changes oc-
curring in the maternal brain, especially in the hippocampus, 
and the consequences of such changes.  

NEUROPROTECTION IN THE HIPPOCAMPUS DUR-
ING LACTATION 

 Among the various morphological and functional adapta-
tions that reproduction imposes on brain of the female, re-
cent reports from our group have demonstrated that the dor-
sal hippocampus of the maternal brain is protected against 
excitotoxicity induced by kainic acid (KA) injection [10, 11]. 
Lactation in the rat is accompanied by a dramatic increase in 
the resistance to N-methyl-D-aspartate (NMDA)-induced 
neuronal activity. This refractoriness to NMDA-mediated 
activity is evident through a lack of behavioral responses, 
such as hyperexcitability and seizures, and a lack of c-fos 
expression in specific regions of the brain [12]. Also, preg-
nancy decreases the frequency of spontaneous recurrent sei-
zures in rats with KA lesions of the hippocampus [13, 14], 
and it reduces binding to glutamate and kainate receptors 
[13].  

 KA is a cyclic agonist of glutamate that can depolarize 
both pre- and postsynaptic neurons through its interaction 
with the kainate and AMPA ionotropic glutamatergic recep-
tors [15]. The administration of KA to rodents is widely used 
to induce excitotoxic cell damage in the hippocampus. KA 
increases the production of reactive oxygen species, disrupts 
mitochondrial function, and induces cell death by both ne-
crotic and apoptotic pathways [15, 16]. It is known that the 
CA1 and CA3 regions and the hilus of the dentate gyrus of 
the hippocampus are particularly sensitive to KA excitotox-
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icity [15-19], mainly because of the distribution of kainate 
and AMPA receptors located in those areas [20, 21].  

 We took advantage of the kainate model of epilepsy to 
investigate the neuroprotective actions of lactation in the 
maternal hippocampus, and we found that CA1, CA3, and 
CA4 areas are protected against KA-excitotoxicity [10, 11]. 
We reported that lactation protects the dorsal hippocampal 
regions CA1, CA3, and the hilus of the dentate gyrus against 
damage caused by systemic KA administration, in compari-
son to virgin rats in the diestrus phase of the estrous cycle 
[10]. The main structures of the dorsal hippocampus affected 
by kainate administration in the animals treated during di-
estrus were the CA1 and CA4, and to a lesser degree CA3, 
whereas lactating rats only showed minor alterations in the 
CA3 region and only with the higher dose. These results 
clearly showed that the susceptibility to cellular degeneration 
by kainate excitotoxicity was higher in animals in the di-
estrus phase [10]. Moreover, the score of the behavioral 
manifestation of motor seizures showed that diestrus rats 
treated with KA reached the severity stage of 4-severe to 5-
mild according to the Zhang scale [22], while lactating rats 
showed only early signs of behavioral seizure [10].  

 Pregnancy decreases the frequency of spontaneous recur-

rent seizures induced by KA injected into the dorsal hippo-

campus, and reduces the affinity of kainate receptors [13, 

14]. This might explain the neuroprotective effects of lacta-

tion, but more studies on this aspect are necessary. Indeed, 

lactation exerts a protective instead of preventative action 

against KA, since neuroprotection has been documented for 

up to 72 h after intracerebral injection of KA [11]. How 

hormones of lactation participate in this downregulation of 

the glutamate receptor, and the glial remodeling of this area 

during reproduction, and induced by KA treatment remains 

to be determined. The influence of suckling and exterocep-

tive stimuli on these protective effects of lactation cannot be 

excluded since exposure to an enriched environment, as oc-

curs in the maternity experience, can have protective effects 

against KA-induced seizures [23].  

Role of Steroid Hormones (Corticosterone, Estrogen and 
Progesterone 

 Corticosterone. Studies on the vulnerability of the hippo-

campus during chronic stress have shown that cumulative 

exposure to corticosterone over the lifespan may contribute 

to age-related loss of neurons in the hippocampus, and that 

prolonged stress or exposure to corticosterone accelerates 

this process [24]. In the experimental model of neurotoxicity 

induced by KA, stress or glucocorticoids such as corticoster-

one can exacerbate glutamate-induced cell death in hippo-

campal neurons [25]. Lactation is considered a state of hy-

percorticalism [7], and considering that chronically high lev-

els of corticosterone accelerate and exacerbate KA-induced 

neurotoxicity in the CA3 hippocampal area in male rats [25], 

this condition would appear to make the maternal brain more 

vulnerable to excitotoxic damage. Moreover, the level of 

corticosterone influences the expression of mRNAs for ka-

inate receptor subunits in the rat hippocampus [26]. How-

ever, it has not yet been determined whether there are 

changes in the glutamatergic or kainate receptor subunits in 
the hippocampus of the dam. 

 One of the pioneer examples connecting the neuroendo-
crine and immune networks are the actions of corticosterone 
on the immune system. Apart from the well-known periph-
eral actions of glucocorticoids on the immune system [27], 
exposure to high glucocorticoid levels renders hippocampal 
neurons more susceptible to neurological insults, such as 
sodium nitroprussiate-induced excitotoxicity [28]. This 
effect could be explained by a direct interaction between 
glucocorticoids and their receptors within neurons, or by a 
lack of the neuroprotective properties of innate immune 
cells. Glucocorticoids can alter NF-kappaB signaling and 
activation of microglia, which are potent neuroprotective 
mechanisms against an excitotoxic agent [28]. 

 Estrogen and progesterone. The neuroprotective effects 
of these ovarian hormones in the CNS are well-documented 
[29, 30]. Progesterone treatment reduces limbic seizures in a 
variety of experimental models, including the kainic acid 
model of epilepsy, where it has been shown that low but not 
high doses of progesterone reduce seizures, thereby reducing 
damage to the hippocampus [31]. The progesterone metabo-
lites, dihydroprogesterone and allopregnanolone, signifi-
cantly diminish cell loss in the hippocampus after KA treat-
ment [30-33]. Allopregnanolone is a potent allosteric modu-
lator of the GABA-A receptor, and several studies propose 
that the interaction between allopregnanolone and the 
GABA-A receptor is the mechanism whereby progesterone 
attenuates seizure activity [reviewed in 31]. These data sug-
gest that progesterone and/or its metabolites might play an 
important role in the neuroprotective effects of lactation 
since this hormone is elevated for a significant period during 
this phase. 

 With regard to estrogen, a few studies suggest that de-
spite the potential for increased seizures, estrogen may re-
duce neuronal death from seizures [34-38]. Physiological or 
supraphysiological levels of estrogen reduce neuronal cell 
death from seizures, but have little effect on seizure severity 
[31]. In addition, estradiol and progesterone can reduce the 
neurotoxic effects of glutamate on the hippocampal region of 
the brain, and several studies have shown that 17-  estradiol 
can downregulate caspase-3 expression and upregulate the 
expression of antiapoptotic proteins of the Bcl-2 family [34, 
36]. Moreover, the hippocampus is able to synthesize estra-
diol after KA administration [37, 39].  

 Data from our group show that during lactation there is a 
significant change in the expression of estrogen receptor 
(ERs) in the hippocampus as compared to diestrus rats, sug-
gesting a strong correlation between expression of ERs, es-
pecially ER- , in lactating CA1 and CA3 hippocampal re-
gions in response to kainate administration, and the neuro-
protection observed during this reproductive period [40]. The 
neuroprotective actions of ER-  and ER-  in experimental 
neuroprotective models include enhanced Bcl-2 expression 
in hippocampal neurons that is enhanced to an extent compa-
rable to their neuroprotective capacity. Activation of either 
ER-  or ER-  can promote neuroprotection in hippocampal 
neurons, suggesting that both receptor subtypes could be 
involved in estrogen neuroprotection [40]. 

 The neuroprotective effects provided by lactation could 
result from changes in Bcl-2 protein expression. The Bcl-2 
protein family has been implicated in the regulation of apop-
tosis [41], it suppresses programmed cell death, it forms ho-
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modimers as well as heterodimers with a homologous pro-
tein Bax, a promoter of cell death, and it is required to main-
tain cellular viability in the CNS [42]. Increased Bcl-2 label 
in the CA1 hippocampal region of lactating animals corre-
lates with less damage [10]. In addition, there are studies 
suggesting that antioxidant effects seen with high doses of 
estrogen protect neurons from cell death [43], which could 
be another protective action of ovarian steroids.  

Role of Peptide Hormones (Oxytocin and Prolactin) 

 Two main peptide hormones involved in lactation are 
prolactin and oxytocin. Release of both hormones is affected 
by KA administration [44, 45], and the sensitivity of oxyto-
cin magnocellular neurons to KA is altered during lactation 
[46]. Oxytocin triggers uterine contraction and milk ejection. 
Besides their projection to the posterior pituitary lobe, oxy-
tocinergic neurons project centrally and their fibers reach the 
hippocampus [47]. Oxytocin has effects on the hippocampus 
that improve memory and learning by promoting the estab-
lishment of long-lasting connections between neurons in the 
hippocampus [48], and it reduces the restraint stress-induced 
c-fos expression within the dorsal hippocampus (CA1-CA4 
and dentate gyrus) [49]. Concerning glutamate activation 
oxytocin can show both inhibitory and excitatory actions, 
depending on the state of the animal and the dose employed 
[5].  

 Prolactin estimulates milk secretion in the mammary 
gland, and its central actions include a variety of behavioral 
and neuronal actions, including promotion of maternal be-
havior and grooming [50], anxiolytic and neuroprotective 
actions [51]. Prolactin is released in the CNS in response to 
suckling and restraint stress, and its hypothalamic expression 
is enhanced in pregnant and lactating animals [52]. These 
authors have shown that chronic intra-cerebral administra-
tion of prolactin blocks restraint stress-induced neuronal 
activation within the CA3 layer and the dentate gyrus of the 
dorsal hippocampus.  

 Prolactin has also been reported to be neuroprotective in 
the hippocampus by counteracting the reduction in cell sur-
vival induced by chronic stress [51]. Furthermore, reduced c-
fos expression in the ventral hippocampus under basal condi-
tions suggests that prolactin modulates inputs to the hippo-
campus [53] where the prolactin receptor is expressed [54]. 
Hypoxia/ischemia induces a robust activation of prolactin in 
regions of the cerebral cortex, and prolactin is involved in 
the gliogenic response during recovery from cerebral injury 
[55], prolactin also regulates oligodendrocyte precursor 
proliferation and mimics the regenerative effects of 
pregnancy observed in multiple sclerosis [56]. Chronical 
treatment of PRL has been correlated with a decrease in 
audiogenic-epileptic seizures [57] and unpublished data from 
our laboratory indicate that prolactin treatment exerts a 
protective effect in the hippocampal areas of intact and 
ovarectomized female rats against KA injection, and 
diminishes the progression and intensity of KA-induced 
seizures.  

CONCLUSION 

 Lactation is associated with increased levels of oxytocin, 
prolactin, progesterone, and glucocorticoids that are main-
tained by suckling stimulation and reinforced by external 

signals from the litter. During pregnancy and lactation, the 
fluctuation of the ovarian hormonal levels is modified, and 
the circadian secretion of corticoids is lost. Neuroprotection 
in the hippocampus observed during lactation might involve 
actions of anyone or a combination of these hormones on the 
maternal brain.  

 Changes in the hippocampus as a result of motherhood 
include dendritic architecture, synaptic plasticity, and de-
creased cell proliferation in the hippocampus during the lac-
tation period [reviewed in 58]. Those changes, including the 
protective effect of lactation on the neurons of the hippo-
campus [10], could serve the purpose of maintaining neurons 
that have undergone pregnancy-induced changes necessary 
for the expression of behavioral and endocrine changes that 
occur during this phase. Lactation is the feature by which the 
mammals are distinguished and represents a natural model 
for plasticity because of the new requirements for maternal 
behavior and nursing.  

 Apart from the adaptations in the maternal behavior and 
physiology that involve a set of behaviors for care of the 
newborn, production of milk, and metabolic changes, lacta-
tion is a natural model to study neuroprotection. Systemic 
injection of KA induces progressive limbic seizures in rats 
[15], leading to neuronal cell death by induction of reactive 
oxygen species production and mitochondrial dysfunction in 
many regions of the brain, particularly in hippocampal CA1 
and CA3, and the hilus of dentate gyrus) [15-18]. Moreover, 
delayed induction of proinflammatory gene expression, such 
as TNF- , IL-1 , IL-6, inducible nitric oxide synthase 
(iNOS) and cyclooxygenase- 2 (COX-2), are regarded to 
induce prolonged neurodegeneration [59, 60]. Thus, one un-
explored but important aspect of neuroendocrine-immune 
interactions is the correlation between hormones of lactation 
and the local immune response induced by a damaging 
agent, like KA, in the hippocampus of the mother.  
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