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Abstract: Marijuana is the most commonly abused illicit drug by pregnant women in the world. Its psychoactive 

cannabinoid, 
9
-tetrahydrocannabinol, crosses the placenta and accumulates in the fetus, potentially harming its 

development. In humans, marijuana use in early pregnancy is associated with an increased risk for miscarriage, 

anencephaly, as well as subtle neurodevelopmental defects in the offspring, including ADHD, psychiatric disorders, 

learning disabilities and memory impairment. Little is known about the mechanisms by which marijuana exert its 

detrimental effects on the developing embryo, although recent evidence points to the possibility that 
9
-

tetrahydrocannabinol might interfere with an endogenous endocannabinoid system present in the embryo during early 

stages of pregnancy. Here we review our current knowledge on evidence for an endocannabinoid system in early 

embryonic development and discuss a possible mechanism of action for 
9
-tetrahydrocannabinol in early pregnancy. 
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1. PREVALENCE OF CANNABIS USE IN PREGNANT 

WOMEN 

 Marijuana (Cannabis L. Sativa) is the most widely used 
psychoactive substance in the world since it is estimated to 
be consumed by 200-300 million people worldwide [1-3]. In 
the USA alone and within the year 2002, it was used by 10% 
of women aged 15-44 years [4], and 25.7% of women within 
the 18-25 age group [5]. Rates of newborns prenatally 
exposed to marijuana in 1990, were estimated at levels from 
3 to 20%, which indicates that every year in the US alone, 
women give birth to between 125,370 and 835,800 children 
prenatally exposed to marijuana [6]. Its psychoactive 
constituent 

9
-THC [7, 8] crosses the placental barrier and 

accumulates in foetal tissue and amnionic fluid, reaching its 
highest concentration in the foetal brain [9-11], and thus has 
the potential for harming embryonic development [12]. 

 The potentially harmful effects of marijuana use during 
pregnancy are aggravated by the fact that the potency of 
marijuana preparations, in terms of 

9
-THC content, has 

increased almost 8-fold since 1970, when the content of 
9
-

THC in marijuana was 1.25% [13]; 
9
-THC content in 

marijuana now averages 8.12%, reaching up to 37.2% in 
marijuana preparations derived from dried flowering buds 
due to sophisticated cannabis cultivation methods [14] (Fig. 
1A-C). Similarly, 

9
-THC content in hashish (dried cannabis  
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resin and compressed flowering buds) currently averages 
28.19%, compared to 2.3% in the 1970s (table 9 in [14]), 
with some hashish samples containing up to 66% 

9
-THC 

[14]. In the last 25 years there has been an alarmingly steady 
increase in the availability of marijuana containing high 

9
-

THC content (9.0% or higher) versus low content (less than 
3%) [14] (Fig. 1D): In 1989, only 1.8% of marijuana 
samples seized in the U.S. contained high 

9
-THC content 

(compared to 52.6% samples containing low 
9
-THC 

content); By contrast, in 2004 and 2007, approximately 28% 
and 37% seized samples contained high 

9
-THC respectively 

[14]. Furthermore, marijuana is now becoming the focus of 
intense biotechnological research, opening new avenues for 
biotechnological production of cannabinoids [3]: Initial steps 
in this direction have already been undertaken with the 
synthesis of 

1
-THC through the use of yeast-based 

expression systems [15] and transgenic tobacco hairy roots 
[16] (Fig. 1E); 

1
-THC can be readily transformed into 

psychoactive 
9
-THC through heat decarboxylation [17]. 

Most alarmingly, with the accessibility of the Internet, 
Cannabis is now readily available for seeding via internet 
[e.g. 18], cultivation methodology and production of 
marijuana and hashish through online [19-22] and/or on site 
courses in the U.S. and elsewhere [23]. 

2. 
9
-THC AND THE ENDOCANNABINOID SYSTEM 

 In the adult central nervous system CNS, 
9
-THC exerts 

its psychotropic effects by activating presynaptic Gi/o
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protein–coupled CB1 cannabinoid receptors (CB1) either as 
an agonist or partial agonist [24]. The distribution of CB1 in 
adult CNS accounts for the psychoactive properties of 

9
-

THC, since it encompasses regions implicated in the actions 
of 

9
-THC, including basal ganglia, hippocampus, 

amygdala, cerebral cortex, tectum, and cerebellum; In 
addition to CNS, CB1 is also expressed in the spinal cord, 
and in tissues involved with metabolism, such as adipose 
tissue, liver, and skeletal muscle. CB1 is part of the 
endocannabinoid (eCB) system, a signaling network which 
encompasses, in addition to presynaptic CB1 and CB2 

receptors, endogenous ligands AEA and 2-AG, proteins 
required for the synthesis (via DAGL ) and inactivation (via 
FAHH, MAGL) of endocannabinoids, reviewed in [25, 26]. 
The eCB system is extensively characterized in the adult 
CNS, where it functions to modulate neurotransmitter 

signaling during feeding, fear, anxiety, memory, cognition, 
perception and motor coordination, mainly by retrograde 
transmission: In this, endocannabinoids are released by post-
synaptic neurones to suppress presynaptic neurotransmitter 
release via retrograde mechanisms [27-30]. 

 Other mechanisms of action of eCB system in the adult 
include modulation of neuronal signaling pathways via 
modulation of synaptogenesis in adult cerebellar neurones 
[31] and regulation of neurogenesis: In the adult CNS, the 
subgranular zone of the hippocampal dentate gyrus and the 
cortex constitute the principal neuroproliferative zones in the 
adult brain. The hippocampal dentate gyrus contains neural 
stem/progenitor cells capable of generating new neurones. 
Evidence suggests that the eCB system controls neuronal 
progenitor cell proliferation and differentiation in both 
systems [32-34]. Downstream targets to CB1 regulation of 

 

Fig. (1). Potency of marijuana: A, live Sour Diesel and B, dried flowering buds of NYC Diesel, some of the most potent current Cannabis 

varieties (source High Times Magazine archives [18]; courtesy of Danny Danko); C, Non-normalized average 
9
-THC content per year 

seized (period 1975-2008) adapted with permission from Prof. ElSohly [table 2, fig. 1; 14]; D, Prevalence of high potency marijuana (period 

1989-2007) adapted with permission from Prof. ElSohly (table 1 in [14]); (only seized samples with relative 
9
-THC content less than 3% or 

higher than 9% are shown (samples with relative 
9
-THC content 3-4.9% and 5-8.9% were omitted from the graph for simplicity); E, 

Synthesis of 
1
-THC using transgenic tobacco hairy roots expressing THCAS [3]. Figures reproduced with permission from High Times 

Magazine Inc. (A, B), and Bentham Science Publishers Ltd (E). 
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proliferation and differentiation of neuronal progenitors 
include ERK1/2 [35] and p38-MAPK phosphorylation [36], 
possibly via PI-3K activation by CB1 followed by Raf 
activation via phosphorylation, or via direct MAPK 
activation by CB1 via its effects on cAMP [37]. The ability 
of 

9
-THC to mimic the function of endocannabinoids, and 

thereby to interfere with eCB in signal transmission, 
neurogenesis and synaptogenesis in the adult CNS, is 
reviewed in [38-40]. 

 The eCB also modulates non-neuronal signaling 
pathways in the adult brain, such as activation of immediate 
early gene expression of c-fos and c-jun in rat adult forebrain 
[41] and Krox-24 (via phosphorylation and activation of 
ERK subtype of MAPK) in non-neuronal cell lines 
expressing CB1 [42, 43]. Cannabinoids also promote 
oligodendrocyte progenitor survival in forebrain of newborn 
rats [44-46], as well as and astrocyte survival [47] via PI-3K 
activation. Other examples of eCB action include modulation 
of neuritogenesis in adult hippocampus and neuroblastoma 
cells via FRNK [48, 49]. Finally, cannabinoids can inhibit 
invasion in glioma and inhibit cell migration in glioma cell 
lines, via down-regulation of MMP-2 expression [50]. 

3. ENDOCANNABINOID SYSTEM DURING EARLY 
EMBRYONIC DEVELOPMENT 

 Besides its role in adult CNS, the eCB system is also 
functional during embryogenesis: So far, its functional role 
during implantation and neuronal development has been 
extensively examined: During implantation, a series of 
spatially and temporarily regulated events is required for 
uterine receptivity and implantation of the blastocyst [51], 
including an interplay between CB1 expression in the 
embryo and AEA synthesis in the uterus [reviewed in 52, 
53]. A role for the eCB system has also been demonstrated 
during neuronal development, where this system is required 
for the correct establishment of neuronal diversity and 
connectivity within the developing hippocampus and cortex; 
The eCB system is implicated in neurogenesis, neuronal 
migration, dendritogenesis, axon guidance, synaptogenesis, 
lineage specification and gliogenesis [reviewed in 54, 55]: 
During neuronal development, CB1 receptors are expressed 
in early neural progenitors [56, 57], with receptor levels 
increasing throughout neuronal specification and synaptogenesis 
and CB1 being progressively localized to developing axonal 
projections [58-61]; CB1 receptors are also highly expressed 
in the rat hippocampus during initiation of gliogenesis [62]. 
In the developing hippocampus and cortex of 17 day rat 
embryos, endocannabinoids inhibit lineage commitment and 
differentiation program of neural progenitor cells into mature 
neurones, via attenuation of ERK pathway by CB1, and 
promote astroglial differentiation [33, 56, 62-64]. 

 Endocannabinoids also function as diffusible axon guidance 
cues to modulate neuronal migration, synaptogenesis and target 
selection in hippocampus and neocortex [31, 61, 65-67]: In 
the developing cortex, interneuron specification and 
migration is in part governed by epigenetic cues in neocortex 
including BDNF which act on TrkB receptors of 
interneurones [65]; Endocannabinoids are shown to control 
interneuron specification and migration by acting as 
 

chemoattractants which regulate BDNF/TrkB receptor 
signaling [65-66]. Finally, CB1 signaling is required for 
FGF-dependent axonal growth of cerebellar neurones [68], 
as well as axonal growth and fasciculation in zebrafish [69] 
(see section 8), reviewed in [55, 57]. 

4. eCB SYSTEM PRIOR TO NEURONAL DEVELOP-
MENT 

 Besides a role for the eCB system in implantation and 
neuronal development, recent evidence suggests presence of 
this system in the period starting after implantation and 
ending before neuronal development i.e. during gastrulation, 
neurulation, formation of brain primordia and somitogenesis; 
It is during this developmental period, that the basic scaffold 
for the cerebral cortex, amygdala and hippocampus originate 
from a simple neuroepithelium, the neural plate (Fig. 2A): 
This is the earliest recognizable form of the CNS and 
appears at mouse GD7 (equivalent to human day 15 of 
gestation). The neural plate is subdivided into presumptive 
territories for the different precursors of the forming CNS, 
the forebrain, midbrain and hindbrain (Fig. 2A); A crease 
appears along the midline of the neural plate, and deepens 
until its sides arch over and fuse with each other to form the 
neural tube, the anterior segment of which will form the 
CNS. As the embryo develops, the anterior neural tube 
becomes divided into 3 vesicles, the forebrain, midbrain and 
hindbrain (Fig. 2A), reviewed in [70]. At the start of 
neuronal development, the forebrain differentiates into 
telencephalon and diencephalon; The telencephalon will 
develop into the cerebral cortex, through the process of 
corticogenesis, a process for which the role of 
endocannabinoids is well characterized (section 3), as well as 
amygdala; The diencephalon will become the optic vesicles, 
thalamus, epithalamus, hypothalamus and hippocampus; The 
midbrain will differentiate into tectum, and the hindbrain 
will give rise to pons, cerebellum and medulla oblongata 
[71]. At early stages of neurodevelopment, chick, mouse and 
human embryos share the same developmental cascades, as 
well as similar basic morphology (Fig. 2B, C). 

 In human, CB1 is expressed from the earliest stages of 
neuronal differentiation at week 14 ([72]; earlier stages not 
yet investigated). At this stage, CB1 is expressed at low 
levels (compared to adult) in a homogeneous pattern 
throughout the developing brain. 

 In animal models, CB1 and other components of the eCB 
system are detectable prior to neurogenesis, indicating non-
neuronal functions for CB1: In rat, earliest expression of CB1 
is detectable at stage E11 (equivalent to human day 24; 
earlier stages not yet investigated) [73]: In those embryos, 
CB1 mRNA expression is detected throughout the marginal 
layer of the neural tube and in somites (Fig. 3A), suggesting 
a potential function for CB1 in induction and patterning of 
CNS precursors into forebrain, midbrain and hindbrain, and 
in somitogenesis. At a later stage (E12; equivalent to human 
day 28), CB1 mRNA is expressed in the telencephalon 
(neocortical neuroepithelium) of rat embryos [73]. 

 In chick, CB1 expression is visible at stage HH11
-
 

(corresponding to human day 23; earliest stage investigated 
in this study), although there is now evidence that CB1 is 
expressed throughout earlier stages too (see below); In  
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Fig. (2). Precursors for brain in the developing embryo: A, HH5 chick embryo (early neural plate stage): Dotted area, presumptive neural 

plate, subdivided into presumptive forebrain (fb), midbrain (mb), hindbrain (hb) and spinal cord (sc) territories (adapted from [71] visible at 

HH11
+
; HH4

+
 embryo hybridized with neural plate marker Sox2 (gift of Dr. Lovell Badge); HH11

+
 embryo processed with neural crest 

antibody Pax7 (gift of NIDHD; source JoVE]); B, human embryos days 15-23, courtesy of Dr. Kathleen Sulik; C, equivalent stages in chick 

embryos hybridized with forebrain/midbrain marker Otx2 (probe gift from Dr. Bally-Cuif). (Fig. 2C is reproduced with permission from 

John Wiley & Sons, Inc). 
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HH11
-
 embryos, CB1 expression is visible in the primordium 

of the ventral forebrain [74] (Fig. 3B), a region which will 
give rise to the hippocampus and the cerebral cortex at later 
gestational stages; At slightly later stage (HH11; equivalent 
to human day 24), CB1 mRNA expression is also visible in 
rhombomeres r4 and r6 of the hindbrain [74] (Fig. 3C). In 
addition to its expression in developing CNS, CB1 is also 
visible in the presomitic mesoderm (musculoskeletal 
precursors) [74] (Fig. 3D); At a slightly later stage (HH12; 
equivalent to human day 26), CB1 mRNA expression is 
visible in the differentiating interneurones of rhombomere 4 
of the hindbrain [75]. Other studies find that CB1 protein 
expression at HH12 is more widespread than the existing 
data on mRNA, encompassing moderate expression 
throughout the developing HH12 embryo, with intense 
labeling in the emerging neural crest cells (Fig. 3E), neural 
tube, somites (Fig. 3F) and developing brain [in prep.]. 

 There is also evidence from chick, mouse [in prep.] and 
zebrafish [76] that CB1 might be expressed at stages earlier 
than previously investigated: Earliest CB1 expression is 
detectable at stage 3 somite in zebrafish embryos (equivalent 
to human days 21-23) [76]. This result is corroborated by 
findings in chick and mouse embryos, which show that CB1 
is also expressed at stages earlier than 3 somites, in fact from 
gastrulation onwards (stages HH3

+
 to 10; equivalent to 

human days 15 to 23 after conception), and thus much earlier 

than previously thought (Fig. 4) [in prep.]. These 
preliminary studies also indicate that other components of 
the eCB system (DAGL  and MGLL) are also present 
during this critical period of development (Fig. 4; [in prep.]; 
FAAH not investigated so far). Together, the above results 
support a novel, so far uncharacterized role for the eCB 
system in early embryogenesis in gastrulation, neural 
induction, formation of brain primordia and somitogenesis, a 
role which would be clearly discernible from its function in 
neuronal development. 

Adverse Outcome Following Gestational Marijuana 
Exposure 

 Research on the gestational effects of marijuana in 
human has associated its use with increase risks for 
spontaneous abortions/resorptions (section 5), growth 
retardation [77], gross-teratological malformations, such as 
FAS-like symptoms, VSDs, gastroschisis and anencephaly 
[77, 78] (section 7), and neurobehavioural deficiencies 
(section 8): 

5. OCCURRENCE OF RESORPTIONS AND MISCAR-
RIAGE FOLLOWING GESTATIONAL 

9
-THC EXPOSURE 

 In human, there are two possible mechanisms for the 
increased risk of early miscarriage: 

 

 

Fig. (3). CB1 receptor expression in embryogenesis: A, CB1 receptor expression in E11 rat embryo [73]; CB1 receptor mRNA expression is 

detected throughout the marginal layer of the neural tube and in somites. nt, neural tube, som: somites; B-D, CB1 receptor expression in 

HH11 chick embryo [74]; CB1 receptor expression is visible in the primordium of the ventral forebrain (C), and, at slightly later stage in r4 

and r6, as well as in presomitic mesoderm (D); E,F, expression of CB1 receptor at stage HH12 chick embryo is homogenous throughout the 

embryo, with high levels in emerging neural crest (E), neural tube and somites (F) [in prep.]. Figures reproduced with permission from 

Elsevier Science Inc. (A), John Wiley & Sons, Inc. (B-D). 
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(1) Lack of blastocyst implantation due to a non-
receptive endometrium [79], as demonstrated in 
rodent models [80]; For implantation to occur, 
endometrial levels of AEA have to be reduced at the 
presumptive site of implantation, which they are due 
to local FAAH activity [79]; If high levels of AEA 
are maintained, implantation will not occur and the 
embryo will abort [80]. High levels of 

9
-THC in the 

endometrium of marijuana users might act in a 
manner similar to elevated AEA levels, thus 
preventing uterine receptivity and consequently 
implantation to occur, resulting in spontaneous 
abortion 7-12 days following conception. 

 (2) Severe embryonic malformations following 
embryonic exposure to 

9
-THC, as in the case on 

animal models (see below [81]), would result in death 
of the embryo, and be equivalent to spontaneous 
abortion at days 19-24 following conception, a 
phenotype which could easily misinterpreted as lack 
of implantation in human or rodent models. In human 
studies, 

9
-THC would be deemed devoid of any 

effects, except lack of implantation. The problem of 
some human studies is that subjects might be selected 
after pregnancy is confirmed, and therefore it is not 
possible to investigate the possibility that exposure to 
marijuana early in gestation is associated with 

lethality for severely malformed fetuses; We now 
know that CB1 mRNA and other components of the 
eCB system are expressed during the stages following 
implantation and prior to neuronal development in 
animal models (i.e. human days 12-24). It is therefore 
possible that 

9
-THC mediates its teratogenic effects 

in animals and perhaps human, via interference with 
an endocannabinoid system in the early embryo. 
Since neuronal development has not taken place yet, 
this would suggest that the eCB has an hitherto 
unknown function at these early stages. The function 
of the eCB at these early stages constitutes the focus 
of our current research [in prep.]. 

6. 
9
-THC AND TEMPORAL PATTERN OF 

EMBRYOTOXICITY IN ANIMAL MODELS 

 Classical studies show that the developmental stage at 
which 

9
-THC is administered is a critical factor in 

determining the degree of embryotoxicity of 
9
-THC: The 

period of greatest susceptibility to the embryotoxic effects of 
9
-THC (or window of sensitivity to 

9
-THC) occurs during 

early organogenesis (GD6-GD8 in mouse). During this 
period, 

9
-THC administration results in a high incidence of 

resorptions (embryo death) and congenital malformations 
including defects in CNS formation and patterning 
(including holoprosencephaly, anencephaly and exencephaly 

 

Fig. (4). Preliminary findings on endocannabinoid system in early chick and mouse embryos [in prep.]: A, top panel given only for 

reference; in situ hybridization with neural plate Sox2 and immunochemistry with neural crest marker Pax7 to show Hensen’s node (Hn) and 

neural precursor populations ANP (anterior neural plate), Fb (forebrain), Mb (midbrain), and Hb (hindbrain); B-D, Areas shown in A were 

dissected and processed for RT-PCR using chick specific primers for CB1R (184 bp cDNA), DAGL  (185 bp), MGLL (185 bp), and 

GAPDH (579 bp); E, RT-PCR using mouse specific primers for CB1R (280 bp), DAGL  (335 bp), MGLL (200 bp), and GAPDH (290 bp). 
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[reviewed in 82] (section 7); By contrast, exposure to 
9
-

THC prior to organogenesis (peri-implantation stages GD1-
GD6), results in 100% resorption before the embryo can 
reach organogenesis [83, 84], equivalent to spontaneous 
abortions in human at days 5-14 (section 5); Administration 
of 

9
-THC after organogenesis (mouse GD9-GD14), no 

longer results in a high incidence of resorptions or congenital 
malformations [e.g. 85, 86]; Thus, there is a developmental 
window of susceptibility to the embryocidal and teratogenic  
effects of 

9
-THC, a window which coincides with the 

period of early organogenesis (approx. GD6.5-GD8.5); In 
human, this period corresponds to gestation days 15-22, a 
time point during which most younger women are unaware 
of their pregnancy and of the risks of concomitant use of 
marijuana. 

7. RISK OF ANENCEPHALY FOLLOWING 
GESTATIONAL 

9
-THC EXPOSURE 

 Anencephaly is a typical teratological malformation of 
the CNS, in which the brain fails to form (Fig. 5A). Previous 
reports on marijuana use and fetal developmental outcome 
did not report any case of anencephaly: these reports were 
analyzing cases prior to 1997 (period 1983 to 1994) [87-89], 
in other words a period during which the average 

9
-THC 

content in marijuana was essentially below 3.1%, varying 
between 2.2% and 3.4% (calculated from data on table 2 in 
[14] Fig. 1D). Yet, a recent report which analyzed data from 
the NBDPS, which recruited births in the period 1997 and 
2003, found a clear correlation between gestational 
marijuana exposure and anencephaly [90]; A note to mention 
that in this 1997-2003 period, 

9
-THC content in marijuana 

averaged 5.2% (varying between 4.5% and 6.4%) compared 
to 3.1% in the period 1983 to 1994, and 8.12% in 2007 (table 
2 in [14]). In this study [90], which included 10,241 infants 
with major congenital malformations and 4,967 infants 
without major congenital malformations born between 1997 
and 2003, it was determined that periconceptional cannabis 
use (first trimester) is associated with an increased risk of 
anencephaly (adjusted OR = 1.7; 95% CI = 0.9-3.4). 
Restricting the analysis to cannabis use in the first month 
after conception, during which the neural tube closes, 
confirmed this finding (adjusted OR = 2.5; 95% CI = 1.3–
4.9). Cannabis use in the other months of the 
periconceptional period was not associated with an increased 
risk of anencephaly [90]. From these results, we can predict 
that the risk of infants born with anencephaly will increase in 
the coming years, considering that not only the number of 
childbearing women potentially exposed to marijuana has 
increased, but so has the 

9
-THC content found in marijuana 

preparations. In animal models, classical studies on 
marijuana embryotoxicity describe cases of holoprosencephaly, 
partial anencephaly (in which the anterior neural tissue is 
partially closed) and exencephaly (an early stage of 
anencephaly in which the neural tissue gradually 
degenerates, leading to anencephaly phenotype) [e.g. 83, 91]. 

 Recent experiments with chick embryo report 
anencephaly and other CNS malformations following 
exposure to a water soluble 

9
-THC analogue O-2545 [81]: 

In embryos treated with low dose of O-2545, the neural folds 
fail to elevate and to fuse, most likely comparable to  
 

exencephaly in mammalian systems (fig. 1BE in [81]). In 
embryos treated with medium dose of O-2545, the brain is 
poorly segmented into forebrain, midbrain and hindbrain 
primordia (Fig. 5B), a phenotype most likely comparable to 
anencephaly in mammalian systems. In those embryos, 
neurulation is severely disrupted since the neural plate fails 
to extend along the AP and ML axes of the embryo (fig. 5K, 
N in [81]). The results also reveal that brain development is 
most susceptible to the effects of O-2545 at stages HH3

+
 to  

4
+
, stages at which anterior neuronal precursors migrate 

anteriorly to form the anterior neural plate. These stages 
correspond to 15-19 days after conception in human. At 
these early stages, most women are unaware of their 
pregnancy and of the risks of concomitant use of marijuana. 

 To summarize, 
9
-THC exerts most of its teratogenic 

effects during the period after implantation and prior to 
neuronal differentiation; from section 4, we know that CB1 is 
expressed during this period, and so are other components of 
the eCB system. This could suggest that 

9
-THC mediates its 

teratogenic effects by interfering with an endogenous eCB 
system, present in the young embryo, a system required not 
only for neuronal development, but presumably also for 
earlier mechanisms, such as neural induction, patterning into 
brain primordia and somitogenesis. Because the basic 
molecular mechanisms that control early organogenesis are 
evolutionary conserved amongst species [92-94], the 
knowledge gained by analyzing the mechanism of 

9
-THC 

mediated embryotoxicity in animal models is applicable to 
our understanding of human 

9
-THC induced teratogenesis. 

8. IS THERE A NEURAL BASIS FOR THE 
NEUROBEHAVIOURAL DEFICIENCIES IMPOSED 

BY GESTATIONAL 
9
-THC EXPOSURE? 

 In human, gestational marijuana exposure is associated 
with neurobehavioural deficiencies including visual 
behavioural alterations [95] in neonates, lower mental test 
scores [96] and lower scores in verbal and memory domains 
[97] in 3 year olds; lower intelligence at age 6 [98]; lower IQ 
and lower intelligence at age 6 [98, 99]; decrease in learning 
abilities [100], ADHD [101], long-term language acquisition 
difficulties, neuropsychiatric disorders (depression, schizophrenia, 
anxiety, social behavioural disturbances [102-105]), as well 
as long-term abnormal cognitive and behavioural function in 
young adults [106], reviewed in [88, 107-109]. These 
neurobehavioural deficiencies stem from defects in cognitive 
and emotional centers of the cortex, hippocampus, amygdala 
and nucleus accumbens. In rat, sub-teratogenic doses of 
cannabinoids (

9
-THC or agonist WIN) during gestational 

period GD5.0-GD20 also induce deficits in memory, 
learning as well as emotional hyperactivity, anxiogenic-like 
profile and heroin seeking profiles in offspring [110-115]. 

 We know that the eCB system is required for neuronal 
development and correct establishment of neuronal circuitry 
within both developing cortex and hippocampus (section 3) 
[66]. Gestational exposure to marijuana may interfere with 
the ontogeny of neurodevelopment, ultimately resulting in 
abnormal neuronal circuitry within the developing cortex, 
hippocampus, amygdala and nucleus accumbens; this in turn 
would lead to abnormal neurobehavioural outcome in the  
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Fig. (5). Neural development following gestational exposure to cannabimimetics: A, typical anencephaly in neonate (source Wikipedia); It is 

not known whether this particular foetus was exposed to marijuana during gestation; This is only shown here to illustrate anencephaly in 

human offspring; B, O-2545 induces anencephaly in chick embryos, as evidenced by abnormal morphology and Otx2 expression in forebrain 

and midbrain; Otx2 and Delta1 probes are gifts from Drs. Bally-Cuif and Henrique); C, Levels of dopamine D2 mRNA expression are 

sharply reduced following gestational exposure to marijuana in human fetal amygdala (18-22 wks gestation) [123]; D, WIN inhibits 

dendritogenesis in cultured hippocampal neurones derived from E17 rat embryos, whereas AM281 exerts opposite effects [58], courtesy of 

Dr. Zsolt Lenkei; E, Both anterior and posterior commissures of the forebrain present tight fascicles in controls; By contrast, axons appear 

disorganized along the DV and ML axis in CB1-morpholino treated embryos [69]. Figures reproduced with permission from Wikipedia Inc. 

(A), John Wiley & Sons, Inc (B), Elsevier (C, E), and Wiley-Blackwell (D). 



72    The Open Neuropsychopharmacology Journal, 2009, Volume 2 Psychoyos et al. 

offspring. There is evidence in both human and animal 
models that cannabimimetics comprimise neuronal 
development by interfering with (1) neurotransmitter 
synthesis and (2) morphogenesis within the developing CNS: 

 Interference with neurotransmitter synthesis: Gestational 
exposure to cannabimimetics in rat results in local 
modification of neurotransmitter synthesis, including 
dopamine, a neurotransmitter required for proper 
establishment of cognitive circuitry in the cortex and for 
development of emotional behavioural in the amygdala: 
Cannabimimetics interfere with the expression of tyrosine 
hydroxylase gene (the enzyme responsible for the dopamine 
synthesis), and the activity of this enzyme in 
catecholaminergic neurones of the midbrain during early rat 
fetal brain development [116-118]; This in turn might lead to 
abnormal neuronal circuitry involving dopamine and 
henceforth cognitive anomalies in the offspring. Similarly, 
analysis of amygdala obtained from mid-gestation human 
fetuses which were gestationally exposed to marijuana, 
shows a severely impaired dopamine mRNA expression 
[119] (Fig. 5C). It is possible that defective GABA 
neurotransmitter in the amygdala following 

9
-THC 

exposure might be in part responsible for abnormal 
emotional behavioural observed in offspring of marijuana 
users (such as neuropsychiatric disorders observed by [102-
105]). 

 Gestational exposure to cannabimimetics also results in 
perturbations in the GABAergic, serotonergic and opioid 
systems during neuronal development and in the offspring 
[120-123]; Furthermore, gestational cannabimimetics are 
shown to perturb also both noradrenergic and glutamatergic 
systems during neuronal development; both these 
neurotransmitter systems are required for cognitive processes in 
cortex and hippocampus [124-126]: gestational cannabimimetics 
are able to modify the expression of components of both 
noradrenergic and glutamatergic systems, and to decrease levels 
of noradrenaline and glutamate in the offspring [58, 113]. 
Finally, evidence suggests that 

9
-THC can inhibit 

proenkephalin mRNA expression in the nucleus accumbens 
during early neurodevelopment [115]. This is associated with 
long-lasting neurobiological impairments in neuronal systems 
linked with opioid/reward/stress limbic function in the 
offspring [115], suggesting that impairment of proenkephalin 
signaling during gestation (via exposure to 

9
-THC) might 

result in deficient circuitry in nucleus accumbens, and 
henceforth aberrant limbic function in the offspring. 
Interestingly, proenkephalin is highly expressed in 
proliferating neuronal and glial progenitors in GD14 rat, its 
level of expression then decreases sharply and is hardly 
detectable until GD21, suggesting that this neurotransmitter 
might be responsible for proliferation and commitment of 
neuronal precursors within the developing cortex [127], a 
function which could also be potentially impeded following 
gestational 

9
-THC exposure. 

 Interference with development of cortical and hippocampal 
neurones: In addition to their ability to interfere with 
neurotransmitter synthesis during neuronal development, 
cannabinoids can also impede with the formation of neuronal 
circuitry in the developing embryo: by using cultured 
hippocampal neurones derived from E17 embryos, WIN was 
shown to inhibit dendritogenesis, via reduction of both length 

and number of primary dendrites, while CB1 antagonist AM281 
exerted opposite effects [58] (Fig. 5D). The same studies found 
that CB1 was shown to translocate from the axonal ends to the 
somatic compartment of hippocampal neurones in E16.5 
embryos which had received one single sub-teratogenic dose of 

9
-THC analogue CP55,940 and which were sacrificed 12 hr 

later [58]. Similar results were observed for hippocampal 
interneurones in rat neonates which had been exposed to 

9
-

THC throughout gestation: 
9
-THC was found to interfere with 

the specification and migration of interneurones in the 
developing hippocampus; in those embryos, postnatal 
interneurones had failed to migrate within the hippocampus and 
had remained within the strata radiatum, lacunosum-moleculare 
of the CA1–CA3 subfields [65, 66]. Finally, WIN was found to 
inhibit the neuronal outgrowth and branching in cultures derived 
from cerebral cortex of neonates which were gestationally 
exposed to WIN [110]. 

 Together, the above data suggest that disturbance of 
neuronal development in cortex, hippocampus and possibly 
amygdala and nucleus accumbens, following gestational 
cannabinoid exposure, might in part result in disruptions in 
neurotransmitter signaling, as well as interference with 
neuronal morphogenesis and proper circuitry. These 
aberrations would in turn lead to subtle defects in cognitive, 
neurobehavioural and emotional processing in the offspring, 
which is the phenotype we observe in the offspring born to 
marijuana users. 

 Recent studies in zebrafish are of particular interest in 
illustrating this point: whereas previous studies focused on 
behavioural of neurones/axons at the earliest E17 in mouse 
slices following treatment with cannabimimetics, this study 
used 1 to 4 cell stage embryos, in other words a period 
corresponding to peri-implantation in human. In CB1-
morpholino treated zebrafish embryos reticulospinal 
neurones of the hindbrain (which correspond to 
reticulospinal and vestibulospinal pathways in human) show 
aberrant patterns of axonal growth at 72 hpf. In treated 
embryos, the medial longitudinal fascicule, which normally 
runs along the AP axis as segmented tight bundles of axons, 
appear clearly disorganized, spreading along the mediolateral 
axis of the embryo [69]; Furthermore, treated embryos 
present extensive crossings of axons along the AP midline 
[69], suggesting that they are receiving the wrong cues/or 
fail to receive cues upon CB1 inactivation. Watson et al. also 
describe abnormal in the anterior and posterior commissures 
of the forebrain in CB1 morpholino-treated embryos. In those 
embryos, both commissures fail to tight fascicles (organized 
bundles of axons); Instead, axons appear disorganized along 
the DV and ML axis [69] (Fig. 5E), suggesting again that 
these axons receive the wrong cues/or fail to receive cues 
upon CB1 inactivation. The anterior and posterior 
commissures of the forebrain are responsible for transferring 
information between the two cerebral hemispheres to 
coordinate localized functions in the adult, such as memory 
establishment [128] and visual discrimination [129], both 
functions which are impaired in offspring following 
gestational exposure to marijuana [58, 90, 95, 97, 100, 107]. 

9. CONCLUDING REMARKS 

 The argument that marijuana is a “harmless” drug is no 
longer valid: The recent advances in registry and statistical 
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evaluation of effects, which now take into account 
confounding variables, has enabled us to clearly affirm that 
marijuana is detrimental to pregnancy. This is enhanced by 
the recent discovery of an eCB system in the developing 
embryo, a system of which the function is impeded 
following maternal exposure to marijuana. Most alarmingly, 

9
-THC content of marijuana has increased from 1.25% in 

the 1970s to an average content of 8.12% in modern 
preparations [14], with some preparations containing up to 
up to 37.2% 

9
-THC [14]. Marijuana has regained its 

popularity from the 1970’s, especially amongst teens/young 
adults, where it has regained its social and cultural status as 
the most popular drug of abuse; As a result, this poses not 
only a risk for the foetus of pregnant teen/young adults, but 
also for teens in general [130]. Clearly, additional awareness 
should be provided to teens and young adults in particular, 
concerning the health deficits caused by marijuana, 
especially given the current debates on rescheduling, 
legalization and decriminalization of marijuana based on its 
medical applications [131, 132]. 
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ABBREVIATIONS 

9
-THC = 

9
-Tetrahydrocannabinolic acid 

1
-THC = 

1
-Tetrahydrocannabinolic acid 

AEA = N-Arachydonylethanolamide 

2-AG = 2-Arachidonoylglycerol 

DAGL  = sn-1 specific Diacylglycerol Lipase, alpha 

FAAH = Fatty Acid Amide Hydrolase 

MAGL = Monoacylglycerol Lipase 

MGLL = gene encoding MAGL 

FRNK = Focal adhesion kinase-Related Non-Kinase 

MMP-2 = Metalloproteinase-2 

BDNF = Brain-Derived Neurotrophic Factor 

TrkB = neurotrophic Tyrosine Kinase, receptor, type 2 

GD = Gestational Day 

FGF = Fibroblast Growth Factor 

HH = Hamburger and Hamilton stage 

FAS = Fetal Alcohol Syndrome 

NBDPS = National Birth Defects Prevention Study 

AP = Anteroposterior 

ML = Mediolateral 

WIN = WIN55,212-2 

CP = CP-55940 

DV = Dorsoventral 

THCAS = cDNA encoding tetrahydrocannabinolic  
   synthase 
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