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Abstract:

Background:

Although  voxel  based  morphometry  studies  are  still  the  standard  for  analyzing  brain  structure,  their  dependence  on  massive
univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential
multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject.

Objective:

Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of
massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from
diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate
GLM toolbox (MRM).

Method:

We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients
and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately –
using standard univariate VBM - and simultaneously, with multivariate analyses.

Results:

Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the
other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of
pathology.

Conclusion:

While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in
SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities.

Keywords: SPM, VBM, T1, T2, Multivariate GLM, Type 2 diabetes mellitus.

1. INTRODUCTION

The  understanding  of  the  brain  and  related  pathologies  is  hardly  tackled  when  using  a  single  neuroimaging
modality, such as T1 magnet resonance (MR) imaging in volumetric studies or positron emission tomography (PET) in
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metabolic  and  neurochemical  studies.  The  information  that  each  imaging  approach  can  provide  is  likely  to  be
complementary [1]. As such, it is desirable to combine imaging methods in order to better ascertain the underlying
mechanisms under analysis.

In  particular,  the  popular  approach  voxel  based  morphometry  (VBM)  detects  brain  regions  that  exhibit  some
variation in brain tissue content,  either correlated with a covariate or contrasting between cohorts  [2].  Notably,  the
underlying statistics rely on using particular cases of the univariate General Linear Model (GLM), which lies at the
basis of the statistical parametric maps yielded by testing hypothesis on regionally specific effects in neuroimaging data
[3].

Although these univariate methods have been fundamental tools in modern neuroimaging, it is accepted that the
presence of multivariate relationships between different brain regions, coupled with information provided by distinct
imaging  modalities  in  any  single  region,  might  not  be  explained  by  univariate  analyses  alone  [2,  4,  5].  The  wider
application of multivariate statistical methods in brain morphometry is a definite need.

Focusing  solely  on  inferential  voxel-wise  analyses  rather  than  pattern  recognition,  this  study  presents  a  mass
multivariate GLM method that is a natural extension of the mass univariate GLM approach used in VBM studies. This
multivariate GLM can address multimodal group-level analyses using multiple MRI sequences. It should be noted that
implementations  of  multivariate  GLM  solutions  have  already  been  applied  in  the  context  of  neuroimaging  in  the
previous studies [6, 7]. In the former study, the authors implemented the multivariate GLM in AFNI program 3dMVM
in the open source statistical language R (R Core Team, 2013) to handle inherent problems of univariate GLM in the
presence of multiple within-factors, or when quantitative covariates are involved in the presence of a within-subject
factor. In the latter study, the authors implemented a MATLAB-based toolbox to model both repeated-measures and
multimodal  group-level  imaging  data.  Other  implementations  can  be  found,  e.g.  in  FSL  (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/PALM). The authors, however, are not aware of any such solution implemented within the SPM software,
which is one of the most popular toolboxes used in the context of neuroimaging and likely the most popular tool for
VBM studies.  This  works  presents  for  the  first  time  an  easy-to-use  implementation  of  multivariate  GLM analyses
directly in SPM (version 8 - http://www.fil.ion.ucl.ac.uk/spm/software/spm8).

In order to demonstrate the potential of adapting the SPM software for mass multivariate analyses, this study uses,
within the same model, gray matter volumetric information extracted from T1- and T2-weighted structural MRI scans
of type 2 diabetes mellitus (T2DM) patients. T1 images have been widely used in VBM studies to assess gray matter
changes, while the use of T2 data had been validated in a prior study as a marker for other gray matter abnormalities,
notably vascular and iron deposition related changes, rather than just atrophy [1]. Therefore, the integration of these two
volumetric modalities in the same experimental design and particularly in data analysis emerges as a relevant approach,
because T2DM seems to affect both brain function and structure [8 - 11], leading to poorer performances in attention,
memory, executive function, global cognitive status [12] and a higher risk of dementia [13]. In addition, this pathology
is  also  related  to  brain  vascular  abnormalities,  which  include  vascular  hypertrophy  in  small  arteries  [14],  lacunar
infarcts  [15]  and microbleeds  [16].  Furthermore,  neglected  vascular  alterations  may influence  functional  MRI data
interpretation [17].

Thus this population is appropriate to demonstrate the basic outline of an inferential multivariate methods’ package
developed directly within the SPM8 software framework. This study serves its purpose as an exercise to assess the
potential to deploy a complete multivariate package, which may be used to complement the standard univariate analyses
widely used in neuroimaging data analysis.

2. MATERIALS AND METHODS

2.1. Patient Selection

Thirty-four participants with T2DM and forty-two age- and gender- matched control participants were recruited.
Controls were recruited from the general population of the University of Coimbra Hospital, University staff or from
volunteers’  database  of  IBILI  (Institute  for  Biomedical  Imaging  and  Life  Sciences),  while  T2DM  patients  were
recruited at the Endocrinology Department of the Hospital. T2DM patients were diagnosed using standard criteria [18,
19]. Inclusion criteria for patient group: i) age between 40 and 75 years-old; ii) diabetes mellitus type 2 diagnosis at
least one year prior to the commencement of the study. Inclusion criteria for the control group: i) age between 40 and 75
years-old; ii) diabetes mellitus type 2 diagnosis excluded based on levels of glycated hemoglobin (HbA1c); iii) diabetes
mellitus type 2 diagnosis excluded based on fasting glucose.

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM
http://www.fil.ion.ucl.ac.uk/spm/software/spm8
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An experienced neuroradiologist performed the neuroradiological assessment and examined the presence of white
matter hyperintensities in T1- and T2-weighted MR images of all participants. Exclusion criteria for both groups were
severe  cerebrovascular  disease  (TIA or  stroke),  neurologic  diseases  unrelated  to  diabetes  likely  to  affect  cognitive
functions, known history of psychiatric disease, and alcohol abuse. We finally included twenty-eight T2DM patients
(mean age 58.1 ± 6.9 years) and twenty-six age- and gender- matched control (mean age 54.7 ± 7.3 years) participants.

Table 1. Demographic and relevant clinical data from both groups.

Variables T2DM (n=28) Controls (n=26) Statistic; p-value
Age (years, mean ± SD) 58.1 ± 6.9 54.7 ± 7.3 U = 256; >0.05
Gender (male: female) 17:11 13:13 X 2

1 = 0.627; >0.05
Body Mass Index (BMI) (kg/m2, mean ± SD) 29.16 ± 4.63 25.06 ± 2.60 t = -4.053; <0.001

Blood glucose (mg/dL, mean ± SD) 164.29 ± 59.23 92.88 ± 11.05 t = -6.259; <0.001
HbA1c (%, mean ± SD) 9.73 ± 3.01 5.38 ± 0.37 t = -7.457; <0.001

Hypertension (HTM) (yes:no) 23:5 6:20 X 2
1= 18.92; <0.001

TIV (dm3, mean ± SD) 1.51 ± 0.23 1.56 ± 0.20 t = 0.922; >0.05

2.2. Image Acquisition

The MR scans were acquired at the Portuguese Brain Imaging Network facilities in Coimbra, Portugal, on a 3T
research scanner (Magnetom TIM Trio, Siemens) using a phased array 12-channel birdcage head coil (Siemens).

For each participant, a 3D anatomical MPRAGE (magnetization-prepared rapid gradient echo) scan was acquired
using a standard T1-weighted gradient echo pulse sequence with TR = 2530 ms, TE = 3.42 ms, TI = 1100 ms, flip angle
7°, 176 single shot slices with voxel size 1x1x1 mm, and FOV 256 mm.

In addition, true 3D, high-resolution, T2-weighted images were also acquired. The turbo spin echo with variable
flip-angle distribution (sampling perfection with application optimized contrasts using different flip angle evolution;
SPACE)  pulse  sequence  was  used  with  the  following  scan  parameters:  TR/TE/NEX  =  3200ms/450ms/2;  matrix,
192x192x144 slices; voxel resolution 1.25x1.25x1.25mm. Parallel acquisition of independently-reconstructed images
was allowed, using generalized, auto-calibrating, partially-parallel acquisitions to reduce specific absorption rate (SAR)
and the scanning time.

2.3. Image Preprocessing

Both  T1-  and  T2-weighted  MR  imaging  scans  were  preprocessed  using  SPM8  (http://www.fil.ion.ucl.ac.uk/),
running on MATLAB R2012a® (The Math-Works, Inc., Natick, MA), prior to subsequent univariate and multivariate
statistical analyses. Firstly, all scans were previously reoriented, i.e. the image origin was set at the anterior commissure
(AC) manually. In order to normalize, segment and modulate both T1 and T2 scans, the unified segmentation algorithm
[20] was applied, which was the algorithm also used in the key reference paper listed above [1], where T2-VBM was
validated. The images were spatially normalized to Montreal Neurological Institute (MNI) standard space by registering
the  MR  images  to  the  ICBM  152  template  and  then  segmented  into  gray  matter  (GM),  white  matter  (WM)  and
cerebrospinal fluid (CSF). The GM images were modulated to compensate for changes in GM volumes due to nonlinear
registration. This accounts for local amount of expansion or contraction of brain structures, so that the total amount of
GM/WM in  the  modulated  images  remains  the  same as  it  would  be  in  the  original  images.  For  instance,  if  spatial
normalization doubles the volume of a certain structure, then the correction will halve the intensity of the signal in that
region.  The  total  volume  of  tissue,  in  each  structure,  is  corrected  for  individual  brain  size  (tissue  volume  per  unit
volume of spatially normalized image) and can thus be compared. Additionally, the GM segments from both modalities
were smoothed with an 8-mm smoothing kernel to ensure the normality of the data. The use of this algorithm in T2-
weighted imaging has already been validated [1]. After the preprocessing steps, T1 and T2 images were in the same
standardized space and had the same resolution: 2x2x2mm. Finally, these spatial normalized, segmented, modulated
and smoothed images could be used for the voxel-wise statistical analyses using the univariate GLM [3], as well as for
the multivariate approach described below.

http://www.fil.ion.ucl.ac.uk/
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2.4. Multivariate GLM

2.4.1. Multivariate GLM Representation and Parameter Estimation

The  multivariate  GLM  is  a  straightforward  generalization  of  the  univariate  GLM,  with  assumptions  that  are
thoroughly detailed in the work of McFarquhar et al. [7]. Compared to the univariate GLM, the multivariate version
does not include only one vector of response variables (Y), rather this has a Y matrix where the number of the columns
correspond to p dependent variables (DVs) to be used:

(1)

This relationship can be represented in matrix form as follows:

(2)

The number of columns in the β (regressors) and E (error) matrices match the number of p dependent variables. The
number of columns of the design matrix X are the same as the number of k independent variables. The equations used to
estimate the individual parameters and the residual errors ϵ are similar to the ones used in the univariate model i.e.

 are fitted values), respectively [21].

The Box's M test [22] was used in a voxel-wise manner to test the null hypothesis that the observed covariance
matrices  of  the  dependent  variables  were  equal  across  groups.  We  similarly  applied  Levene’s  test  for  testing
homogeneity of variance [23]. The voxels were only considered when the p-value of these tests were simultaneously
larger than 0.05, which means that only the voxels with the covariance and variance matrices equal across the groups
were accepted for the estimation step.

2.4.2. Testing Multivariate GLM Hypothesis

As the β matrix has multiple columns of possible interest, it is possible to test linear hypotheses about these several
columns. The general form of the hypothesis is then given by:

(3)

where  the  q  rows  of  A  test  hypotheses  concerning  the  k  independent  variables,  and  the  l  columns  of  M  test
hypotheses concerning the p dependent variables. With these three matrices, a multivariate contrast matrix Cq × l can be
used to test several hypotheses regarding combinations of regressors [21].

As in the univariate model, the sum of squares regarding the hypothesis, i.e. the amount of variance associated with
the contrast being tested, can be calculated using the following equations:

(4)

(5)

These matrices are the sum of squares and cross products matrix between (B) and within (W) groups, respectively
[21]. After the calculation of these matrices, the multivariate hypotheses may be tested in different ways, such as using
the Hotelling-Lawley Trace, Roy’s Largest Root, Pillai’s Trace or Wilk’s Lambda [21]. The Roy’s Largest Root has
been reported as a test that should be avoided because has much poorer Type I error given that it provides a lower-
bound on the p-value. The others have been reported as similar [7]. Though any of these approaches could have been
used, the Wilks’ Lambda was chosen because it presents the most balanced behavior, whereas the Hotelling-Lawley
Trace is more liberal and the Pillai’s Trace is the most conservative (7):

𝐘𝑛×𝑝 = 𝐗𝑛×𝑘𝛃𝑘×𝑝 + 𝐄𝑛×𝑝.

[
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] [
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]+ [

𝛜11 ⋯ 𝛜1𝑝
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].
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𝐓
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(6)

where the λi values are given by the eigen values of W-1 B.

The F-ratio can be calculated using the approximation based on Wilk’s determinant criterion:

(7)

where q is the number of rows of A and l is the number of columns of M. The other parameters are given by:

(8)

(9)

(10)

where n is the sample size and k is the number of columns of the design matrix. The degrees of freedom of F are lq
in the numerator and rt - 2u in the denominator. It also worth noticing that the F-value is exact when (l,q) ≤ 2. Finally,
the F-value can be converted into an approximate p-value, allowing for the estimation of a significance map.

2.4.3. Implementation of the Multivariate GLM

This  particular  setup  of  the  multivariate  GLM  algorithm  was  implemented  in  MATLAB  R2012a®  (The  Math-
Works, Inc., Natick, MA) and then, with the proper alterations in SPM8 framework, we could perform multivariate
whole-brain analyses.

2.5. Alterations in SPM8 Interface

Currently,  only univariate methods can be performed in SPM8. Thus,  in order to perform multivariate analyses
using  SPM8  the  following  SPM8  functions  were  changed:  spm_cfg_con,  spm_cfg_factorial_design,  spm_conman,
spm_contrasts, spm_design_factorial, spm_FcUtil, spm_getSPM, spm_list, spm_results_ui, spm_run_factorial_design
and spm_spm.

These alterations led to the creation of a new design menu Fig. (1), where several dependent variables (DVs) can be
chosen: the user can choose the name and scans of each DV, as well as the number of levels and nuisance covariates.

Given the flexibility provided by the use of contrasts, their multivariate versions were also implemented. As such, a
new  contrast  interface  Fig.  (2)  was  also  created,  where  one  partition  for  the  M-contrast  (contrast  for  multivariate
procedures) can be found.

Altogether, these alterations made the insertion of the multivariate GLM algorithm possible (which could be used to
calculate a Multivariate Analysis of Covariance – MANCOVA) and, to the best of our knowledge, this was the first
time that a mass multivariate approach was implemented in SPM (see supplementary material for a description on how
these alterations can be implemented). It is also worth noticing that these alterations do not interfere with the common
univariate approaches in SPM.
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Fig. (1). The new SPM8 design menu for the MANCOVA analysis.

2.6. Statistical Analyses

2.6.1. Demographic and Clinical Data

Demographic and clinical data were analyzed using the Statistical Package for the Social Sciences software (SPSS
version 19, IBM Corp. Released 2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp).
Continuous variables were tested for normality, separated by group, using the Kolmogorov-Smirnov test. Any rejection
of  the  null  hypothesis  in  any  group  was  deemed  an  indication  to  use  non-parametric  tests  for  the  analysis  of  that
variable. Differences between the T2DM and control groups for non-normally distributed variables were tested using
Mann-Whitney  U  test,  while  normally  distributed  variables  were  compared  using  Student’s  t  for  two  independent
samples. For categorical variables, χ2 tests were applied. The results of these analyses can be seen in (Table 1).

2.6.2. Voxel-Wise Analyses

Gray matter alterations in T2DM patients were assessed by performing three distinct analyses using SPM: 1) an
Analysis  of  Covariance  (ANCOVA)  with  T1-weighted  images;  2)  an  ANCOVA  with  T2-weighted  images;  3)  a
MANCOVA, where T1- and T2-weighted images were used as DVs. In all the analyses, the positive contrast (controls
> T2DM) was calculated and the total intracranial volume (TIV), known to be an important confound in VBM studies
[24], was included as nuisance variable. The TIV was calculated in MATLAB using the T1 images and applying the
automated  method  presented  in  [25].  After  visually  assessing  the  quality  of  the  grey  matter  segments,  a  relative
threshold mark of 0.20 was chosen as an adequate trade-off between structure preservation and grey matter boundary
definition.  We also  computed  the  FDR (false  discovery  rate)  corrected  p-value  threshold,  but  none  of  the  analysis
yielded significant  voxels.  Therefore,  the statistical  parametric maps were created using a more liberal  uncorrected
threshold  (puncorrected  <  0.001)  and  an  extent  threshold  k  =  10  voxels.  The  figures  and  tables  showing  the  areas  with
significant  GM  alterations  in  T2DM  patients  were  created  using  the  xjview8  toolbox  (http://www.alivelearn.net/
xjview8/).  Finally,  for  replication purposes,  the aforementioned multivariate analysis  was also performed using the
MRM toolbox (http://www.click2go.umip.com/i/software/mrm.html) and the same p uncorrected threshold was used.

http://www.alivelearn.net/xjview8/
http://www.alivelearn.net/xjview8/
http://www.click2go.umip.com/i/software/mrm.html
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Fig. (2). The new SPM8 contrast window for multivariate contrast definition.

2.7. Ethical Standards and Patient Consent

We declare that the study was approved by the medical ethics committee of the University of Coimbra. Informed
written consent was obtained from all participants. All clinical investigation was conducted according to the principles
expressed in the Declaration of Helsinki of 1975 (and as revised in 1983).

3. RESULTS

3.1. ANCOVA with T1-Weighted Images

The voxel-wise statistical analysis reveals focal regions with less gray matter in T2DM patients, when compared
with controls. Fig. (3) shows more pronounced bilateral alterations in basal ganglia, insula and thalami. The location
and peak significance of the brain areas with significant less GM volume in T2DM patients are presented in (Table 2).

Table 2. Location and significance of peak voxels in regions with less GM volume in T2DM patients, using ANCOVA with
T1-weighted images.

Number
voxels T-value p (unc) x, y, z (mm) Areas

548 4.9381 <0.00001 -48, 22, -4 Left Cerebrum, Frontal Lobe, Inferior Frontal Gyrus, Temporal Lobe, Inferior Frontal Gyrus, Left Insula

478 4.7138 <0.00001 42, 12, -12 Right Cerebrum, Frontal Lobe, Inferior Frontal Gyrus, Temporal Lobe, Right Insula, Middle Frontal
Gyrus

320 4.2958 <0.0001 -4, 0, 10 Left Cerebrum, Left Caudate, Left Thalami
253 4.7791 <0.00001 -34, -98, 8 Left Cerebrum, Occipital Lobe, Middle Occipital Gyrus
167 3.857 <0.0001 8, 14, 10 Right Cerebrum, Right Caudate
165 4.0365 <0.0001 -54, -68, -36 Left Cerebrum, Cerebellum Posterior Lobe
148 4.6400 <0.0001 -22, -48, 68 Left Cerebrum, Parietal Lobe, Postcentral Gyrus, Brodmann area 5, 3, 2
148 5.0781 <0.00001 46, -14, 62 Right Cerebrum, Frontal Lobe, Parietal Lobe, Precentral Gyrus, Brodmann area 6, 4, 3



Extending Inferential Group Analysis in Type 2 Diabetic Patients The Open Neuroimaging Journal, 2017, Volume 11   39

Fig. (3). Areas with less grey matter volume in T2DM patients (p<0.001 single voxel, uncorrected, extent threshold k = 10) when
compared with controls, using ANCOVA with T1-weighted images. The color bar indicates the range of t-values with white/yellow
representing more significant differences (higher t-values), orange indicating less significant differences (middle range t-values) and
red indicating non-significant differences (lower t-values). LC – Left Caudate; RC – Right Caudate; LI – Left Insula; RI – Right
Insula.

Fig. 4. Areas with abnormal gray matter in T2DM patients (p<0.001, uncorrected, extent threshold k = 10) when compared with
controls, using ANCOVA with T2-weighted images. The color bar indicates the range of t-values with white/yellow representing
more significant differences (higher t-values), orange indicating less significant differences (middle range t-values) and red indicating
non-significant differences (lower t-values). LC – Left Caudate; RC – Right Caudate; LI – Left Insula; RI – Right Insula.

3.2. ANCOVA with T2-Weighted Images

Fig. (4) illustrates abnormal grey matter in T2DM patients, when compared with controls. These findings suggest
predominant bilateral alterations in basal ganglia and insular regions in T2DM patients. The location and significance of
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the peak voxels in regions with tissue differences are presented in (Table 3).

Location  and  significance  of  peak  voxels  in  regions  with  gray  matter  abnormalities  in  T2DM  patients,  using
ANCOVA with T2-weighted images.

Table  3.  Location  and  significance  of  peak  voxels  in  regions  with  gray  matter  abnormalities  in  T2DM  patients,  using
ANCOVA with T2-weighted images.

Number
voxels T-value p (unc) x, y, z (mm) Areas

224 4.5757 <0.0001 -12, 16, 2 Left Cerebrum, Left Caudate, Lentiform Nucleus, Left Putamen
181 3.9073 <0.001 -48, 20, -2 Left Cerebrum, Left Insula, Frontal Lobe, Inferior Frontal Gyrus
123 3.8413 <0.001 30, -22, -30 Right Cerebrum, Limbic Lobe, Parahippocampa Gyrus, Right Parahippocampal
102 3.8719 <0.001 40, 12, -12 Right Cerebrum, Right Insula, Frontal Lobe, Inferior Frontal Gyrus, Temporal Lobe
57 3.7014 <0.001 14, 14, 12 Right Cerebrum, Right Caudate

3.3. Overlap of T1 and T2-Weighted Images

Fig. (5) shows the maps with result of T1 and T2 overlaid in the same template brain. The red clusters correspond to
the T1 analysis and blue clusters correspond to the T2 analysis. It is possible to identify the common (the purple clusters
correspond to the overlapped areas) and disjointed affected areas between analyses.

Fig. (5). Overlapping of T1- (red clusters) and T2-weighted (blue clusters) univariate VBM analyses. The purple clusters correspond
to the overlapped areas. LC – Left Caudate; RC – Right Caudate; LI – Left Insula; RI – Right Insula.

3.4. Mancova

The  result  presented  in  Fig.  (6A)  was  obtained  by  performing  a  MANCOVA  in  SPM,  in  which  T1-  and  T2-
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weighted  images  were  used  as  dependent  variables  simultaneously.  Fig.  (6B)  shows  the  result  of  the  MANCOVA
analysis  performed  in  the  MRM  toolbox.  Both  maps  show  a  pattern  of  less  grey  matter  volume  and  concomitant
pathology  such  as  inflammation  or  vascular  in  basal  ganglia  and  thalami  in  T2DM  patients  when  compared  with
controls. The location and significance of the peak voxels in these areas are presented in (Table 4).

Fig. (6). (A) Areas with less grey matter volume and concomitant pathology in T2DM patients (p<0.001, uncorrected and extent
threshold k = 10) when compared with controls, using a MANCOVA design with T1 and T2 scans simultaneously, implemented in
SPM (color bar represents the range of F-values calculated, in which red corresponds to lower F-values and yellow corresponds to
greater F-values). (B) Areas with less grey matter volume and concomitant pathology in T2DM patients (p<0.001, uncorrected) when
compared with  controls,  using the  same data  with  a  MANCOVA design in  the  MRM toolbox.  LC – Left  Caudate;  RC – Right
Caudate; LT – Left Thalami; RT – Right Thalami.

Table 4.  Location and significance of peak voxels of  regions with less grey matter volume and concomitant pathology in
T2DM patients, when using a MANCOVA with T1 and T2 data simultaneously in SPM.

Number
voxels F-value p (unc) x, y, z (mm) Areas

54 11.58 <0.001 -16, 20, -2 Left Cerebrum, Left Caudate
39 11.31 <0.001 -6, -16, 0 Left Cerebrum, Left Thalami
31 11.75 <0.001 8, -14, -2 Right Cerebrum, Right Thalami
17 9.82 <0.001 14, 14, 14 Right Cerebrum, Right Caudate

DISCUSSION

This study presents a basic outline of an inferential multivariate package developed and implemented for the first
time directly within the SPM8 software framework. As a proof of concept, we applied this mass multivariate approach
on a group of T2DM patients, a pathology known to be related to brain structure and vasculature alterations.

The standard VBM approach only allows the detection of alterations in a specific imaging technique, e.g. using PET
or MRI scans of a single modality. Given the different nature of the information obtained with each imaging modality,
the use of standard univariate analyses alone is insufficient to give a full perspective of how these data interact and yield
a more concise map of brain changes. Hypothetically, multivariate approaches can lead to a better understanding of
imaging profiles of brain structure, activity and metabolism. As such, the multivariate GLM has been implemented in
this work as an effort to facilitate multimodal analyses of imaging data. This natural extension of the commonly used
massive univariate approach was used to integrate the information provided by multiple MRI sequences (T1 and T2
volumetric scans) of T2DM patients. The hypothesis was that the simultaneous analysis of distinct information obtained
with each modality would allow for the better understanding of joint structural alterations and concomitant pathological
changes, within the same statistical design.

Using  the  standard  VBM  approach,  the  similarities  between  the  results  obtained  with  T1  and  T2  are  striking.
Although the former showed a spread pattern of less grey matter volume, the main alterations (basal ganglia and insula,
bilaterally) are associated with alterations found in T2 analysis as well,  in which these alterations seem to be more
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restrictive to those areas. Although the results were only significant at an uncorrected threshold, these findings are in
line with previous studies [26, 27] and help further validating previous identified imaging biomarkers in diabetes, using
univariate approaches.

The apparent overlap was confirmed in Fig. (5), where insula and the basal ganglia, bilaterally, are the key locations
of  tissue  content  changes  in  both  modalities.  This  might  reveal  focal  regions  with  less  grey  matter  volume  and
concomitant pathology such as inflammation or vascular changes in these areas [27 - 29]. This was the starting point for
the application of the multivariate inferential methods described above. Such methods have the potential for extracting
additional information where the univariate methods see the same locations. Both MANCOVA approaches confirmed
the pervasive alterations in the basal ganglia, notably in the caudate, and provided further information about the thalami
Fig. (6A and 6B) since this area only as appeared significantly altered in the T1 analysis and only on the left part of the
brain (see Fig. 3 and Table 2). The differences between the two maps are mainly due to two reasons: i) MRM analysis
does not assume two thresholds that are calculated in our approach - relative and voxel extent thresholds; ii) the Box’s
M and Levene’s test are applied before the model estimation in our approach, while in MRM these are only used in a
post-estimation  stage.  To  understand  these  differences,  we  decided  to  run  again  the  analysis  without  checking  the
homogeneity of covariance and variance of each voxel before the estimation step (see supplementary material) and the
result is very like the one obtained in MRM software. Therefore, we speculate that this could be the potential reason for
the differences between the results of the MRM toolbox and our own work. Nonetheless, the most affected areas are
highly comparable which is an indication of the validity of the results obtained with our approach.

Although the results were only significant at an uncorrected threshold, the pattern of changes is also in agreement
with previous evidence of structural changes in T2DM. The involvement of the thalami has been previously reported in
a  meta-analysis  study,  and  is  a  highly  vascularized  region  known  to  be  sensitive  to  vascular  alterations  [26]:  the
conjunction of both elements, less grey matter volume and vasopathies, justify this result of the multivariate analysis.
As expected, the multivariate analysis requires larger statistical power, which may explain why a region such as the
insula was no longer detected. We believe that this analysis emphasizes joint changes in both T1 and T2 images in other
regions, as described above, and not in the insula [27, 30, 31]. It is sensible to speculate that both the basal ganglia and
the thalami are greatly affected by both grey matter atrophy and vasopathies when compared to other brain regions,
notably the insula. Further insights as to the contribution of each image modality to the results need to be addressed in
the future and can be obtained by using e.g. descriptive linear discriminant analysis [7], as well as strategies to improve
power [32].

Additionally, a drawback of the multimodal models is that the continuous covariates will probably deal with the
confounding effects in the same way for both dependent variables, which can be challenging when those variables are
unrelated.  On  the  other  hand,  the  multivariate  GLM  can  handle  dependent  neuroimaging  data  (such  as  repeated
measurement and multimodal imaging data at the group level) [7], which cannot be easily addressed with univariate
approaches  [6,  7].  Therefore,  we recommend the  use  of  both  approaches  to  have  a  fuller  picture  of  the  underlying
pathology. As our implementation of the multivariate GLM in SPM8 toolbox entailed the creation of identical menus
already used for univariate GLM analyses, both approaches can be easily applied in a feedforward manner in the same
framework.

As a proof of concept, this work still has a number of limitations. We have included in the implementation several
key  statistical  assumptions  underlying  the  multivariate  model  to  ensure  its  correct  application,  such  as  variance-
covariance homogeneity (using the Box’s M and Levene’s tests in a voxel wise manner), the correction for multiple
comparisons (using the FDR correction) and the correlation amongst the dependent variables. Nevertheless, other post-
estimation tools, such as the contribution of each image modality in the results and the ability to adequately apply resel-
based family  wise  correction  might  be  helpful  for  the  interpretation  of  the  results.  Furthermore,  the  algorithm was
adapted to these limited data, not taking into account difficulties that may arise from using multiple modalities (e.g.
PET and fMRI), notably different scan space and resolution, which can be resolved by rescaling images of one modality
to match another modality scan space. Additionally, the use of Box’s M and Levene’s tests before the model estimation
might be a stringent approach as this can interfere with detecting true between group differences when using cluster
based  inference,  because  removing  individual  voxels  from  the  images  can  break  up  clusters,  rendering  them
insignificant (see supplementary material). Finally, although the proposed toolbox can correctly manage the univariate
and multivariate analyses in the same framework, this is only possible by replacing some original functions of SPM. A
standalone  version of  the  multivariate  toolbox should  be  prepared.  Future  work should  validate  the  toolbox with  a
cohort  where  clear  differences  between  T1  and  T2  VBM  can  be  seen  a  priori,  thus  facilitating  the  analyses  and
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subsequent biological interpretation of results.

CONCLUSION

This study presents multivariate methods that are a natural extension of the commonly used methods in standard
massive univariate analyses of neuroimaging data. These were successfully implemented within the SPM8 software
package, which is particularly relevant because both univariate and multivariate approaches can be applied in one of the
most commonly used toolboxes in neuroimaging data analysis. Such multivariate approaches might be helpful tools to
understand  the  complex  mechanisms  underlying  brain  alterations  in  some  pathologies,  which  act  across  several
dimensions (e.g. tissue structure and vascular) simultaneously rather than simply through brain atrophy. In the future,
the inherent limitations of the algorithm should be addressed and it should be validated in other cohorts and expanded to
accommodate other modalities, such as PET and fMRI.

SUPPORTIVE/SUPPLEMENTARY MATERIAL

Tutorial for multivariate GLM analysis in SPM8 – software adaptation and procedure (word file).

The effect of Box's M and Levene’s tests in SPM maps.
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