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Abstract: Multivariate image analysis tools are used for analyzing dynamic or multidimensional Positron Emission To-

mography, PET data with the aim of noise reduction, dimension reduction and signal separation. Principal Component 

Analysis is one of the most commonly used multivariate image analysis tools, applied on dynamic PET data. Independent 

Component Analysis is another multivariate image analysis tool used to extract and separate signals. Because of the pres-

ence of high and variable noise levels and correlation in the different PET images which may confound the multivariate 

analysis, it is essential to explore and investigate different types of pre-normalization (transformation) methods that need 

to be applied, prior to application of these tools. In this study, we explored the performance of Principal Component 

Analysis (PCA) and Independent Component Analysis (ICA) to extract signals and reduce noise, thereby increasing the 

Signal to Noise Ratio (SNR) in a dynamic sequence of PET images, where the features of the noise are different compared 

with some other medical imaging techniques. Applications on computer simulated PET images were explored and com-

pared. Application of PCA generated relatively similar results, with some minor differences, on the images with different 

noise characteristics. However, clear differences were seen with respect to the type of pre-normalization. ICA on images 

normalized using two types of normalization methods also seemed to perform relatively well but did not reach the im-

provement in SNR as PCA. Furthermore ICA seems to have a tendency under some conditions to shift over information 

from IC1 to other independent components and to be more sensitive to the level of noise. PCA is a more stable technique 

than ICA and creates better results both qualitatively and quantitatively in the simulated PET images. PCA can extract the 

signals from the noise rather well and is not sensitive to type of noise, magnitude and correlation, when the input data are 

correctly handled by a proper pre-normalization. It is important to note that PCA as inherently a method to separate signal 

information into different components could still generate PC1 images with improved SNR as compared to mean images. 

INTRODUCTION 

 Positron Emission Tomography (PET) is a non-invasive 
tool for medical diagnostic imaging, research and drug de-
velopment, based on the external detection of administered 
tracer substances labeled with positron-emitting radionu-
clides. The utilization of tracer compounds with selective 
interaction with a target of interest provides a means for as-
sessing biochemical processes in the human body [1]. 

 Although the PET data are 4-dimensional (4D), describ-
ing the temporal course of the tracers distribution in three 
dimensional (3D) space of tissue, the results are usually de-
scribed as two dimensional (2D) cross section images 
through the objects [2].  
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 Two of the most essential aspects of PET are its abilities 
to obtain quantitative values and to depict the distribution of 
biologically/biochemically interesting molecules within a 
region in a subject. The reduction of time to one entity is 
performed by illustrating a time-averaged image, or by ki-
netic modelling in which the image is representative for a 
more complex function of time. 

 PET depicts distribution of radioactivity over extended 
areas of the body with a high spatial resolution. However, 
the amount of radioactivity that can be given to a human is 
restricted by radiation dose concerns, and hence a limited 
number of counted photon pairs are used in an attempt to 
generate high resolution images over large volumes. The 
consequence is few counts per picture element and therefore 
a rather high noise in PET images. In order of decreasing in 
magnitude, emission, transmission and blank scans are the 
main sources of noise in PET images [3]. Each of these scans 
is based on recording of discrete numbers of photons 
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counted by the detector system, which is associated with a 
noise with a variance defined by Poisson statistics. 

 One aspect of quality of diagnostic images is expressed 
and measured by the Signal to Noise Ratio (SNR), which 
attempts to give a description of detectability of a signal de-
pending on its magnitude and the magnitude of the noise. 
Myers [4] has shown that this aspect of image quality, in its 
simplest form characterized by pixel SNR, becomes an in-
adequate measurement when different types of noise correla-
tion exist between the pixels within the image. It has been 
demonstrated that 3D as well as 2D PET images contain a 
strong correlation between the values in adjacent pixels and 
this correlation is found to be a complex function [5].  

 Usually PET images are reconstructed analytically using 
filtered backprojection (FBP), which is described in [6] and 
[7]. Another method used for reconstructing PET data is 
based on an iterative method called Ordered Subsets Expec-
tation Maximisation (OSEM) [8], which is a faster version of 
Maximum Likelihood Expectation Maximisation (ML-EM) 
[9]. Studies performed by Barrett [10] have indicated that 
low intensity regions in images reconstructed by an iterative 
algorithm tend to have low noise or local noise pattern. In 
contrast, images reconstructed by FBP tend to have much 
more globally distributed noise pattern. The choice of in-
jected tracer, its distribution pattern and reconstruction algo-
rithm as well as the type of convolution kernel used in the 
reconstruction algorithm significantly affects the magnitude 
and correlation of noise [11]. 

 The standard method to reduce noise for the quantitative 
estimation is to take averages over several pixels within a 
Region of Interest (ROI) but since a correlation is introduced 
during the image reconstruction, notably during the filtering 
of the projections, it is not trivial to assign a precision value 
to these averages. A common method to reduce noise in im-
ages is to filter the images with a low pass filter, however at 
the expense of a reduced resolution. When a dynamic imag-
ing sequence is available, the method of choice to reduce 
noise is to generate an average over the image sequence. 
However, it is not trivial to perform this temporal averaging 
optimally due to different factors. Among the others, high 
magnitude of the noise caused by emission scan, variation of 
the noise magnitude in-between images, non-correlated noise 
in-between images in different time points (frames) the 
searched structures’ signal has a specific kinetic behaviour in 
relation to other structures. 

 Other methods for analyzing dynamic or multidimen-
sional PET data, with the aim of noise reduction and signal 
separation are Principal Component Analysis (PCA) and the 
recently developed Independent Component Analysis (ICA).  

 PCA is one of the most commonly used multivariate im- 
age analysis tools, and has several applications e.g. in medi- 
cal imaging modalities such as PET [13-18], Computed  
Tomography (CT) [19] and in functional Magnetic Reso- 
nance Imaging (fMRI) [20-22]. A majority of the results  
from these studies indicate that PCA has difficulty in sepa- 
rating the signal from noise when the magnitude of the noise  
is relatively high and thus the data has a low SNR. These  
studies have also shown that variable noise levels and non- 
isotropic noise correlation [12] in PET images in a dynamic  
sequence dramatically affect the subsequent multivariate  

analysis unless properly handled. A few approaches have  
been proposed for this purpose [13, 14].  

 ICA has been applied in different medical imaging appli- 
cations [23-31] and the results have been very promising.  
One of the problems in ICA is that it assumes that the noise  
is additive and relatively small, and its capability with re- 
spect to robust extraction of signals in noisy data is less im- 
pressive when a priori information about noise and source 
signal is not available [32]. Different approaches have been  
proposed with modifications of the ICA algorithm [33, 34].  
In [33], a so-called Independent Factor Analysis (IFA) has  
been suggested including a parametric approach with maxi- 
mum likelihood estimation to handle the noisy data. In [34],  
a semi-parametric approach was applied on Magnetoen- 
cephalography (MEG) data, with sensor noise present, which  
is based on replacing PCA with Factor Analysis (FA). 

 Comparisons of PCA and ICA have been made in differ-
ent studies with different applications [35-37]. Tomas et al. 
[36] have shown that in fMRI studies PCA is superior for 
isolation and removal of unstructured or random noise 
whereas ICA appears to be a better technique for removal of 
structured noise or artifacts. In most of these studies, PCA 
and ICA have not been used primarily as a technique for 
reduction of the noise but as a tool for identification and ex-
traction of the signals and the spatial patterns of interest in 
the images. Jung et al. [37] have shown that ICA can more 
effectively remove different artifacts caused by a variety of 
artifactual sources in Electroencephalographic (EEG) record-
ings than PCA. 

 One of the objectives of the present work was to explore 
the capability of PCA and ICA to extract signals and reduce 
noise, thereby increasing the SNR in a dynamic sequence of 
PET images, where the features of the noise is different 
compared with some other medical imaging techniques. Re-
sults from simulations were explored and compared. 

 The study included synthetic PET images containing un-
correlated and correlated noise where independently the sig-
nal and the noise behaviour could be controlled and qualita-
tive and quantitative results could be evaluated. 

MATERIALS AND METHODS 

Principal Component Analysis (PCA) 

 Principal Component Analysis (PCA) [38] is a well es-
tablished and commonly used tool for multivariate analysis. 
PCA is based on linear transformation and decomposition of 
a number of correlated variables of a given data set (multi-
dimensional data set) to a number of uncorrelated compo-
nents, called Principal Components (PCs). These extracted 
PCs are estimated as the projections of the given data set on 
the eigenvectors of the covariance or correlation matrix of 
this data set. Therefore, one of the objectives of PCA is to 
achieve accurate dimension reduction by extracting a few 
PCs (not all PCs) that describe most of the variation in the 
original multivariate data with the least loss of information. 

Let: 

X = x1, x2 , x3,..., xm[ ]
T

           (1)  

be a matrix with columns
i

x  representing the observed data 

vectors. Then, the principal components are given by 
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Xws
T

ii
= , where

i
w  is an eigenvector of the sample co-

variance matrix C = E XXT{ } . It can be written in matrix 

form as: 

WXS =              (2) 

where  

S = s1, s2 , s3,..., sn[ ]
T

 

and  

W = w1,w2 ,w3,...,wn[ ]
T

 

 Practically, if 80%-90% of the total variance in a multi-
variate data set can be accounted for by the first few princi-
pal components, corresponding to the largest eigenvalues of 
the covariance matrix, then the remaining components can be 
rejected without much loss of information [39]. The quality 
of the results obtained from performing PCA on medical 
images depends on the method used for pre-normalization or 
data scaling, therefore different types of such methods have 
been tested experimentally [40].  

Independent Component Analysis (ICA) 

 Independent Component Analysis (ICA) is an extension 
of PCA in which statistically independent components in-
stead can be extracted by performing linear transformation 
on input data, which can be considered as containing mixed 
signals. In other words ICA searches for a linear transforma-
tion in a way that can minimize the statistical dependency 
and mutual information of mixed multivariate data as much 
as possible [41, 42]. Important assumptions in ICA are that 
the constituting components are statistically independent, 
and that they must have non-Gaussian distributions. The 
simplest ICA model, the noise-free linear ICA model, seems 
to be sufficient for most applications.  

 The algorithm often begins with decomposing/un-
correlating the input data using PCA or Singular Value De-
composition (SVD). As a result, a new data set is generated 
where SNR becomes higher than in the original input data. 
Then the new data will be re-scaled to provide zero mean 
and unit variance. After that, ICA decomposes and searches 
for the independent signals. 

 A computationally efficient ICA algorithm, called the 
FastICA [43-45] algorithm, an approved technique in the 
field of Blind Source Separation (BSS), was used in the pre-
sent study. Other well-known algorithms such as Infomax 
[46], JADE [47], Molgedey and Schuster [48] and Ziehe and 
Muller [49] are the most widespread higher order statistics 
and de-correlation methods algorithms.  

 Here we used Comon [42] and Hyvärinen [43] assump-

tions to describe the noise-free linear ICA model. ICA of 

observed random data X includes estimation of the genera-

tive model: 

ASX =              (3) 

where X = x1, x2 , x3,..., xm[ ]
T

and 
i

x  is an observed random 

vector, S = s1, s2 , s3,..., sn[ ]
T

and
i

s is a latent component 

vector, and A is the constant m times n  mixing matrix. Af-

ter estimating the matrix A , its inverse W  is computed and 

the independent components are obtained by taking: 

WXS =              (4) 

 It is, however, not possible to determine either signs or 

the order of the independent components, because both of A  

and S are unknown. 

 The evaluation of ICA also utilized a lower number of 
employed eigenvalues and the results were compared with 
independent components that were generated using all ei-
genvalues because we believed that ICA could find the com-
ponents faster (converge faster) and could generate better 
components with a lower number of used eigenvalues. The 
results generated from both types of applications were stud-
ied and compared. 

Simulated Images 

 A program using Matlab (The Mathworks, Natick, Mas-
sachusetts) was developed for creating the equivalence of a 
set of frames depicting the kinetics of a tracer in a PET 
study. The simulated (synthetic) images with a size of 
128x128 included four different structural shapes (objects) 
containing four different kinetics, simulating the kinetic be-
havior of radionuclide distribution in PET images. The reso-
lution of the images were modified by convolution with a 
point spread function (a 2D stationary Gaussian) selected to 
correspond to that of a PET camera, followed by adding cor-
related Gaussian or uncorrelated Gaussian distributed noise 
or uncorrelated Poisson distributed noise with different mag-
nitudes/variances for further exploration and comparison 
purposes. Furthermore, the image color scale minimum- and 
maximum-level was set to the image minimum and maxi-
mum intensity of the image respectively. Eq. (5) has been 
used for creating different kinetics in different structures 
such as cerebellum (CBL), frontal cortex (FrntCx), white 
matter (WhitM) and occipital area (Occip).  

) eA  y
  -

ji
ii

tt
e (1=

 
           (5) 

where 
ji

y  refers to a kinetic value for each one of the struc-

tures j and )24,...,3,2,1(=i  refers to the number of gener-

ated images, ti refers to mid time point (0-60 min.) after as-

sumed tracer administration,  

[ ]7.501.25,...,5 0.75, 0.25, =
i

t
 

  refers to a constant specifying how fast the curve de-
clines while  refers to another constant specifying how fast 
the curve rises and finally A is a constant defining the ampli-
tude of the curve. The following Eqs. (6-9) were used for 
creating kinetic behavior in each structure in the images. 

)) (e 4yCBL
 8.0 04.0-

1i
ii tt

e (1==
 
           (6) 

) e 3yFrntCx
 1 01.0-

2i
ii

tt
e (1==           (7)

 

)) (e 1.5yWhitM
 7.0 007.0-

3i
ii
tt

e (1==
 
          (8) 

)) 3.5(eyOccip
 1 02.0-

4i
ii

tt

e (1==           (9) 
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 These values were selected to give for each of the struc-

tures, a kinetic behaviour as seen with the amyloid binding 

tracer 
11

C labelled Pittsburgh Compound-B (11C-PIB) [50]. 

Eq. (10) was used for creating the noise behavior curves in 

the images. 

))) e (4.1(yNoise
 5.1 03.0-

i
ii tt

eA  (1==        (10) 

 where
i

y refers to the standard deviation of the noise and 

)24,...,3,2,1(=i  refers to the number of generated images, t 

refers to time point. Fig. (1) shows the kinetic behavior of 

the structures and noise used for creating synthetic images 

based on statistical analysis and observations done by Klunk 

et al. [50]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Kinetic behavior used for each one of the structures in the 

images and standard deviation of noise. 

 

 The following procedures Eqs. (11-14) were used for 
generation of simulated uncorrelated Gaussian, correlated 
Gaussian and uncorrelated Poisson noise. 

 If  is a 2D Gaussian filter of size [5 x 5] with  of size 

2 then correlated Gaussian noise  is defined as 2D convo-

lution )(  of the 2D Gaussian distributed random noise 
Nf  

with mean zero and variance one and the defined Gaussian 

filter . 

= Nfv           (11) 

 If 
i
 refers to 2D image matrices of size [128 x 128], 

( )24,...,3,2,1=i , containing values of four different objects 

with different kinetics ( )
4321

,,, xxxx  and background, 
f

 

refers to a 2D point spread function defining the image reso-

lution, c  is a constant for modulating the magnitude of the 

noise and 
i

y refers to the kinetics of the noise. Then a 2D 

image 
i

X  with additive, correlated and Gaussian distributed 

random noise is defined as: 

))(()( ifii vycxX +=          (12) 

where )( fix  is each pixel in original image with ap-

plied point spread function. Eq. (13) has been employed for 

creating uncorrelated Gaussian distributed random noise. 

)()( iNfii yfcxX +=          (13) 

 For creating Poisson (Eq. 14) distributed noise Samal’s 

[39] formulation has been employed with a point spread 

function included in this equation. A 2D image 
pX contain-

ing uncorrelated Poisson distributed noise is defined as: 

))()(()( fiNfip xfcxX +=        (14)  

 Synthetic images containing different magnitudes of the 
additive Gaussian or Poisson distributed noise have been 
studied. Fig. (2) shows the input images containing uncorre-
lated Gaussian distributed noise. 

Signal to Noise Ratio (SNR) 

 As a parameter to define the image quality after applica-
tion of PCA or ICA, we used the SNR. Here, the definition 
of SNR from Sonka [51], Eq. (15), was used where signal is 
defined as the sum of squared values of the pixels within an 
outlined ROI identifying the objects. The noise is defined as 
the sum of squared values of the pixel deviation from the 
mean within an outlined ROI covering the same structure in 
the image. Eq. (16) indicates the definition of the signal and 
Eq. (17) indicates the definition of noise for the whole imag-
ing sequence.  

ji

ji

ji
N

S
SNR =            (15) 

where signal 

( )
( )

=
yx

jiji yxfS
,

2
,           (16) 

where 

2

1

2 )(
=

=
n

i jiji xf  

and noise  

( )
( )

=
yx

jiji yxvN
,

2
,           (17) 

where  

2

1

2 )( ji

n

i jiji
xxv =

=

 

 For the calculation of the signal and for the noise for each 
structure we used a mask that covered the inside (minus a 
number of pixels from the edge) of the structure in the im-
age, ensuring that none of the background or surrounding 
was included in the mask. SNRs were calculated and illus-
trated, based on highest ratios within all PC(s) or IC(s) for 
each part of the study.  

Pre-Normalization Methods 

 In the present study four types of pre-normalization 
methods were utilized on the data before application of 
analysis methods and the results were compared with those 
without pre-normalization. 
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Fig. (2). Synthetic images containing different magnitudes of additive and uncorrelated Gaussian noise. The sequence starts in the upper left 

corner and ends in the lower right corner. 
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 The first pre-normalization we named background noise 
pre-normalization, “nor1”, which is an improved version of 
the method introduced by Pedersen et al. [14]. Distinct from 
the suggested approach by Pedersen et al. [14], this method 
is based on dividing the value of each pixel k  in a single 
image i  by the standard deviation of the noise calculated 
from an outlined masked area in the background of each one 
of the images (slice wise). The reason for using this mask 
was to cover pixels containing the noise from different posi-
tions in the background within the image for better estima-
tion of the standard deviation.  

 The pre-normalization was performed according to Eq. 
(18), 

iikik
sxX /=           (18) 

where 
ik

X  refers to a new value of the pixel k  of image i  

and 
ik

x  refers to the original value of the corresponding 

pixel and 
i

s  refers to standard deviation of pixels within the 

mask. This method would normalize for different levels of 

noise in the imaging sequence, if the noise magnitude was 

the same all over each image field. 

 The second proposed method was named “pois” pre-
normalization. This method is based on dividing the value of 
each pixel k  in a single image by the square root of the ab-
solute value of the same pixel in the image i and is based on 
the assumption that the noise variance in each pixel is pro-
portional to the value in this pixel.  

ikikik
xxX /=            (19) 

 
ik

X  denotes the new value of the pixel after applying 

normalization. This method would normalize for noise if it in 

each pixel were Poisson distributed both within and in-

between images. 

 The third pre-normalization method is known as whiten-
ing, ”whit” and is part of the concept in ICA. This method 
starts by centering the pixel values meaning that the mean of 
the pixel values is set to zero followed by a scaling in which 
the variance of the pixel values is set to one. 

Xnj = (Xj X j ) / X j X j( )
2

/ N
1

N
        (20) 

where Xnj  refers to transformed image and X j  refers to 

original image j  as a vector containing the pixel values and 

X j
 refers to the mean of the vector and N  refers to the 

number of elements in the vector X j . 

 In this study we propose a new pre-normalization method 
denoted as “mixp”, which is based on following steps: 

a) Removal of Negative Values 

 PET images contain negative pixel values in random po-

sitions within the images, predominantly in areas with low 

radioactivity such as outside the object but also sometimes 

within the object. This is due to filtering of the projections, 

scatter and random subtraction, which are part of reconstruc-

tion algorithm. These negative values are related to noise and 

hence independent of the values in the same positions in 

other planes or frames. We declare each one of the negative 

pixel values within the image as a pixel containing noise. We 

then treat each one of the negative pixel values independent 

of other pixels by taking the absolute value of the value of 

the divided by its square root. Hence, each pixel j  in the 

single image i  that contained a negative value Xij
obtains 

new value,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). PC1 images obtained after application of PCA on synthetic images containing uncorrelated Gaussian noise and generated utilizing 

different pre-normalization methods. Upper left shows PC1 image without any pre-normalization, upper middle the “nor1” and upper right 

the “whit” pre-normalization methods. Lower left shows PC1 image using the “pois” and lower middle the “mixp” pre-normalization meth-

ods. Lower right shows mean image. 
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ij

ij

newij

X

X
X =)(           (21) 

b) Background Noise Pre-Normalization 

 This method “nor1” was utilized using Eq. (18). 

c) Reference Region Pre-Normalization 

 Reference region pre-normalization was based on divid-

ing the value of each pixel j  in a single image i  by the 

mean value 
i

x of the pixels within a drawn ROI, masking 

the chosen reference region in each frame (Eq. 22). A refer-

ence region is defined as a region, where there is no specific 

tracer binding. In our synthetic study, the structure “CBL” 

was used as reference region.  

i

ij

newij
x

X
X =)(            (22) 

 Performing the reference region pre-normalization damps 
the values of the pixels representing regions with similar 
kinetic behavior as the reference region and at the same time 
enhances the contrast of the areas deviating from the refer-
ence region.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). PC2 images obtained after application of PCA on synthetic images containing uncorrelated Gaussian noise. Upper left shows PC2 

image without any pre-normalization, upper middle the “nor1”, upper right the “whit”, lower left the “pois” and lower middle the “mixp” 

pre-normalization methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). SNR values for the corresponding structures in first principal component (PC1). Images contain uncorrelated Gaussian noise and are 

generated utilizing different pre-normalized methods and compared with mean image. Each point of the curves representing SNR values for 

each one of the structures in both mean image (dash-star) and pre-normalized image (solid curve). 
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RESULTS 

PCA on Images with Gaussian Noise 

 Figs. (3-5) show the results from applying PCA on syn-
thetic images containing uncorrelated Gaussian noise and 
using different types of pre-normalization methods. The 
mean image and PC1 images generated with none or “pois” 
normalization were similar in their features, with highest 
values in frontal, occipital and CBL structures and lower 
signal in white matter. The other three normalization meth-
ods were also similar in-between them, with highest signal in 
frontal and occipital structures and lower in CBL and white 

structures. The “mixp” additionally discriminated between 
frontal and occipital structures and enhanced the discrimina-
tion to CBL and white. 

 The PC2 images with none or “pois” normalization failed 
to further discriminate between structures whereas the other 
three normalization methods delineated the structures except 
occipital.  

 In rank order the “nor1” and “whit” pre-normalization 
gave the highest SNR compared to the mean image and 
“none”, “pois” and “mixp” gave lower SNR than the average 
image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). PC1 images obtained after application of PCA on synthetic images containing correlated Gaussian noise and generated utilizing 

different pre-normalization methods. Upper left shows PC1 image without any pre-normalization, upper middle the “nor1” and upper right 

the “whit” pre-normalization methods. Lower left shows PC1 image using the “pois” and lower middle the “mixp” pre-normalization meth-

ods. Lower right shows mean image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). PC2 images obtained after application of PCA on synthetic images containing correlated Gaussian noise. Upper left shows PC2 

image without any pre-normalization, upper middle the “nor1”, upper right the “whit”, lower left the “pois” and lower middle the “mixp” 

pre-normalization methods. 
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 Figs. (6-8) show the results from applying PCA on syn-
thetic images containing correlated Gaussian noise and using 
different types of pre-normalization methods. The mean im-
age and PC1 images generated with none, “nor1”, “whit” 
and “pois” normalization, were similar in their features to 
that obtained applying “none” and “pois” pre-normalization 
on images containing uncorrelated Gaussian noise with 
highest values in frontal, occipital and CBL structures and 
lower signal in white matter. The “mixp” discriminated be-
tween frontal and occipital structures and enhanced the dis-
crimination to CBL and white. CBL is extracted and sepa-
rated in PC2.  

 PC1 images obtained with applied “pois” pre-
normalization gave the highest SNR compared to the mean 

image. The “none”, “pois” and “whit” gave similar results 
than average image and “mixp” gave lower SNR than the 
average image. 

 The PC2 images with applied pre-normalization using all 
methods delineated the structures with different SNR values, 
except occipital in “nor1” and “whit”. 

ICA on Images with Gaussian Noise 

 Figs. (9-11) represent the result of applying ICA on syn-
thetic images containing non-correlated Gaussian distributed 
noise using different types of pre-normalization methods. 
Also with ICA, none and “pois” showed the same imaging of 
the structures in IC1 as shown above with PC1, with similar 
values for frontal, occipital and cerebellum and lower values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). SNR values for the corresponding structures in first principal component (PC1) synthetic images. Images contain correlated Gaus-

sian noise and are generated utilizing different pre-normalized methods and compared to the mean image. Each point of the curves represent-

ing SNR values for each one of the structures in both mean image (dash-star) and pre-normalized image (solid curve). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. (9). IC1 images obtained after application of ICA on synthetic images containing uncorrelated Gaussian noise and generated utilizing 

different pre-normalization methods. Upper left shows IC1 image without any pre-normalization, upper middle the “nor1” and upper right 

the “whit” pre-normalization methods. Lower left shows IC1 image using the “pois” and lower middle the “mixp” pre-normalization meth-

ods. Lower right shows mean image. 
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Fig. (10). IC2 images obtained after application of ICA on synthetic images containing uncorrelated Gaussian noise. Upper left shows IC2 

image without any pre-normalization, upper middle the “nor1”, upper right the “whit”, lower left the “pois” and lower middle the “mixp” pre-

normalization methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). SNR values for the corresponding structures in first principal component (IC1) synthetic images. Images contain uncorrelated 

Gaussian noise and are generated utilizing different pre-normalized methods and compared to the mean image. Each point of the curves rep-

resents SNR. 

in white. “nor1” and “whit” gave similar results with high-
lighting frontal followed by equal imaging of occipital and 
white and “mixp” gave results? with highlighting cerebel-
lum, occipital in IC1 images and frontal and occipital fol-
lowed by white in IC2 image. 

 The IC2 images with none and “pois” normalization only 
showed noise, whereas “nor1”, “whit” and “nor1” showed 
CBL and occipital and “whit” showed highest in frontal fol-

lowed by occipital and white. The SNR were inferior to 
mean image using different types of pre-normalization meth-
ods. 

 When performing ICA on images with correlated Gaus-
sian noise, the results were improved compared to the result 
obtained on images with uncorrelated Gaussian noise. SNR 
were lower compared to average image except on images 
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Fig. (12). IC1 images obtained after application of ICA on synthetic images containing correlated Gaussian noise and generated utilizing 

different pre-normalization methods. Upper left shows IC1 image without any pre-normalization, upper middle the “nor1” and upper right the 

“whit” pre-normalization methods. Lower left shows IC1 image using the “pois” and lower middle the “mixp” pre-normalization methods. 

Lower right shows mean image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13). IC2 images obtained after application of ICA on synthetic images containing correlated Gaussian noise. Upper left shows IC2 im-

age without any pre-normalization, upper middle the “nor1”, upper right the “whit”, lower left the “pois” and lower middle the “mixp” pre-

normalization methods. 

with applied “pois” pre-normalization method whereas not 
for structure WhitM as shown in Figs. (12-14). 

PCA on Images with Poisson Noise 

 When applying PCA on images generated with Poisson 
noise (Figs. 15-17), the optimal discrimination of the struc-
tures in PC1 images were seen with “pois” normalization. 
The other pre-normalization methods gave relatively similar 
images with equally high values in the structures except 
white. 

 PC2 images identified all structures, primarily because of 
high noise in the structures and lack of noise in the surround-
ing. SNR was improved with all methods as compared to the 

mean image especially using “pois” pre-normalization 
method in which the ratio is 5 times higher compared to the 
mean image. 

ICA on Images with Poisson Noise 

 The application of ICA on images with Poisson noise 
(Figs. 18-20) seemed in general to place information rather 
in IC2 images than IC1 images which were very noisy. Ad-
ditionally none of the methods was able to highlight the 
structures of greatest interest, frontal and occipital. The SNR 
was inferior for all structures and methods as compared to 
the mean images, except structure WhitM with “pois” nor-
malization. 
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Fig. (14). SNR values for the corresponding structures in first principal component (IC1) synthetic images. Images contain correlated  

Gaussian noise and are generated utilizing different pre-normalized methods and compared to the mean image. Each point of the curves rep-

resents SNR. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (15). PC1 images obtained after application of PCA on synthetic images containing uncorrelated Poisson noise and generated utilizing 

different pre-normalization methods. Upper left shows PC1 image without any pre-normalization, upper middle the “nor1” and upper right 

the “whit” pre-normalization methods. Lower left shows PC1 image using the “pois” and lower middle the “mixp” pre-normalization  

methods. Lower right shows mean image. 

DISCUSSION 

 The main scope of this work was to explore the applica-
tion of two well-known, unsupervised multivariate image 
analysis tools, namely PCA and ICA, on a dynamic sequence 
of PET images. We wanted to study the performance of 
these two methods on PET images where the behavior of the 
noise is different compared to studies on other medical imag-
ing modalities such as CT, MRI, fMRI and EEG etc. We 
aimed to explore these tools’ capability to extract signals 
from noise in these types of noisy images to suggest one 
method to be used in clinical settings. Since clinical PET 
images contain such complicated structures and kinetic be-

havior, we selected to use simulated images where we could 
better control structure and noise and also analyze the re-
sults. 

 There is not one single entity which would describe the 
optimal imaging of complex kinetic/biological behaviors. 
We would desire a good imaging of structures, a good dis-
crimination in-between structures with different characteris-
tics and we would like these tasks to be performed with the 
optimal SNR. 

 In contrast to previous studies e.g. [31] and [33], we 
wanted to utilize these methods on noisy PET images to in-
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Fig. (16). PC2 images obtained after application of PCA on synthetic images containing uncorrelated Poisson noise. Upper left shows PC2 

image without any pre-normalization, upper middle the “nor1”, upper right the “whit”, lower left the “pois” and lower middle the “mixp” pre-

normalization methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (17). SNR values for the corresponding structures in first principal component (PC1) synthetic images. Images contain uncorrelated Pois-

son noise and are generated utilizing different pre-normalized methods and compared to the mean image. Each point of the curves represent-

ing SNR values for each one of the structures in both mean image (dash-star) and pre-normalized image (solid curve). 

vestigate whether the pre-normalization of the input data can 
improve their performance. The reason was that we believe 
that PCA is a reliable multivariate technique, but only if the 
input data is handled properly since PCA is “blind” to the 
difference between variance created by signal and created by 
noise. Therefore, different types of pre-normalization meth-
ods were proposed and investigated. 

 One of the ambitions in applying different pre-
normalization methods was to determine the pre-
normalization method in which the variance of the noise in 
the sequence of images becomes as stable as possible in the 
time sequence (frames). This would allow PCA to detect 
fluctuations in the signal and not be guided by the noise. In 

other words by applying pre-normalization, the input data 
would be transformed to data where the variance of the val-
ues are more stable during the time interval and at the same 
time the signal strength would be preserved as much as pos-
sible before applying PCA. In parallel we wished to explore 
if the same pre-normalization of input data would affect the 
performance of the ICA on noisy PET data. 

 To reach the goals of this study, we generated synthetic 
PET images containing uncorrelated and correlated noise 
where the signal vs. noise behavior could be controlled yet 
qualitative vs. quantitative results could be generated. The 
reason for employing correlated noise in the simulation study 
was to explore if the correlation of the noise affected the 
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Fig. (18). IC1 images obtained after application of ICA on synthetic images containing uncorrelated Poisson noise and generated utilizing 

different pre-normalization methods. Upper left shows IC1 image without any pre-normalization, upper middle the “nor1” and upper right the 

“whit” pre-normalization methods. Lower left shows IC1 image using the “pois” and lower middle the “mixp” pre-normalization methods. 

Lower right shows mean image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (19). IC2 images obtained after application of ICA on synthetic images containing uncorrelated Poisson noise. Upper left shows IC2 

image without any pre-normalization, upper middle the “nor1”, upper right the “whit”, lower left the “pois” and lower middle the “mixp” pre-

normalization methods. 

performance of these methods or not. Synthetic image se-
quences with different high noise magnitudes were studied to 
validate the performance of the suggested methods and to 
explore if the employed pre-normalization method could 
damp the effects of the noise in derived images. 

 Because of the large interest in the potential use of the 
amyloid binding tracer PIB, we selected to generate struc-
tures in the simulated images which followed the kinetic 
behavior of PIB in these structures and generated a noise 
which simulated that of a PIB imaging sequence with respect 
to magnitude. 

 Since images reconstructed with different reconstruction 
methods would differ in their noise characteristics, we in-
cluded in the simulation’s noise which was globally similar 
across the image and noise which had a Poisson distribution 
related to the magnitude in each pixel. Finally we included 
correlation of noise by convolution. 

 Application of PCA generated relatively similar results, 
with some minor differences, on the images with correlated 
and uncorrelated Gaussian noise characteristics when input 
data were not pre-normalized. However, clear differences 
were noticeable using different noise characteristics  
(Gaussian vs. Poisson) when input data were not handled 
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with proper pre-normalization method. Improvement of per-
formance of PCA was observed on images containing Pois-
son distributed noise applying different pre-normalization 
method especially “pois”.  

 The best qualitative illustration were observed on PC1 
images especially on images containing correlated Gaussian 
noise but the best quantitative results were obtained on im-
ages containing Poisson distributed noise when input data 
were handled by a proper pre-normalization. 

 Hence “nor1”, “whit”, “pois” and “mixp” gave PC1  
images, which had a desired enhancement of the most inter-
esting structures frontal and occipital cortex. These normali-
zation methods also succeeded to discriminate in-between 
the structures in PC2 images except “pois” applied on im-
ages containing un-correlated Gaussian noise. The “nor1” 
and “mixp” normalizations also created PC1 images with 
improved SNR as compared to the mean images and in some 
cases separated structures in different components such as in 
images containing correlated Gaussian noise. An overall 
slight preference for the “mixp” and “pois” normalization 
was identified when reviewing all image results. 

 ICA with “nor1”, “pois” and “mixp” pre-normalization 
also seemed to perform relatively well. It was noticeable that 
the SNR calculated for the WhitM was higher compared 
with mean images when performing “pois” pre-
normalization on both uncorrelated and correlated compared 
with other structures. One possible reason might be that the 
kinetic behavior of the WhitM did not vary as much as the 
other structures. However ICA did not reach the improve-
ment in SNR as PCA did. Furthermore ICA seemed to have 
a tendency under some conditions to shift over information 
from IC1 to other independent components and to be more 
sensitive to the level of noise. 

CONCLUSIONS 

 The results from this study showed that PCA is a more 
stable technique compared with ICA and creates better re-

sults both qualitatively and quantitatively especially when 
“mixp” pre-normalization was used. Applying pre-
normalization does not improve the performance of the ICA 
for quantitative measurements dramatically.  

 PCA can extract the signals from the noise rather well 
and is not sensitive to magnitude and correlation likewise 
type of noise, when the input data are correctly handled by a 
proper pre-normalization. It is important to note that PCA as 
inherently a method to separate signal information into dif-
ferent components could still generate PC1 images with im-
proved SNR as compared to mean images. 

 PC1 and IC1 images may lose the quantitative values and 
relations within the images, meaning that the quantitative 
difference between different structures in the image will not 
be the same as in the real case. Future work could suggest 
how it is possible to get quantitative measurements out of PC 
and IC images. 

ACKNOWLEDGMENTS 

 The authors wish to thank Dr. Azita Monazzam, for 
beneficial scientific discussions. 

REFERENCES 

[1] Mair BA, Rao M, Anderson JMM. Invers Problem 1996; 12: 965-
976. 

[2] Ter-Pogossian MM, Raichle ME, Sobel BE. Positron emission 
tomography. Sci Am 1980; 243: 70-181. 

[3] Holm S, Toft P, Jensen M. Estimation of the noise contributions 
from Blank, transmission and emission scans in PET. IEEE Trans 

Nucl Sci 1996; 43: 2285-91. 
[4] Myers KJ, Barret HH, Borgsrom MC, Patton DD, Seeley GW. 

Effect of noise correlation on detectability of disk signals in medi-
cal imaging. J Opt Soc Am 1985; 2: 1752-9. 

[5] Blomqvist G, Eriksson L, Rosenqvist G. The effect of spatial corre-
lation on the quantification in positron emission tomography. Neu-

roimage 1995; l: 2. 
[6] Brooks RA, Chiro GD. Principles of computer assisted tomography 

(CAT) in radiographic and radioisotopic imaging. Phys Med Biol 
1976; 21: 689-732. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (20). SNR values for the corresponding structures in first principal component (IC1) synthetic images. Images contain correlated Gaus-

sian noise and are generated utilizing different pre-normalized methods and compared to the mean image. Each point of the curves represents 

SNR.  

	�/)

� � � �� � � �

��

��

��

��

�

��

��

��

��

�

.
$�
+��

)'�#

01���'�
�'�


.
$�
+��

.
$�
+��

.
$�
+��

.
$�
+��

��

��

��

��

�

�

��

��

��

��

�

�

��

��

��

��

�

�
� � � � � � � �� � � �



16    The Open Neuroimaging Journal, 2009, Volume 3 Razifar et al. 

[7] Cho ZH, Ahn I, Bohms C, Huth G. Computerized image recon-

struction methods with multiple photon/X-ray transmission scan-
ning. Phys Med Biol 1974; 19: 511-22. 

[8] Hudson HM, Larkin RS. Accelerated image reconstruction using 
ordered subsets of projection data. IEEE Trans Med Imaging 1994; 

3: 601-9. 
[9] Shepp LA, Vardi Y. Maximum likelihood reconstruction for emis-

sion tomography. IEEE Trans Med Imaging 1982; 2: 113-22. 
[10] Barrett HH, Wilson DW, Tsui BMW. Noise properties of the EM 

algorithm: I. Theory Phys Med Biol 1994; 39: 833-46. 
[11] Siewerdsen JH, Cunningham IA, Jaffray DA. A framework of 

noise-power spectrum analysis of multidimentional images. Med 
Phys 2002; 29: 2655-71. 

[12] Razifar P, Lubberink M, Schneider H, Långstrom B, Bengtsson E, 
Bergström M. Non-isotropic noise correlation in PET data recon-

structed by FBP but not by OSEM demonstrated using auto-
correlation function. BMC Med Imaging 2005; 5(1): 3. 

[13] Pedersen F, Bergström M., Bengtsson E, Maripuu E. Principal 
component analysis of dynamic PET and gamma camera images: a 

methodology to visualize the signals in the presence of large noise. 
Nucl Sci Symp Med Imaging Confer IEEE Confer Rec 1993; vol. 

3: pp. 1734-8.  
[14] Pedersen F, Bergström M, Bengtsson E, Långström B. Principal 

component analysis of dynamic positron emission tomography im-
ages. Eur J Nucl Med 1994; 21: 1285-92. 

[15] Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Functional con-
nectivity: the principal-component analysis of large (PET) data 

sets. J Cereb Blood Flow Metab 1993; 13: 5-14. 
[16] Friston KJ, Poline J-B, Holmes AP, Frith CD. Frackowiak, R.S.J. A 

multivariate analysis of PET activation studies. Hum Brain Mapp 
1996; 4: 140-51. 

[17] Thireou T, Strauss L, Kontaxakis G, Pavlopoulos S, Santos A. 
Principal component analysis in dynamic PET. Conf. Rec CASEIB 

2001; 241-3. 
[18] Thireou T, Strauss LG, Dimitrakopoulou-Strauss A, Kontaxakis G, 

Pavlopoulos S, Santos A. Performance evaluation of principal 
component analysis in dynamic FDG-PET studies of recurrent co-

lorectal cancer. Comput Med Imaging Graph 2003; 27: 43-51. 
[19] Kalukin AR, Van Geet M, Swennen R. Principal components 

analysis of multienergy X-ray computed tomography of mineral 
samples. IEEE Trans Nucl Sci 2000; 47: 1729-36. 

[20] Andersen AH, Gash DM, Avison MJ. Principal component analysis 
of the dynamic response measured by fMRI: a generalized linear 

systems framework. Magn Reson Imaging 1999; 17: 795-815. 
[21] Friston K, Phillips J, Chawla D, Buchel C. Revealing interactions 

among brain systems with nonlinear PCA. Hum Brain Mapp 1999; 
8: 92-7. 

[22] Hansen LK, Larsen J, Nielsen FA, et al. Generalizable patterns in 
neuroimaging: how many principal components? NeuroImage 

1999; 9: 534-544. 
[23] McKeown MJ, Makeig S, Brown GG, et al. Analysis of fMRI data 

by blind separation into independent components. Hum Brain 
Mapp 1998; 6: 1-31. 

[24] Makeig S, Westerfield M, Jung T-P, et al. Independent components 
of the late positive eventrelated potential in a visual spatial atten-

tion task. J Neurosci 1999; 19: 2665-80. 
[25] Lee TW. Independent component analysis: theory and applications. 

Boston, Kluwer Academic Publishers 1998. 
[26] Lee JS, Ahn JY, Lee DS, et al. Robust extraction of input function 

from H2 
15O dynamic myocardial positron emission tomography us-

ing independent component analysis. Nucl Sci Symp IEEE Conf 

Rec 1999; 2: 990-4. 
[27] Dodel S, Herrmann JM, Geisel T. Location of brain activity-blind 

separation for fMRI data. Neurocomputing 2000; 32: 701-8. 
[28] McKeown MJ, Hansen LK, Sejnowski TJ. Independent component 

analysis of functional MRI: what is signal and what is noise? Curr 
Opin Neurobiol 2003; 13: 620-9. 

[29] Rajapakse JC, Cichocki A, Sanchez AVD. Independent component 

analysis and beyond in brain imaging_EEG/MEG/fMRI and PET. 
Neural Information Processing. In: Proceedings of ICONIP 2002; 

vol. 1: pp. 404-12. 
[30] Jung T-P, Makeig S, McKeown MJ, Bell AJ, Lee T-W, Sejnowski 

TJ. Imaging brain dynamics using Independent Component Analy-
sis. In: Proceedings of the IEEE, 2001; vol. 89: pp. 1107-22. 

[31] Hae-Jeong P, Jae-Jin K, Tak Y, Dong SL, Myung CL, Jun SK. 
Independent component model for cognitive functions of multiple 

subjects using [15O]H2O PET images. Hum Brain Mapp 2003; 18: 
284-295. 

[32] Cichocki A, Siwek K. Blind sources separation for noisy signals. 
Source: Przeglad Elektrotechniczny 2002; 78: 344-7. 

[33] Attias H. Independent factor analysis. Neural Comput 1999; 11: 
803-851. 

[34] Ikeda S, Toyama, K. Independent component analysis for noisy 
data - MEG data analysis. Neural Netw. 2000; 13: 1063-74. 

[35] Mutihac R, Van Hulle Marc M. Comparison of principal compo-
nent analysis and independent component analysis for blind source 

separation. Romanian Rep Phys 2004; 65: 20-32. 
[36] Thomas CG, Harshman RA, Menon RS. Noise reduction in BOLD-

based fMRI using component analysis. Neuroimage 2002; 17: 
1521-37. 

[37] Jung T, Humphries C, Lee M, Iragui V, Makeig S, Sejnowski T. 
Removing electroencephalographic artifacts: Comparison between 

ica and pca. In: IEEE International Workshop on Neural Networks 
for Signal Processing, 1998; pp. 63-72. 

[38] Jolliffe IT. Principal component analysis. Springer Verlag, 2nd ed., 
New York 2002. 
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