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Abstract: Limited behavioural repertoire impacts quality of life in chronic schizophrenia. We have previously shown that 

the amount of movement exhibited by patients with schizophrenia is positively correlated with the volume of left anterior 

cingulate cortex and that this quantity of movement can be increased by modafinil. However, increased movement in itself 

may be of limited clinical significance. Hence, we sought to analyse the ‘structure’ of spontaneous movement in patients 

with schizophrenia and to examine whether the chunking of spontaneous activity has a neuroanatomical basis. ‘Acti-

watches’ were used to record spontaneous motor activity over a 20 hour period in sixteen male patients with schizophre-

nia. Time-series data were analysed for the number of discrete spontaneous activities, which might indicate a degree of 

structure to ongoing activity. Subjects underwent a whole-brain structural MRI scan. The ‘number of discrete movement 

epochs’ correlated with volumes of regions within bilateral rostro-ventral putamen and temporal poles. These data suggest 

that in people with schizophrenia the volume of bilateral putamen may influence the complexity of their behaviours, as 

distinct from the overall amount of behaviour. The results are presented in the context of a large body of previous research 

examining the role of the basal ganglia in motor and cognitive pattern generation. 

INTRODUCTION 

 Patients with schizophrenia often show marked avolition, 
an inability to initiate and persist in goal-directed activities 
[1]. Conversely, they may also exhibit increased repetitive, 
stereotypic patterns of behaviour, which are not goal-
directed. We have previously demonstrated that the amount 
of movement exhibited by patients with schizophrenia is 
positively correlated with the volume of their left anterior 
cingulate cortex [2] and that this quantity of movement can 
be increased by acute administration of modafinil (a putative 
cognitive enhancer) [3]. However, movement in itself is not 
enough; e.g. stereotypic movement lacks purpose, and in 
patients with schizophrenia, akathisia, an inner restlessness 
characterised by an inability to remain still, can be provoked 
as a side-effect of prescribed anti-psychotic medication [4]. 
Akathisia certainly precipitates movement but it is 
classically stereotypic and unproductive. Hence, in order to 
study volition quantitatively, what is needed is a way of 
discerning whether ongoing activity in people with schizo-
phrenia is purposeful or not.  

 Classically, the control of ongoing movements is 
modulated by the basal ganglia, a group of nuclei comprising 
the corpus striatum, globus pallidus, subthalamic nucleus 
and substantia nigra, located close to the base of the brain. 
While the caudate (together with the nucleus accumbens) is 
implicated in coding environmental cue properties, the 
putamen is implicated in the subsequent motor response [5].  
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The basal ganglia therefore have a fundamental influence on 
motor and cognitive pattern generators [6]. Their role in the 
production of habitual or automatic responses or habits and 
in stimulus-response learning may be due to different parts 
being specialised for the acquisition and expression phases 
of motor learning [7]. A PET imaging study found that 
whilst the caudate (along with prefrontal and anterior 
cingulate cortex) was involved in new learning, the putamen 
(along with premotor and motor cortex) was activated during 
the performance of already learned sequences [8, 9]. Hence 
the striatum would appear to be central to both the 
acquisition and expression of complex motor sequences or 
sequential behaviour. 

 Avolition might be conceptualised as a deficit of 

‘instrumental conditioning’; how organisms choose to act in 

response to the affective structure of their environment. 

‘Reinforcement learning’, which underpins instrumental 

conditioning, concerns how the rewards (positive or 

negative) for such actions are incorporated into future 

behaviour [10]. The neuroanatomical bases of instrumental 

conditioning and reinforcement learning have been demons-

trated by neurophysiological (single-neuron recordings; [11], 

lesional and fMRI [10] studies to lie within the dorsal and 

ventral striatum, as well as involving the limbic system [12]. 

Yamada and colleagues [11] examined the role of tonically 

active neurons (presumed to be cholinergic interneurons) in 

the caudate and putamen in encoding for goal-directed action 

planning and learning. Whilst the caudate was implicated in 

responding to stimuli associated with motivational outcomes, 

the putamen was more involved in responding to initiation of 

movement toward goal-directed activities, especially those 

actions with an expected reward. There is also evidence from 

animal models that the degree of stereotypy / poverty of 
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movement (and probably, by implication, the repetitive, 

inflexible patterns of attention, emotion, planning and 

cognition seen in many human neuropsychiatric disorders) 

may be linked to neurochemical imbalances between distinct 
striatal compartments [13].  

 In an fMRI study of instrumental conditioning in 

humans, distinct, dissociable functions for the dorsal and 

ventral striatum were investigated using a varying-reward 

task [10]. Whilst the ventral striatum was associated with a 

‘critic’ role (learning to predict future rewards) the dorsal 

striatum was associated with an ‘actor’ role (maintaining 

information about these reward outcomes to modulate future 

choices). Lehéricy and colleagues [14] used fMRI to exa-

mine the role of motor, premotor and associative basal 

ganglia areas in the complexity and frequency of movement. 

However, in this audio-paced finger-tapping task study, 

“complexity” of movement refers to relative task difficulty 

(i.e. repetitive index-finger tapping versus a complex 

sequence of 10 finger movements) in contrast to how we 

might characterise complexity, behaviourally, as the struc-

ture of discrete, internally generated spontaneous activities. 

Lehéricy and colleagues [14] reported increasing signal in 

the posterior putamen in association with increased move-

ment frequency, though not task difficulty, and increasing 

signal in anterior putamen with both increased movement 
frequency and complexity.  

 The basal ganglia as a whole are also involved in 

“chunking”, the grouping together of representations of 

motor and cognitive action sequences into ‘performance 

units’, which may make them less biologically unwieldy and 

easier to implement [7]. As Graybiel [7] states - “It seems 

reasonable, given the circuitry of the basal ganglia and their 

apparent involvement in some neuropsychiatric disorders, 

that any chunking functions of the basal ganglia may also 

extend beyond motor chunks to a range of action reper-
toires.” 

 In the light of this previous research, we sought to 

identify the structural volumetric neuroanatomical correlates 

of the frequency with which patients with schizophrenia 

performed discrete motor activities over a 20 hour period. To 

this end, we developed a novel methodology to analyse time-

locked recordings of the amount of such movement, so that a 
measure of movement complexity could be extracted. 

MATERIALS AND METHODOLOGY 

Patients 

 Sixteen right-handed male patients with chronic, stable 

schizophrenia (DSM-IV; [15]) gave written informed 

consent and participated in the study, approved by the North 

Sheffield Research Ethics Committee. This was the same 

cohort of patients used in our previous study examining the 

relationship between amount of movement and volume of 

anterior cingulate cortex [2] and the effects of modafinil on 

unconstrained motor activity [3]. All patients were commu-

nity-based outpatients but for monitoring purposes were 

admitted overnight on two separate occasions to a psychia-

tric ward. Subjects were reimbursed £100 for their partici-
pation in the entire study. 

Clinical Ratings and Medication 

 Patients were 36±8 years old (mean ± SD), had an illness 
duration of 14±8 years, a Scale for the Assessment of 
Negative Symptoms (SANS; [1]) score of 11.5±2.7 (the sum 
of ‘total’ scores), a Scale for the Assessment of Positive 
Symptoms (SAPS; [16]) score of 3.6±2.1, a Beck Depression 
Inventory (BDI; [17]) score of 9.5±10.3, a Barnes Akathisia 
Rating Scale (BARS; [18]) score of 1.2±1.7 and a Simpson-
Angus Scale (SAS; [19]; a measure of neuroleptic-induced 
parkinsonism) score of 6.1±8.5. Eleven patients were taking 
oral atypical antipsychotic medication (olanzapine x 6, clo-
zapine x 4, quetiapine x 1), one was taking oral typical 
medication (sulpiride) and four were receiving ‘typical’ 
medication as depot (flupenthixol decanoate x 2, fluphena-
zine decanoate x 1, zuclopenthixol decanoate x 1).  

Magnetic Resonance Imaging 

 Patients underwent a structural MRI scan on a 1.5T 
system (Eclipse, Philips Medical Systems, Ohio) using a 3-
dimensional acquisition technique (RF-spoiled FAST; 
TR=15ms; TE=4.4ms; acquisition matrix = 256x256x190 
yielding a voxel size of 1mm

3
), which produced a T1-

weighted, volume dataset covering the entire brain.  

Movement Data Collection 

 Patients returned to the ward following the scan at 
approximately midday, where they were free to fill the 
remaining time as they chose. This would have included 
eating lunch and dinner and sleeping for one night. During 
this post-scan 20hr period, patients wore an ‘Actiwatch’ 
(Cambridge Neurotechnology Ltd, UK) measuring their 
cumulative activity. The Actiwatch is a wrist-worn device 
containing a miniature uniaxial accelerometer which 
produces a digital integration of the amount and duration of 
all movement over 0.05g. Individual (dimensionless) acti-
watch data (106,722±36,553 [mean ± SD]; range 39,614 to 
171,790) were normalised to percentage measures to 
facilitate direct inter-subject comparisons of the distribution 
and variability of movement over time (Fig. 1). Subsequen-
tly, these normalised time-series data were analysed to 
compute the number of ‘on’ and ‘off’ movement epochs as a 
measure of the extent of spontaneous activity and, hence, by 
implication, goal-directed behaviour. Specifically, for each 
subject, total number of discrete blocks of activity was 
calculated by summation of non-contiguous points in the 
array representing the temporal position of non-zero ele-
ments in the raw data.  

Image Analysis 

 Structural MRI scans were pre-processed using voxel-
based morphometry [20] and the optimised protocol [21], 
including modulation with Jacobian determinants for the 
effects of spatial normalisation, in SPM2 (Wellcome 
Department of Imaging Neuroscience, London). A study-
specific local group template, created from the averaged 
structural-MRI scans of 59 patients with schizophrenia 
collected on the same scanner was smoothed with a Gaussian 
kernel of 8mm full-width at half maximum. Smoothed grey-
matter segmented maps were entered into a simple regress-
ion model within SPM2 correlating regionally specific grey-
matter volumes with number of discrete movement epochs. 
Areas of significant correlation (p=0.005 uncorrected; extent 
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threshold =50 voxels) were overlaid on the study-specific 
local group template (Fig. 2) for accurate neuroanatomical 
localisation and confirmed via a standardised co-planar 
stereotaxic brain atlas (Table 1; [22]). Grey-matter seg-
mented maps were parcellated using masks created with 
WFU_PickAtlas v1.02 [23]. Volumes of left and right 
caudate and putamen grey-matter were obtained for each 
subject. Finally, these parcellated basal-ganglia volumes 
were compared with those of 115 healthy control subjects 
collected on the same scanner with the identical sequence 
acquisition. 

RESULTS 

 Patients exhibited 245±62 (mean±SD; range 111 to 355) 
discrete movement epochs over 20 hours. There was a 
positive correlation between number of discrete movement 
epochs and volumes of specific homologous regions within 
bilateral rostro-ventral putamen and bilateral middle and 
superior temporal gyri (Table 1 and Fig. 2). There were no 
negative correlations between any regional brain volumes 
and number of discrete movement epochs. There were no 
significant correlations between number of discrete move-
ment epochs and total volume of movement, age, duration of 
illness, chlorpromazine equivalent anti-psychotic medication 
dosage, SANS ‘avolition’, BARS (akathisia) score, SAS 
(neuroleptic-induced parkinsonism) or parcellated volumes 
of whole caudate or putamen. Patients’ parcellated basal 

ganglia grey-matter volumes did not differ significantly from 
those of 115 healthy controls in respect of left putamen 
(4.23±0.42 mls vs. 4.18±0.42 mls [mean±SD]; p=0.65), right 
putamen (4.55±0.51 vs. 4.64±0.41; p=0.51) or right caudate 
(3.85±0.43 vs. 3.64±0.59; p=0.09), although patients did 
have a significantly smaller volume of left caudate 
(3.82±0.42 vs. 3.53±0.47; p=0.02). However, this final result 
should be interpreted within the context of all 16 patients’ 
left caudate volumes lying within the range of the 115 
healthy control subjects’ left caudate volumes. 

DISCUSSION 

 In these people with schizophrenia, complexity of 
spontaneous motor activity (i.e. number of discrete 
movement epochs) over a 20hr period was correlated with 
the volume of specific homologous regions within bilateral 
rostro-ventral putamen, a finding supportive of our central 
hypothesis that anatomy may constrain function, in this case 
the frequency of spontaneous motor behaviour. Specifically, 
our findings would support evidence that sub-cortical 
‘bottom-up’ structures in the fronto-striatal loops may 
modulate complex behaviours often attributed to more 
executive areas such as dorso-lateral prefrontal cortex 
(novelty generation [24]) and orbitofrontal cortex (reward 
seeking behaviour [12, 25]). Our behavioural data also show 
that there is considerable variation across subjects over a 
day. Some exhibit constant increases with no discernable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Examples of ‘low’ variability (top) and ‘high’ variability (bottom) actiwatch traces. Data have been normalised to 100% to facilitate 

direct between-subject comparison. Thus vertical black bars (left hand Y-axis) sum to 100, and yellow line (right hand Y-axis) ascends to 

100% for each subject across 2400, thirty-second epochs (i.e. 20 hours). 
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‘chunking’, whereas others exhibit discrete periods of acti-
vity (Fig. 1).  

 Actigraphy has previously been used to examine diurnal 
variations in locomotor activity [26] and neuroleptic induced 
akathisia [27] in patients with schizophrenia, and akathisia-
like hyperactivity in antisocial violent offenders with ADHD 
[28]. Its use as a general tool in human psychopharmacology 
studies has also been advocated [29]. However, in terms of 
methodology, ours is the first study to analyse actiwatch data 
in this way, to obtain the structure of activity from a time 
series of ‘amount of movement’. This type of measure may 
be of utility in situations in which behavioural change is anti-
cipated (e.g. with behavioural or pharmacological interven-
tions), as well as a way of further exploring human voluntary 
behaviour in health and disease. We acknowledge that to 
truly assess the extent of goal-directness of a person’s 
behaviour over 20 hours would be enormously resource-
intense, requiring specialist equipment (e.g. CCTV moni-
toring) and complex, probably hand scored qualitative 

analysis. Our intention in the present study was to report a 
simple, cheap, quantitatively analysable methodology, which 
may reflect certain aspects of goal-directed behaviour. 

 Though phenomenological descriptions of avolitional 
behaviour and modular models of basal ganglia function may 
not correspond exactly with the underlying neurophysiology, 
our results are interpretable in the context of such 
descriptions and models. Our rostro-ventral putamen region 
would be implicated in ‘reinforcement learning’ [10], 
particularly if the ‘goal’ in ‘goal-directed behaviour’ is 
conceptualised as a reward [11]. Equally in the ‘actor-critic’ 
model of basal-ganglia function [10], the implication of our 
putamen finding would be an abnormality of the ‘critic’ 
function, with avolition comprising a problem maintaining 
learned information to modulate future choices. Our findings 
are also in line with the ‘complexity’ versus ‘movement 
frequency’ distinction between posterior and anterior 
putamen suggested by Lehéricy and colleagues [14] (though 
note the distinction in our definition of ‘complexity’). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Bilateral rostro-ventral putamen (top row) and middle / superior temporal gyrus (bottom row) volumes positively correlated with 

number of discrete movement epochs in 16 male patients with schizophrenia. Areas of correlation are overlaid on a study-specific template 

for accurate anatomical localisation. Co-ordinates in standardised neuroanatomical space [22] are shown in Table 1. 

Table 1. Regionally Distinct Brain Areas which Positively Correlated with Number of Discrete Movement Epochs (See Also Fig. 2) 

Anatomical Region BA x y z Z-Value Extent 

Left putamen - -22 9 -10 2.88 394 

Right putamen - 19 9 -9 2.73 87 

Left MTG 21 -41 0 -28 2.79 226 

Right MTG 21 57 4 -27 3.30 505 

Left STG 38 -34 8 -36 3.05 207 

Right STG 38 33 14 -35 3.33 421 

Co-ordinates are shown in standardized neuroanatomical space [22]. BA = Brodmann’s area, MTG = middle temporal gyrus. STG = superior temporal gyrus. 
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 The issue of phenomenological descriptions of avolitio-
nal behaviour is also reflected in the language used. 
Throughout this paper we have intentionally used a number 
of terms to describe aspects of movement including 
‘structure’, ‘complexity’, ‘chunking’, ‘goal-directness’ and 
‘spontaneous’. Rather than suggesting that these terms are 
interchangeable, we would view them as overlapping con-
cepts describing behaviours originating from fronto-striatal 
circuitry, all of which are contained in the clinical assess-
ment of avolition. 

 While the finding of a relationship between bilateral 
rostro-ventral putamen volume and motoric activity is 
consistent with our hypothesis, the finding of additional 
homologous bilateral temporal pole (middle and superior 
temporal gyri) correlations is more difficult to interpret in 
the light of previous literature. To be rather speculative, this 
correlation might implicate limbic inputs into the decision 
making process (i.e. affective saliency / valency of context) 
influencing movement, or may reflect an interaction with the 
basal ganglia themselves, specific to biological movements 
and the ‘mirror neuron’ system [30]. However, it should also 
be borne in mind that this data set derives from patients with 
schizophrenia, so the finding may be a reflection of the 
abnormal correlations between disparate brain region 
volumes known to exist, or the disturbed structure-function 
relationships previously described, in this disorder [31]. 

 The lack of correlation between number of discrete 
movement epochs and total volume of movement, age, 
duration of illness, SANS ‘avolition’ score, BARS (akathi-
sia) score, SAS (neuroleptic-induced parkinsonism) or 
medication dosage suggests that our extracted ‘structure of 
movement’ variable is independent of all these potentially 
confounding variables. The lack of correlation between SAS 
scores and volume of movement in schizophrenia has been 
reported before [32] using lower-limb actometer recordings 
during “controlled rest activity”. This lack of correlation also 
suggests, counterfactually, that those who merely increase 
their activity over a day, at a constant rate, with little 
discernible structure, are not exhibiting akathisia. However, 
as a negative finding, this result requires replication. That the 
parcellated volumes of whole basal ganglia nuclei did not 
correlate with number of discrete movement epochs is 
probably a consequence of them including a much larger 
area than that identified in the SPM regression analysis. Our 
preliminary investigation has been exploratory, relying on 
uncorrected whole-brain VBM analyses and deliberately data 
led. In the circumstances, region of interest analysis of such 
a small area of rostro-ventral putamen would be extremely 
difficult and also particularly susceptible to scan-normalisa-
tion errors which are apparent in sub-cortical structures [33]. 
Our data implicate very specific regions of the putamen in 
the modulation of daytime activity structure. 

 We must be cautious however in extrapolating our 
findings to the community, ambulatory patient as our study 
concerned subjects who spent the days in question on a 
psychiatric ward. Furthermore, our sample size is relatively 
small and may therefore limit the reliability of the regression 
analyses performed. Nevertheless, our data do offer the 
intriguing possibility that anatomy and function are related 
with respect to spontaneous, unconstrained motor activity.  

 Finally, the issue of medication effects upon the basal 
ganglia volumes is important to consider. One previous 
study [34] reported significantly increased volumes of 
caudate (9.5%) and putamen (15.9%) in patients with 
schizophrenia and further reported that these increases were 
associated with poorer neuropsychological test performance. 
Another study [35], reported more modest increases in 
caudate and putamen volumes in chronically treated patients, 
but no difference in either volume when first-episode 
patients were scanned at baseline (compared with healthy 
controls) or any change in volumes following one-year of 
continuous treatment with an atypical antipsychotic. Our 
mean parcellated volumes of putamen and caudate were not 
significantly different in the main from 115 healthy controls’ 
volumes, and where they were (in left caudate), schizo-
phrenic individuals’ data points still lay within the ‘normal’ 
range. Hence, while our findings specifically concern people 
with schizophrenia, they do not appear solely connected to 
their treatment. 

 In summary, our findings suggest that the volumes of 
specific homologous regions within bilateral rostro-ventral 
putamen in people with chronic schizophrenia correlate with 
an objective measure of the complexity of their unconstrai-
ned motor activity, independent of the volume of that 
activity. Our data add to the growing body of evidence that 
disorders of the basal ganglia may contribute to fronto-
striatal neural circuit dysfunctions expressed as positive and 
negative symptoms of schizophrenia. In our sample, those 
with smaller rostro-ventral putamen exhibit less structure in 
their spontaneous behaviour. 
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ABBREVIATIONS 

ADHD = Attention deficit hyperactivity disorder 

BA = Brodmann’s area 

BARS = Barnes akathisia rating scale [18] 

BDI = Beck depression inventory [17] 

DSM = Diagnostic and statistical manual (of mental  
 disorders) [15] 

fMRI = Functional magnetic resonance imaging 

MTG = Middle temporal gyrus 

PET = Positron emission tomography 

RF-FAST = Radiofrequency-spoiled - fast acquisition at  
 steady rate 

SANS = Scale for the assessment of negative  
 symptoms [1] 

SAPS = Scale for the assessment of positive  
 symptoms [16] 

SAS = Simpson Angus scale [19] 
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SPM = Statistical parametric mapping 

STG = Superior temporal gyrus 

TE = Echo time 

TR = Repetition time 
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