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Abstract: Proper interpretation of BOLD fMRI and other common functional imaging methods requires an understanding 

of neurovascular coupling. We used laser speckle-contrast optical imaging to measure blood-flow responses in rat 

somatosensory cortex elicited by brief (2 s) forepaw stimulation. Results show a large increase in local blood flow speed 

followed by an undershoot and possible late-time oscillations. The blood flow measurements were modeled using the 

impulse response of a simple linear network, a four-element windkessel. This model yielded excellent fits to the detailed 

time courses of activated regions. The four-element windkessel model thus provides a simple explanation and 

interpretation of the transient blood-flow response, both its initial peak and its late-time behavior.  
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1. INTRODUCTION 

 A detailed understanding of the neurovascular response 
in the brain is of critical value to science and medicine. 
Fundamentally, the neurovascular response is tightly linked 
in basic operation of the mind and brain. It seems likely that 
we will need a deeper understanding of vascular processes to 
grasp the strategies of neural computation. The success, in 
fact, of hemodynamic imaging techniques such as fMRI 
highlights the need for better understanding of neurovascular 
coupling. Specifically, knowledge of the vascular impulse 
response evoked by a brief (few seconds) stimulation would 
be useful. This is known as the hemodynamic response 
function (HRF). The HRF is formed by changes in oxygen 
uptake and blood flow. Measurements in cats [1, 2]and in 
rats, e.g., [3], indicate that the HRF typically exhibits a 3-
phase response: initial delay or dip lasting 2—3 s,hyperoxic 
peak at 5—8 s, and undershoot with frequent ringing. 
Because the brain is continually active, it is likely that such 
transient hemodynamic events occur continually throughout 
the brain. In order to understand the healthy operation of the 
brain, its pathophysiology, and the mechanisms of 
hemodynamic imaging, there is a need to better understand 
the hemodynamic processes that give rise to the HRF. 

 A number of models have been proposed for the 
dynamics of the HRF. The “balloon model” is the most 
popular [4, 5]. It explains the HRF based on flow and 
volume changes in the intra- and extravascular compartments 
with non-linear compliance. The volume changes were  
postulated to occur in venules and veins, as the global 
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compliance of venous system is known to be substantial [6-
8]. A similar form for this model utilizes a lumped-element 
network analogy that includes a non-linear compliant 
element [9, 10]. Such models have become increasingly 
sophisticated and complex [11-13]. However, recent 
experiments have not shown much venular dilation; volume 
increases seem mostly to occur on the arterial side of the 
system [14, 15]. Accordingly, there is a need to revisit 
theoretical models for the HRF and its associated flow 
perturbation. 

 We propose a linear flow model, the four-element 
windkessel (FEW). This model, when combined with a 
convection-diffusion description of oxygen transport [16], 
provided excellent fits to tissue-oxygen measurements [1, 2]. 
In those results, the flow damping time constant suggested 
strongly underdamped responses. It is well known that the 
flow response of the HRF is mediated by the action of 
smooth-muscle fibers on the larger arterioles, and there is 
substantial evidence that pericytes modulate flow in small 
arterioles [17-20]. The flow response itself has been 
characterized extensively using such means as in vivo laser-
Doppler flowmetry, e.g., [21-23], and laser speckle contrast 
imaging, e.g., [24-26]. Here we applied the FEW model to 
describe speckle-contrast measurements corresponding to 
flow-speed perturbations induced in rat somatosensory 
cortex by brief forepaw stimulation. 

2. MATERIALS AND METHODOLOGY 

Model 

 We model the flow perturbation using the FEW, a 
lumped linear equivalent-circuit model for the blood flow 
dynamics (Fig. 1A) [16]. The inertive element, I, models 
Newton’s 2

nd
law regarding the flow of blood in the pial 

arteries. The series resistance, R1 = R1a + R1b, represents 
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frictional losses associated with the parallel combination of 
all downstream flow through the fractal vascular tree. The 
elements C and R2 represent the lossy compliance of the 
downstream venous vasculature. In steady state, and 
neglecting cardiac pulsatility, there is a constant pressure at 
point T, which represents the input to our model. The 
upstream vasculature, where flow perturbations are actively 
driven, couples resistively to the larger network, but the load 
resistance RA i s much greater than R1 and R2, so it does not 
perturb the global dynamics. The transient behavior of this 
system is modeled by the switch across R1b, which briefly 
closes to simulate a vasodilation that decreases the upstream 
vascular resistance. Because there was steady-state flow 
through I, the vasodilation creates a brief positive pressure 
fluctuation at T, which is described by the impulse response 
of the network. 

 Because this system is linear, its impulse response fully 
characterizes its behavior. The flow perturbation impulse 
response has two forms depending upon the time constants 
of the system (Eqn.1).  

U1(t) =
U10e

t / sin(2 ft)

U10e
t / sinh(2 ft)

        (1) 

The first form is under-damped and the second over-damped 
(Fig. 1B). The flow perturbation is specified by three 
parameters: frequencyf, damping time , and amplitude U10. 

Animal Procedure 

 Three male Sprague-Dawley rats (250–350 g) rats were 
anesthetized with halothane (2%) and each animal was 
placed in a stereotaxic frame (Kopf Instruments, Tujunga, 
CA). A heating pad (WPI ATC1000) was used to maintain 
body temperatures of 37 °C. Then, in each rat, on the left 
hemisphere around the somatosensory cortex, a 4 mm  4 
mm portion of skull was thinned to transparency using a 
dental burr and then removed. A well was formed around the 
craniotomy using dental cement, which was then filled with 
silicone gel to improve visibility. Following surgery, animals 
were artificially ventilated with 1.5% halothane, 70% N2O 
and 30% O2, using procedures described previously [27]. 

 All animal protocols were approved by the Animal Care 
and Use Committees of the University of Texas at Austin. 

Instrumentation 

 A laser diode (808nm, 30 mW) and CMOS camera 
(Basler 602f, 610  490 pixels) were used to acquire laser 

speckle contrast imaging (LSCI) of blood flow in the 
cerebral cortex of each rat (Fig. 2) [25]. The laser diode was 
placed approximately 20 cm away from the animal at a 45° 
angle such that the area of interest was illuminated evenly. 
The scattered light was optically magnified between 1  and 
3  depending on the animal. It was then captured by the 
camera at a rate of 100 frames/second and an exposure time 
of 5 ms. The acquisition was digitally recorded using custom 
software.  

Experiment 

 The rat’s forepaw was electrically stimulated for 2 s 
starting 0.5 s after the trial onset. To induce somatosensory 
activity via electrical stimulation, needles were inserted 
between the digits, which were connected to a stimulus 
isolation unit (World Precision Instruments, Sarasota, FL). 
Current pulses of 1-2 mA were applied for 300 s at a rate of 
3 Hz for 2 seconds. The current level was adjusted to evoke 
a slight, visible twitch of one-or-more forepaw digits [27]. 

 Forty trials with an inter-stimulus interval of 15 s were 
performed while image data were recorded at a rate of 100 
frames/sec, then processed and displayed in real time 
[28].The processed data were recorded for later analysis. 

Speckle Contrast Image Analysis 

 The speckle contrast image is defined as the ratio of the 
standard deviation to the mean intensity in a small region of 
the image, K s/ I . The region must be chosen large enough 
that there is sufficient contrast to noise ratio, but not so large 
as to adversely limit our spatial resolution. With this in mind, 
a 7 7 region of pixels was empirically determined to balance 
these requirements; each pixel is ~9 μm. A speckle contrast 
map was computed from the raw image using custom written 
softwareand downsampled to 10 frames/sec to improve 
signal-to-noise ratio (SNR) [25, 27]. 

Flow Computation 

 The speckle-contrast images were then converted  

to images of relative correlation times c, 

K = c 1 e 2T / c( ) / 2T  where K is the speckle contrast and 

T is the camera exposure time [29]. We used the temporal-

mean of the correlation-time images as a structural image 

underlay for our results because of their apparent congruence 

with the vasculature (Figs. 2A, B). Larger blood vessels have 

higher blood speeds, yielding smaller correlation times, so 

the vasculature shows up as darker regions in the images. 

 

Fig. (1). (A) FEW network; (B) impulse response 
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 To facilitate comparison with our flow model, we 

converted these values to a quantity related to blood speed. 
Since blood speeds may be assumed to be roughly inversely 

proportional to correlation times, we defined the normalized 

blood speed k / c, where k is a proportionality constant 
[30]. We must be careful not to explicitly associate this with 

the local physical blood speed, as this assumption neglects 

numerous contributions to speckle contrast such as multiple 
scattering and penetration-depth effects [31]. To emphasize 

this loose connection, we denote the units of blood speed to 

be arbitrary. However, we chose k such that the average 
value of  in regions of parenchyma equaled 0.7, the 

average blood speed in rat cerebral cortex parenchyma in 

mm/s. This provided a rough sense of the data in terms of 
real units [32]. Using this relationship, we created a spatial 

and temporal map of relative blood flow speed(454  433 

pixels  15 s  40 trials). This was then spatially down 
sampled over a 4  4 region to bring the dimensions to 

113 108 pixels with size 36 μm. 

 To estimate the blood-flow response, we convolved the 
impulse response U1(t) (Fig. 1B) with a stimulus function, a 
2-s-duration rectangular function ( ) centered at t = 1.5 s: 

 F(t) = [(t-1.5 s)/2]*[ (t – 0.5 s)U1(t)]/20, where   is a 

unit step function. This convolution served to approximate 

the vasodilation effects of the 2-s-duration somatosensory 

stimulus. The convolution stretched out the waveform 

causing an apparent ~0.5 s delay to the initial perturbation 

response. Although this flow perturbation is often strongly 

damped, with a 15-s ISI the perturbation may not decay to 

zero at the end of each trial. We included these effects by 

applying our model to a trial-averaged data 

set 1(x, y,t) =
1

N
F(t nL)

n=0

N 1
, where x and y refer 

to the coordinates of the pixel, t is time after trial onset, N is 

the total number of trials, and L is the trial length. Total 

blood speed is found by adding the baseline speed 0 to the 

perturbation,  (x,y) = 0(x,y) + 1(x,y,t)
.
 

 We restricted our data analysis to pixels where activity 
exceeded a minimum contrast-to-noise ratio (CNR). The 
noise was estimated by computing the standard error about 
the mean for   across trials and then averaged over the last 
third (5 s) of each trial. Contrast, which is the perturbation 

 

Fig. (2). Measured flow perturbations in two animals: across the entire image (A, B), and restricted to a region where CNR  8 in animal 1 

(C), and CNR  3.2 in animal 2 (D). Selected ROIs in this region (E,F): parenchyma, small blood vessels (blue), large blood vessels (red). 
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amplitude in this case, was estimated by taking the 
maximum blood speed in each pixel and subtracting the 
baseline blood speed (Fig. 2A). The baseline blood speed 0 
was computed by taking the mean of the normalized blood 
speeds in the last half-second of each trial. We then restricted 
our analysis to a contiguous region of pixels that exceeded a 
particular threshold (Figs. 2C, D). Within this region, we 
defined three compartmental regions-of-interest (ROIs) to 
illustrate response time series in large vessels, small vessels, 
and parenchyma (Figs. 2E, F). 

 To obtain fits we used MATLAB’s ls qcurvefit routine to 
perform non-linear optimization [33], varying the parameters 
U10, f, and  to minimize the RMS error between the 
measurement and the model. We determined fit quality using 
the fraction of the variance explained, FOVE  1 – 

2
fit – data / 

data
2
. We considered a fit to be successful if FOVE> 1 – 

1/CNRmin, where CNRmin was the smallest CNR in the ROI 
(Fig. 2C-D) 

 The experimental error per trial was defined to be the 
time averaged standard error of the mean over trials and is 
plotted as dotted lines in Fig. (3). 

RESULTS 

 Good fits (FOVE > 80%) were obtained for all of the 
ROI time series data (Table 1 and Fig. 3). Mild ringing was 
observed in our fits to all of the sample ROIs in animals 1 
and 3. All ROI fits in this animal were underdamped with 
significant undershoot. The fits observed in animal 3 were 
largely qualitatively similar to those observed in animal 1, 
and will not be further presented except to note a few 
relevant differences. 

 Blood flow in animal 2 was distinctly different from the 
other two animals. FOVE was substantially smaller. The 
reduced fit quality was apparently caused by the presence of 
a ~0.2 Hz underdamped wave superimposed on a more 
typical strongly damped waveform. In addition, the 
hyperoxic peak exhibited a shorter duration. Fits for this 
animal showed less ringing, particularly for the large vessel 
and parenchymal compartments, but FOVE was smaller 
because the fits did not model the additional underdamped 
component. 

 We also fit our model to all of the pixel time series that 
satisfied a minimum CNR threshold within the activated 
regions illustrated in Fig. 1. As noted previously, data from 
animal 2 had a much lower fit quality than the other two 
animals because of the apparently superimposed, stimulus-
evoked ringing. The CNR threshold was therefore chosen to 
be less than in the other animals to produce an ROI that was 
similar in size to that of the other two animals. Mean 
parameter values for A, f and   for thosepixel time series that 
were successfully fitare summarized in Table 2. Fit 
frequency was similar in all animals. Damping time varied 
substantially, with the largest values (greatest ringing) in 
animal 3, while animal 2 exhibited the smallest values 
(greatest damping). 

 There was a strong positive correlation between 
perturbation amplitude and baseline blood speed (R = 0.78,  
p < 10

-16 
in Fig. 4A and R = 0.77, p< 10

-16 
in Fig. 4C). 

Spatially, the perturbation amplitude appeared to largely 
follow the vasculature (Figs. 4B, D). The largest amplitudes 
were in one-or-two large blood vessels and then appeared to 
diminish toward their vascular periphery. 

 In all animals, the frequency parameters exhibited a 
bimodal distribution (Figs. 5A, C). In animal 1, about 95% 
of the responsive pixels were better fit to an underdamped 
response with a mean frequency of 0.093 ± 0.016 Hz. About 
5% were better fit to nearly critically damped responses; 
mean frequency in the lower mode is 0.0082 ± 0.0051 Hz. 
The mean frequencies in animal 2 were significantly higher 
in both the upper and the lower modes, 0.17 ± 0.02 Hz and 
0.014 ± 0.008 Hz respectively. The strongly damped 
responses all corresponded to low baseline blood speed, 
suggesting that they occurred largely in parenchyma ( 0< 1 ). 
There was a negative trend of frequency with flow speed for 
the high-frequency mode in animal 1 (R = -0.14, p< 0.02). 
Animal 2 showed a small positive trend in the upper mode 
(R = 0.24, p< 0.02). The frequency parameter showed a 
spatial distribution without a clear compartmental partition 
(Figs. 5B, D). In animal 1, the more strongly damped 
responses appeared mostly toward the right edge of the 
image, close to the edge of the craniotomy, while in animal 2 
they were more central. The two modes seemed to occur 
largely in spatially distinct regions of the image. 

Table 1. Fit Parameters for Vascular Compartment ROIs in the Three Animals 

Animal ROI FOVE (%) f (Hz) (s) 

1 Parenchyma 97.4 0.10 2.37 

 Small Vessel 99.4 0.090 1.62 

 Large Vessel 99.2 0.094 1.74 

2 Parenchyma 82.4 0.0030 0.58 

 Small Vessel 85.4 0.17 1.26 

 Large Vessel 83.0 0.0061 0.82 

3 Parenchyma 98.0 0.076 2.57 

 Small Vessel 97.9 0.080 2.51 

 Large Vessel 97.6 0.070 2.32 
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 A weak but highly significant positive correlation was 
found between damping time and blood speed in both ani-
mals (R = 0.20, p< 6  10

-11
, Fig. 6B; R = 0.22, p< 1  10

-13
, 

Figs. 6A, C). Therefore, higher caliber vessels exhibited 
greater ringing. However, at lower blood speeds 
(parenchyma) we observed the widest range of damping time 
constants and some regions exhibited substantial undershoot 
(Fig. 3A). The damping time constant also showed a clear 
spatial trend, decreasing from upper left toward lower right 

in animal 1 (Fig. 6B) and from the upper right toward the 
lower left in animal 2 (Fig. 6D). 

3. DISCUSSION 

 Flow changes (blood speed) had a mean value of 20.6%, 

which is similar to other measurements, e.g., the ~30% flow 

changes obtained by positron emission tomography and MRI 

[34, 35]. The linear relationship between the perturbation 

 

Fig. (3). Best fits to the mean time series in the three vascular regions shown for animal 1 in Fig. 1E: (A) parenchyma; (B) small vessels; (C) 

large vessels. Likewise (D), (E) and (F) for animal 2 in Fig. 1F. Gray column indicates stimulus period. 

Table 2. Fit parameters, median ± standard deviation, for the activated regions illustrated in Fig. (1) 

Animal CNRmin Fit quality (%) Amp. mod. (%) A (arb. units) f (Hz)  (s) 

1 8 88.7 21.0 ± 4.9 0.169 ± 0.054 0.090 ± 0.024 1.89 ± 0.42 

2 3.2 29.0 14.0 ± 2.7 0.115 ± 0.036 0.107 ± 0.077 1.39 ± 0.90 

3 12 99.3 26.9 ± 4.0 0.222 ± 0.052 0.077 ± 0.006 2.53 ± 0.24 

 

Animal CNRmin Fit quality (%) Amp. mod. (%) A (arb. units) f (Hz)  (s) 

1 8 88.7 21.0 ± 4.9 0.169 ± 0.054 0.090 ± 0.024 1.89 ± 0.42 

2 3.2 29.0 14.0 ± 2.7 0.115 ± 0.036 0.107 ± 0.077 1.39 ± 0.90 

3 12 99.3 26.9 ± 4.0 0.222 ± 0.052 0.077 ± 0.006 2.53 ± 0.24 
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amplitude and the baseline flow suggest that activation is, in 

fact, better revealed by a normalized flow metric. In animal 

1, perturbation amplitude (Fig. 7A) suggests a region of 

activation toward the lower right that seems to follow the 

larger blood vessels. The normalized change in speed (Fig. 

7B) illuminates a more spatially diffuse activation region. 

This confirms and partially explains the utility of fractional 

signal change as a standard metric in fMRI and functional 

optical imaging data analysis. 

 We achieved good fits without modeling an initial period 
of latency or “initial dip” observed by other means. This 
suggests that the flow responses occurred promptly with 

 

Fig. (4). Perturbation amplitude parameter: (A) spatial distribution (animal 1); (B) dependence on baseline blood speed (animal 1). Animal 2: 

(C), (D). 

 

Fig. (5). Perturbation frequency parameter: (A) spatial distribution in animal 1; (B) dependence on baseline blood speed, animal 1. (C) and 

(D) show correspondingdata in animal 2. 
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stimulation and are not associated with transit-time delays 
from remote control points. The mean frequency parameter 
in the underdamped regime, ~0.08 Hz, was quite stable, 
suggesting that the pial vascular network behaves as a 
second-degree, roughly linear filter that is mechanically 
tuned to a particular frequency. Moreover, the median 
damping time of 1.9—2.5 s suggests that this network has a 
slightly underdamped, bandpass character. 

 The frequency fits were relatively stable with baseline 
flow speed, decreasing only slightly over a large range of 
baseline flow speeds and perturbation amplitudes. The 
stability of this parameter suggests that both the inertance 
and compliance parameters of the vasculature are also 
relatively stable. The stability of the compliance is very 
reasonable, because the compliance “seen” within the 
microvasculature will be strongly dominated by the 
downstream compliance of venous tree, a global property. 
The inertance within the model corresponds to the mass of 
the blood regulated by the vascular control structures. 

Stability of the inertance would suggest that the key 
regulatory structures are spaced in a consistent stereotypical 
fashion in the cerebral microvasculature, perhaps at the level 
of the pial penetrating arterioles. 

 In contrast, the damping time showed a significant 

tendency to rise with blood speed. This is consistent with 

viscous flow properties in the smaller vessels where flow 

speeds are low, transitioning to laminar flow in the larger 
vessels where flow speeds are higher. 

 The spatial distribution of the flow responses showed an 

interesting bipartite distribution, with less damped responses 

occurring in one region, typically close to the focus of the 

activation, and more strongly damped responses occurring in 

more weakly activated regions. These observations suggest 

that the underdamped responses are more prevalent in 

microvascular regions closer to the regulatory source of the 

perturbation, and these responses become more damped in 
distal, venular portions of the microvasculature. 

 

Fig. (6). Perturbation damping time parameter: (A) spatial distribution in animal 1; (B) dependence on baseline blood speed in animal 1. (C) 

and (D) show corresponding data for animal 2. 

 

Fig. (7). Perturbation amplitude (A) compared to relative fluctuation level (B). 
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 Our model did not as effectively fit the data observed in 
animal 2. This data appeared to exhibit a combination of a 
more strongly damped response, which was captured by our 
model, together with additional underdamped ringing at a 
higher frequency. This ringing is likely to be stimulus 
induced, because it is clearly evident and statistically 
significant after averaging over many trials. These data 
suggest the existence of more complex flow responses in 
response to repetitive transient stimulation. It is possible that 
such results could be modeled by more complex linear 
networks. For example, the measured flow response could be 
the superposition of flows mediated by two (or more) 
different mechanical regulation circuits, each with different 
time constants. Alternatively, the greater complexity could 
be introduced by neural feedback. On the other hand, these 
more complex responses could also be an artifact of the 
anesthesia, with little correspondence to the normal transient 
flow response. 

 Responses observed here were much more strongly 
damped than those observed in the tissue oxygen 
measurements obtained in cat visual cortex, ~2.2 s here 
versus ~9 s in cat [16]. The discrepancy could be explained 
in several ways. First, there could be delayed compliance 
effects that modify blood volume in a fashion distinct from 
flow changes. Delayed compliance has been a standard 
explanation used in many previous models [9-11, 13]. 
However, the absence of substantial volume changes in 
venular or capillary volume measurements [36] argues 
against this explanation because an increase in arterial blood 
volume alone cannot account for the large undershoots 
observed in both HbR and total Hb concentrations [3]. 
Another possibility is a species difference between rodents 
and cats. A third explanation concerns the level of anesthesia 
used in the experiments. In the cat experiments, anesthesia 
was maintained at a level light enough to permit significant 
neuronal activity as inferred by real-time EEG 
measurements. Such techniques were not used during the 
present experiments. The observed strongly damped 
responses, therefore, may have been caused by a different 
state of anesthesia. Our observation of more complex 
oscillatory responses in animal 3 suggests that neither the 
FEW model nor delayed compliance explanations may be 
sufficient to explain the HRF. Another possibility is that, for 
transient stimulation, visual cortex flow response is different, 
more underdamped, than that of somatosensory cortex. 
Further analysis and experiments will be necessary to 
establish the “normal” amount of ringing present in the flow 
response to brief neural activation. 

 The bandpass character of our flow model suggests an 
alternative explanation for some of the low-frequency 
oscillations or “vasomotion” observed with various 
techniques, e.g. [1, 32, 37-40]. Generally, these slow 
hemodynamic fluctuations have been attributed to 
mechanisms such as blood pressure feedback from 
baroreceptors or neurogenic mechanisms. These fluctuations, 
sometimes called Mayer waves, are observed in three 
frequency bands. The so-called “low-frequency” band of 
such fluctuations occurs at ~0.1 Hz, making it particularly 
relevant to the measurements and model presented here. The 
FEW has a bandpass response to transient changes in 
cerebrovascular control. Thus, unstimulated or spontaneous 
neural activity would be filtered by the hemodynamic 

network to appear as low-frequency oscillations in flow, 
oxygen transport, and other aspects of the hemodynamics. 
This hypothesis is consistent with the use of low-frequency 
fluctuations as a “resting-state” measurement of neural 
activity using fMRI [41-43]. The purpose of these 
oscillations is not yet understood. It has been suggested that 
low-frequency oscillations could increase oxygen transport 
efficacy [44, 45].  

 It could also be that several mechanisms are responsible 
for these fluctuations, with the FEW responsible only for 
fluctuations in hemodynamics associated with transient 
neural activation, while other neural feedback mechanisms, 
generally believed to driven by blood CO2 concentrations 
(e.g., [46]), are responsible for oxygen auto-regulatory 
functions. It is also possible that the two mechanisms are 
related, with the tuned bandpass character of the cerebral 
vasculature being actually a consequence of the putative 
neurogenic feedback mechanisms. Although in global scope, 
the mechanism of the low frequency fluctuations may be 
complex and non-linear [47], at the level of the present 
cerebrovascular oxygen measurements they may be 
satisfactorily described by the FEW linear model. Although 
the FEW model is a substantial simplification of the complex 
flow dynamics associated with the whole of the 
cerebrovasculature, within the context of linear network 
models this kind of analogy has been utilized extensively to 
solve many problems. Complex networks of linear 
mechanical or fluid elements can always be converted to a 
Norton or Thevenin equivalent with a multi-pole admittance 
or impedance [48], and this approach has been utilized 
extensively in cardiovascular applications [8, 49, 50]. In this 
view, the dynamics of the FEW are an abstract model of 
more complex feedback mechanisms rather than a literal 
model of simple mechanical processes. Further experiments 
will be necessary to elucidate the relationship between the 
FEW and low frequencyfluctuations. 
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