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Abstract: In this work we combine machine learning methods and graph theoretical analysis to investigate gender-
associated differences in resting state brain network connectivity. The set of all correlations computed from the fMRI 
resting state data is used as input features for classification. Two ensemble learning methods are used to perform the 
detection of the set of discriminative edges between groups (males vs. females) of brain networks: 1) Random Forest and 
2) an ensemble method based on least angle shrinkage and selection operator (lasso) regressors. Permutation testing is 
used not only to assess significance of classification accuracy but also to evaluate significance of feature selection. 
Finally, these methods are applied to data downloaded from the Connectome Project website. Our results suggest that 
gender differences in brain function may be related to sexually dimorphic regional connectivity between specific critical 
nodes via gender-discriminative edges.  
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INTRODUCTION 

 The analysis of fMRI resting state (R-fMRI) data has 
recently emerged as a powerful tool for neuroimaging 
research. The fact that brain R-fMRI reveals low-frequency 
fluctuations (<0.1 Hz) that are temporally correlated across 
functionally related areas [1-4] implies that it can be used to 
interrogate multiple brain networks with no prior hypothesis. 
Graph theory is one of the main approaches employed to 
evaluate R-fMRI brain network connectivity [5, 6]. 
Following seminal work describing small world [7] and 
scale-free networks [8] in the late 1990s, an increasing 
amount of efforts has been dedicated by the neuroimaging 
community to characterize the topology of functional [9-13] 
and anatomical [14-16] brain networks.  
 A common procedure to generate R-fMRI brain networks 
consists of the following steps: 1) normalization; 2) motion 
correction; 3) dimension reduction by parcellation of the 
brain using an atlas; 4) averaging the time signal across grey 
matter voxels contained in each region; 5) regressing out 
nuisance variables (motion correction parameters, white 
matter, CSF and global signal) and 6) low pass filtering of 
the resulting fMRI time series. The set of network nodes is 
defined by the number of regions contained in the specific 
parcellation of the brain. The edges are estimated using some 
measure of associations between each pair of regions such as 
the Pearson correlation coefficient.  
 After the correlation matrix containing all these pair-wise 
correlations has been estimated, building the network 
requires a threshold to define the set of connected edges of 
the network. The usual practice is to repeat the graph theory  
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analyses for different choices of the threshold or other 
criteria that aim at keeping some feature of the network 
constant across subjects, such as network cost [10], average 
degree [13] or characteristic path length [17]. However, it is 
not clear that an optimum approach exists. 
 We use machine learning methods to perform group 
analyses of R-fMRI brain networks avoiding the threshold 
selection problem mentioned above. The central idea is to 
use the full set of correlations as input variables for a large 
scale classification algorithm. Our work is related to 
previous research developed by [18-20] who implemented 
different feature selection techniques to locate discriminative 
graph edges (correlations) when analyzing R-fMRI and 
block design fMRI data respectively. We used here two 
different ensemble methods: 1) Random Forests (RF) [21] 
and 2) a new ensemble method based on least angle 
shrinkage and selection operator (lasso) regression.  
 RF has several properties that explain its increasing 
popularity in bioinformatics [22-28]: 1) it can be used when 
there are more variables than observations; 2) RF can deal 
with two class and multi-class problems; 3) it does not 
overfit; 4) RF can handle mixtures of categorical and 
continuous variables; 5) RF contains a built-in cross-
validation method using out of the bag (OOB) samples and 
6) it provides continuous measures of importance rather than 
binary responses.  
 Additionally, we introduce here an ensemble method 
based on lasso regression that takes advantage of lasso’s 
sparsity property [29] for embedded feature selection. 
Previously, ensembles of ridge regression and least square 
classifiers based on subsampling have been proposed and 
applied to different problems [30, 31]. We also propose an 
index for scoring the importance of a variable, which is a 
natural consequence of lasso’s sparsity property. Since lasso 
regression forces many coefficients to be zero for each 
individual classifier, the frequency with which each variable 
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is contained in the model across all members of the ensemble 
can be computed and taken as a measure of its relevance. 
This is a similar concept as the relevance counts proposed by 
[32]. The main differences are: 1) they computed the scores 
of relevance during the testing phase of a two-fold CV, a 
process that they repeated 100 times while we here computed 
the scores based on subsampled versions of the data set and 
the ensemble learning approach; 2) they were working on 
penalized logistic regression while we are using penalized 
linear regression and 3) we use a very efficient implementa-
tion of lasso regression based on the coordinate descent 
technique provided by the GLMNET library [33, 34] that 
allows the full data space computations to be performed in a 
time-efficient manner. This allows us to implement permuta-
tion testing to determine significance not only of classifica-
tion accuracy but also of the selected features.  
 Differently from previous work we don’t use any feature 
reduction steps prior to classification, such as univariate 
filtering [18, 19], but we operate directly with the entire 
input space (the full set of correlations). We applied these 
two methods to resting state data from the Connectome 
Project [35] in order to study differences in functional 
connectivity across sex. Gender differences are thought to 
exist across a variety of cognitive domains, and have been 
demonstrated consistently in studies investigating sexual 
dimorphism of cognitive ability during performance of 
specific tasks [36-38]. For example, superior performance 
has been reported in women on tasks of verbal fluency and 
emotion-oriented memory [39-43], whereas superior perfor-
mance has been reported in men on tasks of mental rotation 
and visuospatial ability [44-46]. Such task performance may 
reflect innate gender differences in the functional organiza-
tion of the brain, and have been the focus of investigations 
evaluating asymmetries in functional cerebral organization 
between males and females using a variety of neuroimaging 
techniques, including PET, SPECT, and task-related blood-
oxygen-level dependence (BOLD) fMRI [47]. In particular, 
gender-associated differences in brain activation have been 
reported in frontal, temporal, parietal, occipital, and thalamic 
regions, as well as in insular and cingulate cortex, using 
multiple different fMRI paradigms [48-54]. Unlike these 
prior studies investigating task-specific gender differences in 
functional brain activity, the present study is one of a few to 
date that aims to evaluate key differences between males and 
females in brain network connectivity, and is the first to 
identify specific gender-discriminative edges and their 
associated nodes.  

MATERIALS AND METHODOLOGY 

Resting State Data 

Participants 

 R-fMRI BOLD data were acquired from the 1000 Func-
tional Connectome Project (http://www.nitrc.org/projects/ 
fcon_1000) (FCP), which is a publicly accessible database 
[35]. Specifically, data from 148 subjects (74 female and 74 
male; matched by age (21 years old) recruited as part of 
larger studies conducted in Beijing China were used. 
Subjects were reported to be healthy and without history of 
head injury, psychiatric or neurological disorder [55, 56]. All  
 

subjects provided written informed consent approved by the 
Institutional Review Board of the State Key Laboratory of 
Cognitive Neuroscience and Learning, Beijing Normal 
University [55, 56].  

MRI Scanning 

 The 148 Beijing FCP subjects were scanned in a Siemens 
3.0 Tesla Trio MR scanner for collection of T1-weighted 
structural anatomic (MP-RAGE) MRI and resting-state 
fMRI-BOLD data. Resting state fMRI was acquired using 
echo planar imaging (EPI) (TR = 2000 ms; TE = 30 ms; field 
of view = 200 x 200 mm2; matrix size = 64 x 64, 33 axial 
slices, 3 mm thickness, 0.6 mm gap; voxel resolution = 3.125 
mm × 3.125 mm × 3.6 mm). The subjects performed no task, 
but were asked to keep their eyes closed for the 7.5 minute 
R-fMRI scan [55, 56].  

Image Processing 

 All data were motion-corrected and normalized to a 
standard template using the version 8 of the statistical 
parametric mapping software(SPM8) [57]. The structural 
T1-weighted images were segmented into grey matter and 
cerebrospinal fluid (CSF) using the SPM8 new segment tool. 
Segmentation maps were resampled to the space of the 
normalized functional MRI data for use as masks in the post-
processing. Preprocessing included regression of motion 
parameters, nuisance signals (white matter and ventricular 
mean signal from the segmentation maps) and global signal, 
followed by band-pass filtering at 0.01 - 0.1 Hz to isolate the 
low-frequency fluctuations characteristic of resting 
connectivity. Data was then parcellated into 116 regions 
using the Automatic Anatomical Labeling (AAL) atlas [58], 
as implemented by the wfu_pickatlas [59] and masked with 
the grey matter segmentation map to limit the nodes to grey 
matter structures. This resulted in an averaged fMRI time 
series of 116 regions (nodes) for each subject, which was 
used for subsequent connectivity analysis. To establish the 
presence of functional connectivity between the parcellated 
regions (nodes), the Pearson correlation was computed 
between all pairs of node time series to generate a 116 x 116 
correlation matrix (Cij) for each subject. 

Classification of Brain Networks 

 The classification of R-fMRI brain networks problem can 
be formulated as the detection of discriminative edges 
between two groups of weighted brain networks. For each 
subject the set of nodes is defined by the different brain 
regions of interest (ROIs) from the specific parcellation 
(AAL atlas in our case) and the edge weights are given by 
the pair-wise Pearson correlation coefficients between brain 
regions (average R-fMRI signal) contained in the correlation 
matrix. Because this matrix is symmetric the feature vector 
(or sample) corresponding to each subject will be composed 
of the correlations contained in the upper triangle of the 
subject’s correlation matrix that are extracted and vectorized. 
The matrix of predictors is formed by stacking the feature 
vectors corresponding to all individuals participating in the 
analysis. Each subject is also assigned a label identifying the 
participants’ sex. This information is then provided to the 
software implementing the two classifiers.  
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Random Forests 

 RF belongs to the category of the so called ensemble 
methods for classification because a committee of learners 
(trees in this case) is generated and each one casts a vote for 
the predicted label of a given instance. The trees are built 
using the classification and regression trees methodology 
(CART) [60]. In constructing the ensemble of trees, RF uses 
two types of randomness: first each tree is grown using a 
bootstrapped version of the training data. A second level of 
randomness is added when growing any given tree by 
selecting a random sample of predictors at each node to 
choose the best split. The number of predictors selected at 
each node and the number of trees in the ensemble are the 
two main parameters of the RF algorithm. The RF deve-
lopers have reported that the method does not require much 
tuning of these parameters and that the default values often 
produce good results for many problems [21]. Once the 
forest is built, assigning a new instance to a class is accom-
plished by combining the trees using majority vote. As a 
result of using a bootstrap sampling of the training data, 
around one third of the samples are left out when building 
each tree. These are the so called out-of-bag (OOB) samples 
that can be used to assess the performance of the classifier 
and also to build measures of importance. In this work we 
will use the permutation importance score. The importance 
of a variable is evaluated by estimating the increase in 
prediction error occurring when the OOB data for that 
variable is permuted while others are left unchanged. The 
necessary calculations are carried out tree by tree as the 
random forest is constructed [61]. We used the R package 
randomForest [61] with the default parameters for the 
number of trees (ntree = 500) and the number of predictors 
analyzed at each node to find the best split ( mtry = p ). 

Lasso Regression 

 Lasso regression was introduced by replacing the L2 
penalty typical of Tikhonov regularization and ridge 
regression [62, 63] by a L1 penalty [29]. Lasso regression in 
our case is described by  
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where N is the number of samples (148 subjects in our case), 
xi !R

p  is the ith sample or feature vector containing the 
correlations entering the analysis (all elements of the upper 
triangle of the correlation matrix), yi ! "1,1{ }  is the ith label 
(-1 female and 1 male), M = 116 is the number of nodes 

(from the AAL atlas parcellation), p =
M (M !1)

2
= 6670  is 

the number of correlations (edges), β0, β  are the parameters 
of the model, and λ is the regularization parameter. Lasso is 
characterized by its sparsity meaning that many of the 
coefficients will be forced to be zero performing this way a 
kind of embedded feature selection. 
 We solve the problem described in Eq. (1) using the 
GLMNET library [33, 64] which uses a very efficient 
optimization technique called coordinate descent [65]. This 

regularization scheme initially developed for regression can 
be adapted to binary classification problems by using the 
classification rule ŷ = sign( fitted  value)  where ŷ is the esti-
mated label [66, 67]. 

Estimation of Regularization Parameter !   

 To estimate the optimal values of the regularization 
parameter we combine a scheme of two nested cross-
validations (CV) with grid search to avoid upward bias in the 
estimation of accuracy [68-71]. We implemented an external 
K1-fold CV where at each step we leave one fold for testing 
and the K1-1 remaining for training and validation. These 
last two procedures are implemented by using a nested K2-
fold CV. We divide the K1-1 folds into K2 folds and we leave 
one fold for validation and K2-1 for training combined with a 
grid search to determine the optimal parameters. The grid we 
used in our analyses was λ = 1000, 500, 200, 150, 125, 100, 
10, 1, 0.1. At each grid point the classifier is trained using 
the training data and its performance is assessed using the 
fold left for validation by estimating the classification accu-
racy. We select the regularization parameters that produce 
maximum average accuracy across the K2 folds of the 
internal CV procedure. The classifier is then retrained using 
the whole data in the K1-1 folds left for training and valida-
tion and the selected optimal regularization parameters. The 
classifier’s generalization capability is then evaluated by 
computing the classification accuracy using the fold origi-
nally left for testing in the external CV. This is repeated K1 
times and the average classification accuracy is computed 
and reported in our figures. Finally, the classifier weights are 
computed using the whole data set and the average values of 
the selected regularization parameters across the K1 folds. In 
our analyses we used K1= 5 and K2= 5.  

Ensemble of Lasso Regression Classifiers 

 We build our ensemble by training Nc  lasso regression 
classifiers according to the methodology presented above 
(Eq. (1), CV procedure, etc) using for each member of the 
ensemble a subsampled version of the data. The subsampling 
is carried out by selecting at random from each class the 
same number of samples. This means that the number of 
classifiers included in the ensemble ( Nc ) and the fraction of 
subsampled samples (FS) are parameters of this algorithm. 
There are two sources of randomness associated with this 
ensemble: 1) Random subsampling and 2) Random partition 
of the subsampled data to carry out cross-validation. We use 
the average classification accuracy across the Nc  classifiers 
as a measure of performance of the ensemble. Building 
ensembles with sparse classifiers allows us to introduce 
importance measures for each variable based on the sparsity 
property. Given a set of Nc  sparse classifiers composing the 
ensemble we can compute the frequency that each variable 
enters the model across the Nc  

members of the ensemble. 
We used this frequency as an importance score for the 
variable. Additionally, we compute the mean values of the 
coefficients associated with each edge across the members of 
the ensemble. The sign of the coefficients mean value 
associated to each edge (correlation) allows us to determine 
the edges associated to classification as men or women. 
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Permutation Testing 

 Our implementation of the ensemble is based on a very 
time efficient methodology allowing us to implement permu-
tation testing. In the neuroimaging literature, permutation 
testing is often used to assess significance of classification 
accuracy [72-74]. Here we also use it to evaluate signifi-
cance of feature selection by combining it with the impor-
tance score of each variable. Briefly, we recompute the 
ensemble Np = 1000 times with permuted labels. In each case 
we keep track not only of the values of the classification 
accuracy but also of the maximum values of the importance 
scores. The latter permits us to evaluate the significance of 
the observed scores and of the selected features. We use 
similar permutation tests to perform feature selection and to 
evaluate the significance of the results produced by the RF 
analysis. Specifically, we use the permutation importance 
score [21] to evaluate significance of feature selection. 

Software and Hardware Platforms 

 Our software implementation is based on MATLAB in 
which the GLMNET library is called using a freely available 
MATLAB wrapper developed by Hui Jiang (http://www-
stat.stanford.edu/~tibs/glmnet-matlab/). The computations 
were performed on a DELL computer system with eight 2.66 
GHz CPUs and 16 GB of RAM memory. Parallel program-
ming based on the MATLAB parallel computing toolbox 
was used to speed up computations. 

RESULTS  

 Since the number of classifiers in the ensemble and the 
fraction of the samples used during subsampling are addi-
tional parameters of the ensemble of lasso regression 
classifiers (ELRC), before carrying out the final analysis of 
our data we explored the performance of the algorithm for 
different values of these two parameters (Fig. 1). The best 
performances in terms of the average classification accuracy 
are achieved when all the samples (FS = 1) are used to 
estimate each member of the ensemble (Fig. 1, left panel). 
The number of classifiers in the ensemble seems to have 
little influence on the final result, which approximates 62%. 
Additionally, the sparser set of selected features also 
correspond to the choice of FS = 1. In this case for all values 
of Nc , the number of selected features (edges) was the 
same.  
 For the final analysis of the R-fMRI data set we fixed 
N
c = 100 and FS = 1. The observed overall average accuracy 

was 62.3% computed as the average classification accuracy 
across the members of the ensemble. The permutation test of 
the overall classification accuracy and the importance scores 
for the variables were both significant at p<0.001 and p 
<0.05. The discriminative edges associated with classifica-
tion as women and men are described in Tables 1 and 2, 
respectively. The brain regions (nodes) associated with the 
discriminative edges in women (upper row) and men (bottom 
row) are shown in Fig. (2). The RF analysis produced 65.4% 
classification accuracy which was significant (p<0.001)  
 

 
Fig. (1). Surface plots displaying the resulting classification accuracy (left panel) and the number of selected features (right panel) for 
different choices of the number of classifiers and the fraction of the data to be subsampled. 



Differences in Functional Connectivity Across Sex The Open Neuroimaging Journal, 2012, Volume 6     5 

Table 1.  Nodes Connecting Discriminative Edges Associated 
with Classification as Female According to the 
ELRC Analysis 

 

AAL Nodes Numbers Brain Area 1 Brain Area 2 

2 92 Frontal_Superior Left Cerebellum_Crus1_R 

28 53 Rectus_R Occipital_Inf_L 

31 38 Cingulum_Ant_L Hipoccampus_R 

33 78 Cingulum_Mid_L Thalamus_R 

33 112 Cingulum_Mid_L Vermis_6 

70 75 Paracentral_Lobule_R Pallidum_L 

 
using a permutation test. A permutation test applied to per-
mutation importance RF scores produced a total of four 
discriminative edges (p<0.05). The list of these edges is 

presented in Table 3 and the related anatomical areas are 
shown in Fig. (3). Because RF is a highly nonlinear classifier 
it is not possible to provide the information about the asso-
ciation of discriminative edges and sex. 
 The nodes connecting discriminative edges in women 
localized to the cingulate gyrus, left frontal lobe, deep grey 
structures (basal ganglia, thalami), and right cerebellum. In 
men, these regions localized predominantly to the cingulate 
gyrus, as well as bilateral sensorimotor cortices, bilateral 
cerebellum, and left frontal lobe. 

DISCUSSION 

 In this work we have applied two different ensemble 
classification methods to analyze differences in functional 
connectivity across gender. RF is a well know technique in 
bioinformatics while the ELRC has been introduced here. 
This last approach combines the sparsity property of lasso 

 
Fig. (2). Network nodes (brain regions) associated with the more discriminative edges generated by the ensemble of lasso regressors method. 
Top row: nodes related to the discriminative edges associated with classification as female (blue color). Bottom: nodes related to the 
discriminate edges associated with classification as males (red color). 

 
Fig. (3). Network nodes associated with discriminative edges using Random Forest Analysis. No additional information regarding the nature 
of the associations is provided by the RF analysis. In red color are shown the nodes associated to discriminative edges that were significantly 
(p < 0.05 corrected) relevant for classification in general. 
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regression with the concept of ensemble learning. The 
former will perform feature selection by forcing many 
predictors’ coefficients to be zero while the latter will allow 
defining importance scores for each variable by estimating 
the frequency of its appearance across all the models defin-
ing the members of the ensemble. These machine learning 
methodologies allow performing group analyses of brain 
networks without previous selection of thresholds. 
 The final result in both cases is a set of edges that carry 
discriminative information between the two groups of 
networks. In the case of the ELRC we used a very fast 
implementation of lasso regression provided by the library 
GLMNET that allowed us to use permutation testing not 
only for assessing the significance of accuracy but also for 
the importance of selected features.  
 The results produced by both methodologies were 
consistent in terms of the levels of classification accuracy 
and statistical significance. While the levels of classification 
accuracy were very similar the statistical significance of the 
results in both cases was the same. Despite very different 
underlying mechanisms, both methods detected common 
edges and nodes as more discriminative which are the more 
robust findings in this study. Our results suggest that the 
ELRC detected more discriminative edges than RF. Simula-
tions necessary to confirm this finding were out of the scope 
of this work, as they are very time consuming and our focus 
was mainly on finding sex differences in R-fMRI brain 

networks. In addition, ELRC provides useful information 
about the association of the detected edges to classification 
as male or female. But this is a general advantage of linear 
classifiers over non-linear ones. Very often non-linear 
classifiers in high dimensional problems do not produce 
improvements while being at the same time more difficult to 
interpret because the linear classifiers generate weights for 
each predictor that can be used as a measure of their 
importance within the estimated model [72, 75]. Because RF 
is a highly non-linear classifier it does not provide this type 
of information.  
 There are some limitations in the ELRC methodology. 
There is a lack of a method to select optimal values of the 
number of classifiers of the ensemble ( Nc ) and the fraction 
of samples used to generate each member of the ensemble. 
This is a common problem with previous approaches [30, 
31]. Here via trial and error we have chosen the value of the 
fraction of samples that leads to higher values of average 
overall accuracy computed across all members of the 
ensembles. This amounts to performing lasso regression Nc  
times with different CV partitions.  
 Although RF is a highly nonlinear classifier and, there-
fore, unable to provide information about the association of 
discriminative edges and sex, many of the discriminative 
edges identified using this technique overlap with discrimi-
native edges associated with classification as male according 
to the ELRC analysis. Specifically, both the RF and ELRC 

Table 2.  Nodes Connecting Discriminative Edges Associated with Classification as Males According to the ELRC Analysis 
 

AAL Nodes Numbers Brain Area 1 Brain Area 2 

3 52 Frontal_Superior Left Occipital Mid R 

12 74 Frontal_Inf_Oper_R Putamen_R 

14 31 Frontal_Inf_Tri_R Cingulum_Ant_L 

23 87 Frontal_Sup_Medial_L Temporal_Pole_Mid_L 

33 57 Cingulum_Mid_L Postcentral_L 

33 58 Cingulum_Mid_L Postcentral_R 

35 104 Cingulum_Post_L Cerebellum_8_R 

40 56 Parahippocampal_R Fusiform_R 

43 91 Calcarine_L Cerebellum_Crus1_L 

43 92 Calcarine_L Cerebellum_Crus1_R 

45 68 Cuneus_L Precuneus_R 

110 111 Vermis_3 Vermis_4_5 

 
Table 3.  Nodes Connecting Discriminative Edges Produced by RF Analysis 
 

AAL Nodes Numbers Brain Area 1 Brain Area 2 

33 58 Cingulum_Mid_L Postcentral_R 

40 56 Parahippocampal_R Fusiform_R 

43 94 Calcarine_L Cerebellum_Crus2_R 

48 91 Lingual_R Cerebellum_Crus1_L 
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methods identify key discriminative edges between: 1. left 
middle cingulum and right postcentral gyrus, 2. right para-
hippocampal gyrus and right fusiform gyrus, as well as, 3. 
left calcarine fissure and right crus of the cerebellum (Tables 
2 and 3). These gender-discriminative differences are con-
sistent with findings described in other studies investigating 
sexual dimorphism of network connectivity using graph 
theoretical methods [76, 77]. Wang and colleagues demons-
trated lower nodal efficiency in females compared to males 
in the left middle cingulum and right parahippocampal 
gyrus. In addition, Tian and colleagues identified the left 
middle cingulate gyrus as an important hub node in males 
and females [77]. The ELRC method identified additional 
nodes connected by gender discriminative edges in the 
present investigation that correspond to nodes that Wang  
et al., demonstrated to have gender-associated differences in 
efficiency, including frontal (left middle frontal gyrus), tem-
poral (right superior temporal gyrus), and limbic/paralimbic 
regions (left hippocampus, right hippocampus, and left 
amygdala) [76]. It is possible that gender-related differences 
in nodal efficiency [76] may reflect sexually dimorphic 
variability in the nodes with which they connect, as demons-
trated in the present study (Tables 1 and 2). It is possible that 
differences in functional connectivity between males and 
females may also be related to gender-related differences in 
regional connectivity between hub nodes [77].  
 In the present study, males demonstrated a greater pro-
portion of gender-discriminative edges associated with 
sensory, motor and association regions than females, which 
may be related to known male gender performance differ-
ences in visuospatial tasks [44-46]. As compared to males, 
females demonstrated a greater proportion of gender-discri-
minative edges associated with limbic regions, although both 
males and females had discriminative limbic-associated 
edges. In particular, there were distinct differences between 
males and females in specific limbic areas associated with 
gender-discriminative edges. For example, males but not 
females had a discriminative edge associated with the pos-
terior cingulum and parahippocampal gyrus, which are 
known to be involved in visuospatial processing and forma-
tion of spatial memories, respectively [78, 79] (Tables 1 and 
2). Interestingly, men have demonstrated greater BOLD 
activation than women in posterior cingulum and parahippo-
campal gyrus during performance of visuospatial navigation 
fMRI tasks [80, 81] . 
 Other limbic areas, such as the anterior and middle 
cingulum, were identified in the present study as important 
nodes transmitting discriminative edges in both males and 
females (Tables 1 and 2). Edges associated with the anterior 
and middle cingulum may be gender-discriminative because 
of the nodes with which they connect, which differ between 
males and females. For example, the anterior cingulum, 
known to be involved in affect processing [78], is connected 
by a gender-discriminative edge to the right hippocampus in 
females, but to the triangular inferior frontal gyrus in males 
(Tables 1 and 2). Similarly, the middle cingulum, which is 
known to be involved in response selection [78], is 
connected by gender-discriminative edges to the vermis and 
right thalamus in females, but to the left and right posterior-
central gyrus in males (Tables 1 and 2). It is possible that 
these gender-associated differences in anterior and middle 
cingulate connectivity may contribute to known differences 

in cingulate BOLD activation associated with emotion-
processing tasks between men and women that are correlated 
with fMRI task performance [82-84].  
 Taken together, these data suggest that gender differ-
ences in brain function may be related to sexually dimorphic 
regional connectivity between specific critical nodes via 
gender-discriminative edges. Furthermore, such differences 
may be related to performance advantages of females on 
tasks such as verbal memory and selective attention [39-43], 
and males on tasks of mental rotation and visuospatial ability 
[44-46]. More work is necessary, however, to further inves-
tigate these possibilities.  

CONCLUSION 

 We have applied machine learning methodologies to the 
analysis of functional connectivity based on resting state 
fMRI. These methods can analyze weighted brain networks 
and detect the specific set of edges that are informative for 
differences between groups of brain networks. When applied 
to R-fMRI data from a group of normal males and females, 
we were able to identify gender-discriminative edges that 
may be related to sexually dimorphic regional connectivity 
between specific critical nodes. Such methods may be more 
broadly applied in the future to identify discriminative edges 
in the brain for between-group differences that have import-
ant clinical implications. 

ACKNOWLEDGEMENTS 

 We thank Susan Shear for computer programming 
support. This work is funded in part by the NIH Supplement 
# HHSN268200464221C added to the N01-WH-4-4221 
grant.  

CONFLICT OF INTEREST 

 None declared. 

REFERENCES 
[1] Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity 

in the motor cortex of resting human brain using echo-planar MRI. 
Magn Reson Med 1995; 34(4): 537-41. 

[2] Cordes D, Haughton VM, Arfanakis K, et al. Frequencies 
contributing to functional connectivity in the cerebral cortex in 
"resting-state" data. AJNR Am J Neuroradiol 2001; 22(7): 1326-33. 

[3] Cordes D, Haughton VM, Arfanakis K, et al. Mapping functionally 
related regions of brain with functional connectivity MR imaging. 
AJNR Am J Neuroradiol 2000; 21(9): 1636-44. 

[4] Kiviniemi V, Kantola J, Jauhiainen J, Tervonen O, et al. 
Comparison of methods for detecting nondeterministic BOLD 
fluctuation in fMRI. Magn Reson Imaging 2004; 22(2): 197-203. 

[5] Bullmore E, Barnes A, Bassett DS, et al. Generic aspects of 
complexity in brain imaging data and other biological systems. 
Neuroimage 2009; 47(3): 1125-34. 

[6] Bullmore E, Sporns O. Complex brain networks: graph theoretical 
analysis of structural and functional systems. Nat Rev Neurosci 
2009; 10(3): 186-98. 

[7] Watts DJ, Strogatz SH. Collective dynamics of 'small-world' 
networks. Nature 1998; 393(6684): 440-2. 

[8] Barabasi AL, Albert R. Emergence of scaling in random networks. 
Science 1999; 286(5439): 509-12. 

[9] Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV. 
Scale-free brain functional networks. Phys Rev Lett 2005; 94(1): 
018102. 



8     The Open Neuroimaging Journal, 2012, Volume 6 Casanova et al. 

[10] Achard S, Bullmore E. Efficiency and cost of economical brain 
functional networks. PLoS Comput Biol 2007; 3(2): e17. 

[11] Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A 
resilient, low-frequency, small-world human brain functional 
network with highly connected association cortical hubs. J Neurosci 
2006; 26(1): 63-72. 

[12] Salvador R, Suckling J, Coleman MR, et al. Neurophysiological 
architecture of functional magnetic resonance images of human 
brain. Cereb Cortex 2005; 15(9): 1332-42. 

[13] van den Heuvel MP, Mandl RC, Kahn RS, et al. Small-world and 
scale-free organization of voxel-based resting-state functional 
connectivity in the human brain. Neuroimage 2008; 43(3): 528-39. 

[14] Chen ZJ, He Y, Rosa-Neto P, et al. Revealing modular architecture 
of human brain structural networks by using cortical thickness from 
MRI. Cereb Cortex 2008; 18(10): 2374-81. 

[15] He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the 
human brain revealed by cortical thickness from MRI. Cereb Cortex 
2007; 17(10): 2407-19. 

[16] Iturria-Medina Y, Sotero RC, Canales-Rodríguez EJ, Alemán-
Gómez Y, Melie-García L. Studying the human brain anatomical 
network via diffusion-weighted MRI and graph theory. Neuroimage 
2008; 40(3): 1064-76. 

[17] Hayasaka S, Laurienti PJ. Comparison of characteristics between 
region-and voxel-based network analyses in resting-state fMRI 
data. Neuroimage 2010; 50(2): 499-508. 

[18] Craddock RC, Holtzheimer PE, Hu XP, Mayberg HS. Disease state 
prediction from resting state functional connectivity. Magn Reson 
Med 2009; 62(6): 1619-28. 

[19] Richiardi J, Eryilmaz H, Schwartz S, Vuilleumier P, Van De Ville 
D. Decoding brain states from fMRI connectivity graphs. 
Neuroimage 2011; 56: 616-26. 

[20] Chen G, Ward BD, Xie C. Classification of Alzheimer disease, mild 
cognitive impairment, and normal cognitive status with large-scale 
network analysis based on resting-state functional MR imaging. 
Radiology 2011; 259(1): 213-21. 

[21] Breiman L. Random Forests. Mach Learn 2001; 45: 5-32. 
[22] Diaz-Uriarte R, Alvarez de Andres S. Gene selection and 

classification of microarray data using random forest. BMC 
Bioinformatics 2006; 7: 3. 

[23] Lunetta KL, Hayward LB, Segal J, Van Eerdewegh P. Screening 
large-scale association study data: exploiting interactions using 
random forests. BMC Genet 2004; 5(1): 32. 

[24] Bureau A, Dupuis J, Falls K. Identifying SNPs predictive of 
phenotype using random forests. Genet Epidemiol 2005; 28(2): 
171-82. 

[25] McKinney BA, Crowe JE, Guo J, Tian D. Machine learning for 
detecting gene-gene interactions: a review. Appl Bioinformatics 
2006; 5(2): 77-88. 

[26] Lehmann C, Koenig T, Jelic V, et al. Application and comparison 
of classification algorithms for recognition of Alzheimer's disease 
in electrical brain activity (EEG). J Neurosci Methods 2007; 161(2): 
342-50. 

[27] Tripoliti EE, Fotiadis DI, Argyropoulou M. A supervised method to 
assist the diagnosis of Alzheimer's disease based on functional 
magnetic resonance imaging. Conf Proc IEEE Eng Med Biol Soc 
2007; 2007: 3426-9. 

[28] Casanova R, Espeland MA, Goveas JS, et al. Application of 
machine learning methods to describe the effects of conjugated 
equine estrogens therapy on region-specific brain volumes. Magn 
Reson Imag 2011; 29(4): 546-53. 

[29] Tibshirani R. Regression Shrinkage and Selection via the Lasso. J. 
R. Statist Soc B 1996; 58(1): 267-88. 

[30] Torkkola K, Tuv E. Ensembles of Regularized Least Squares 
Classifiers for High Dimensional Problems, in Feature Extraction: 
Foundations and Applications, I. Guyon, et al., Editors. 2006, 
Springer. 

[31] Nikulin V, McLachlan GC. Classification of imbalanced marketing 
data with balanced random sets. JMLR: Workshop Conf Proc 2009; 
7: 89-100. 

[32] Shevade K, Keerthi S. A simple and efficient algorithm for gene 
selection using sparse logistic regression. Bioinformatics 2003; 19: 
2246-53. 

[33] Friedman J, Hastie T, Tibshirani R. Regularization paths for 
generalized linear models via coordinate descent. J Statist Software 
2010; 33(1): 1-22. 

[34] Friedman J, Hastie T, Tibshirani R. glmnet: Lasso and Elastic Net 
Regularized Generalized Linear Models. R package version 1.1-4 
2009. 

[35] Biswal BB, Mennes M, Zuo XN, et al. Toward discovery science of 
human brain function. Proc Natl Acad Sci USA 2010; 107(10): 
4734-9. 

[36] Kimura D. Sex, sexual orientation and sex hormones influence 
human cognitive function. Curr Opin Neurobiol 1996; 6(2): 259-63. 

[37] Nicholson KG, Kimura D. Sex differences for speech and manual 
skill. Percept Mot Skills 1996; 82(1): 3-13. 

[38] Wegesin DJ. A neuropsychologic profile of homosexual and 
heterosexual men and women. Arch Sex Behav 1998; 27(1): 91-
108. 

[39] Hyde JS, Linn MC. Gender differences in verbal-ability - a meta-
analysis. Psychol Bull 1988; 104(1): 53-69. 

[40] Davis PJ. Gender differences in autobiographical memory for 
childhood emotional experiences. J Pers Soc Psychol 1999; 76(3): 
498-510. 

[41] Thayer JF, Johnsen BH. Sex differences in judgement of facial 
affect: a multivariate analysis of recognition errors. Scand J Psychol 
2000; 41(3): 243-6. 

[42] Canli T, Desmond JE, Zhao Z, Gabrieli DE. Sex differences in the 
neural basis of emotional memories. Proc Natl Acad Sci U S A 
2002; 99(16): 10789-94. 

[43] Rahman Q, Wilson GD, Abrahams S. Sex, sexual orientation, and 
identification of positive and negative facial affect. Brain Cogn 
2004; 54(3): 179-85. 

[44] Linn MC, Petersen AC. Emergence and characterization of sex 
differences in spatial ability: a meta-analysis. Child Dev 1985; 
56(6): 1479-98. 

[45] Crucian GP, Berenbaum SA. Sex differences in right hemisphere 
tasks. Brain Cogn 1998; 36(3): 377-89. 

[46] Voyer D, Voyer S, Bryden MP. Magnitude of sex differences in 
spatial abilities: a meta-analysis and consideration of critical 
variables. Psychol Bull 1995; 117(2): 250-70. 

[47] Cosgrove KP, Mazure CM, Staley JK. Evolving knowledge of sex 
differences in brain structure, function, and chemistry. Biol 
Psychiatry 2007; 62(8): 847-55. 

[48] Shaywitz BA, Haywitz SE, Pugh KR, et al. Sex differences in the 
functional organization of the brain for language. Nature 1995; 
373(6515): 607-9. 

[49] Lee TM, Liu HL, Hoosain R. Gender differences in neural 
correlates of recognition of happy and sad faces in humans assessed 
by functional magnetic resonance imaging. Neurosci Lett 2002; 
333(1): 13-6. 

[50] Ragland JD, Coleman AR, Gur RC, Glahn DC, Gur RE. Sex 
differences in brain-behavior relationships between verbal episodic 
memory and resting regional cerebral blood flow. 
Neuropsychologia 2000; 38(4): 451-61. 

[51] Weiss E, Siedentopf CM, Hoferet A, et al. Sex differences in brain 
activation pattern during a visuospatial cognitive task: a functional 
magnetic resonance imaging study in healthy volunteers. Neurosci 
Lett 2003; 344(3): 169-72. 

[52] Fischer H, Fransson P, Wright CI, Bäckman L. Enhanced occipital 
and anterior cingulate activation in men but not in women during 
exposure to angry and fearful male faces. Cogn Affect Behav 
Neurosci 2004; 4(3): 326-34. 

[53] Lee TMC, Liu HL, Chan CC, Fang SY, Gao JH. Neural activities 
associated with emotion recognition observed in men and women. 
Mol Psychiatry 2005; 10(5): 450-5. 

[54] Bell EC, Willson MC, Wilman AH, Dave S, Silverstone PH. Males 
and females differ in brain activation during cognitive tasks. 
Neuroimage 2006; 30(2): 529-38. 

[55] Liu D, Yan C, Ren J, Yao L, Kiviniemi VJ, Zang Y. Using 
coherence to measure regional homogeneity of resting-state FMRI 
signal. Front Syst Neurosci 2010; 4: 24. 

[56] Yan H, Zuo X, Wang D. Hemispheric asymmetry in cognitive 
division of anterior cingulate cortex: A resting-state functional 
connectivity study. Neuroimage 2009; 47(4): 1579-89. 

[57] Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, 
Frackowiak RSJ. Statistical parametric maps in functional imaging: 
A general linear approach. Hum Brain Mapp 1994; 2(4): 189-210. 

[58] Tzourio-Mazoyer N, Landeau B, Papathanassiou D. Automated 
anatomical labeling of activations in SPM using a macroscopic 
anatomical parcellation of the MNI MRI single-subject brain. 
Neuroimage 2002; 15(1): 273-89. 



Differences in Functional Connectivity Across Sex The Open Neuroimaging Journal, 2012, Volume 6     9 

[59] Maldjian JA, Laurienti P, Burdette J. An automated method for 
neuroanatomic and cytoarchitectonic atlas-based interrogation of 
fMRI data sets. Neuroimage 2003; 19(3): 1233-9. 

[60] Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and 
Regression Trees 1984: Chapman & Hall/CRC. 

[61] Liaw A, Wiener M. Classification and Regression by randomForest. 
Rnews 2002; 2: 18-22. 

[62] Hoerl A. Application of ridge analysis to regression problems. 
Chem Eng Prog 1962; 58: 54-9. 

[63] Tikhonov AN, Arsenin VY. Solution of ill-posed problems. 1977, 
Washington DC: W.H. Winston. 

[64] Friedman J, Hastie T, Tibshirani R. glmnet: Lasso and Elastic Net 
Regularized Generalized Linear Models. R package version 1.1-4, 
2009. 

[65] Friedman J, Hastie T, Tibshirani R. Pathwise Coordinate 
Optimization. Annals Appl Stat 2007; 1(2): 302-32. 

[66] Zou H, Hastie T. Regularization and variable selection via the 
elastic net. J R Statist Soc B 2005; 67: 301-20. 

[67] Raizada RD, Tsao FM, Liu HM, Holloway ID, Ansari D, Kuhl PK. 
Linking brain-wide multivoxel activation patterns to behaviour: 
Examples from language and math. Neuroimage 2010; 51: 462-71 

[68] Cheng CW, Su EC, Hwang JK, Sung TY, Hsu WL. Predicting 
RNA-binding sites of proteins using support vector machines and 
evolutionary information. BMC Bioinformatics 2008; 9 (Suppl 12): 
S6. 

[69] Varma S, Simon R. Bias in error estimation when using cross-
validation for model selection. BMC Bioinformatics 2006; 7: 91. 

[70] Chu C. Pattern recognition and machine learning for magnetic 
resonance images with kernel methods, in Wellcome Trust Center 
for Neuroimaging. 2009, University College London: London. 

[71] Ryali S, Supekar K, Abrams DA, Menon V. Sparse logistic 
regression for whole brain classification of fMRI data. Neuroimage 
2010; 51(2): 752-64. 

[72] Pereira F, Mitchell T, Botvinick M. Machine learning classifiers 
and fMRI: a tutorial overview. Neuroimage 2008; 45(Suppl 1): 
S199-209. 

[73] Golland P, Fischl B. Permutation tests for classification: towards 
statistical significance in image-based studies. Inf Process Med 
Imag 2003; 18: 330-41. 

[74] Ecker C, Marquand A, Mourão-Miranda J. Describing the brain in 
autism in five dimensions--magnetic resonance imaging-assisted 
diagnosis of autism spectrum disorder using a multiparameter 
classification approach. J Neurosci 2010; 30(32): 10612-23. 

[75] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical 
Learning: Data Mining, Inference, and Prediction. Second ed. 
Springer Series on Statistics. 2009: Springer. 

[76] Wang L, Zhu C, He Y, Zhong Q, Zang Y. Gender Effect on 
Functional Networks in Resting Brain. MIMI, LNCS 2008; 4987: 
160-8. 

[77] Tian L, Wang J, Yan C, He Y. Hemisphere- and gender-related 
differences in small-world brain networks: A resting-state 
functional MRI study. Neuroimage 2010; 54: 191-202.  

[78] Vogt BA, Nimchinsky EA, Hof PR. Human cingulate cortex: 
Surface features, flat maps, and cytoarchitecture. J Comp Neurol 
1997; 359: 490-506. 

[79] Maguire EA. Hippocampal involvement in human topographical 
memory: evidence from functional imaging. Philos Trans R Soc 
Lond B Biol Sci 1997; 352(1360): 1475-80. 

[80] Gron G, Wunderlich A, Spitzer M, Tomczak R, Riepe M. Brain 
activation during human navigation: gender-different neural 
networks as substrate of performance. Nat Neurosci 2000; 3(4): 
404-8. 

[81] Nowak K, Mix E, Gimsa J, Strauss U, Sriperumbudur KK, Benecke 
R, Gims U. Optimizing a rodent model of Parkinson's disease for 
exploring the effects and mechanisms of deep brain stimulation. 
Parkinsons Dis 2011; 2011: 414682. 

[82] Wrase J, Klein S, Gruesser SM. Gender differences in the 
processing of standardized emotional visual stimuli in humans: a 
functional magnetic resonance imaging study. Neurosci Lett 2003; 
348(1): 41-5. 

[83] Klein S, Smolka MN, Wrase J.The influence of gender and 
emotional valence of visual cues on FMRI activation in humans. 
Pharmacopsychiatry 2003; 36 (Suppl 3): S191-4. 

[84] Proverbio AM, Adorni R, Zani A, Trestianu L. Sex differences in 
the brain response to affective scenes with or without humans. 
Neuropsychologia 2009; 47(12): 2374-88. 

 
Received: June 24, 2011 Revised: September 29, 2011 Accepted: November 07, 2011 
 
© Casanova et al.; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

 
 


