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Abstract: Acute respiratory distress syndrome (ARDS) remains a clinical challenge for intensivists, despite extensive 

experimental and clinical research over the past thirty years. Meanwhile, lung imaging techniques have emerged as 

invaluable non-invasive tools and have considerably modified and improved management of many lung pathologies. The 

purpose of this review is to list major unanswered questions in ARDS and to speculate on how lung imaging may provide 

answers in the near future. 

Keywords: ARDS, positron emission tomography, electrical impedance tomography, computed tomography, SPECT. 

INTRODUCTION 

 Since its first description in 1967 by Ashbaugh [1], the 
acute respiratory distress syndrome (ARDS) remains a 
clinical challenge for physicians. Mortality of this syndrome 
remains unacceptably high around 40%, and is stable over 
time despite extensive experimental and clinical research [2]. 
A lot of questions remain unsolved, whether related to 
physiopathology, prognosis or appropriate treatment of this 
syndrome. The reasons for which ARDS remains a 
particularly difficult disease for both researchers and 
clinicians are numerous. First, physiopathology of lung 
injury is incredibly complex, and further complexified by the 
wide spectrum of clinical conditions leading to this 
syndrome [3]. Second, lung lesions are evolving over time, 
in several often overlapping stages, with different clinical, 
histopathological, and radiographic manifestations [3]. 
Third, there is an extreme spatial heterogeneity of lung 
lesions during ARDS, making both global and regional 
physiologic measurements unrepresentative of the 
complexity of lung injury. Finally, the physiopathology of 
ARDS is intrinsically related to mechanical ventilation, 
which may interfere with the evolution of the syndrome. 
Lung imaging techniques are attractive to study ARDS 
because of their non-invasiveness allowing repetitive studies 
over time, their ability to provide both regional and global 
measurements, and their potential to give both morphologic 
and functional information on lung status. The purpose of 
this review is to list major unanswered questions in ARDS 
and to speculate on how lung imaging might provide 
answers. 
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IS MY PATIENT REALLY SUFFERING FROM 

ARDS? 

 Improving diagnosis of ARDS is of paramount 
importance, in order to better select appropriate therapy for 
patients (i.e. decreasing tidal volume, increasing positive 
end-expiratory pressure (PEEP),...). To date, several studies 
have shown that sensitivity and specificity of the current 
definition of ARDS [4] approximate 80% [5]. A new 
definition has been proposed, based on the Delphi technique, 
but mildly increased specificity, at the price of a significant 
decrease in sensitivity [6]. One of the reasons for the poor 
performance of ARDS current definition may be that neither 
pulmonary vascular permeability nor lung inflammation, two 
landmark features of ARDS, are part of ARDS criteria. 
Another problem is that, to date, the only gold standard for 
ARDS diagnosis is based on the pathological finding of 
diffuse alveolar damage, whose relevance as gold standard 
may be questionable since this pattern may be observed in 
several other diseases (such as drug toxicity, fibrosis, 
collagen vascular disease..) [7], and requires open lung 
biopsy, an invasive procedure which cannot be done in any 
unselected ARDS patient. Furthermore, bedside chest 
radiography, one of the 4 diagnosis criteria of current ARDS 
definition, has been shown poorly reliable in ARDS, with a 
diagnosis accuracy of 70%, as compared to computed 
tomography (CT) [8]. Finally, a bio-marker specific for 
ARDS would be the ultimate goal for reliable diagnosis of 
this syndrome, but extensive search has been to date 
unsuccessful, probably because of the great variety of 
etiologies leading to acute lung injury. There is thus an 
urgent need for new non-invasive diagnostic tools for 
ARDS, and lung imaging is a credible candidate for this 
purpose in the near future. High resolution morphological 
imaging such as lung CT may be used as a screening tool for 
ARDS diagnosis, particularly if bedside devices become 
widely available [9]. However, while CT may already give 
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functional information on vascular permeability [10], at the 
price of increased radiation exposure related to dynamic 
acquisition, the probability is scarce that this technique will 
ever allow measurement of lung inflammation in the future. 
Nuclear Medicine techniques might be the best tool for 
ARDS diagnosis, but a combination of tracers should be 
required. Indeed, increased permeability is not a specific 
feature of ARDS and has been described in hydrostatic 
pulmonary edema, in relation with increased convective 
protein transport across the pulmonary endothelium [11]. It 
is then likely that combined measurements of lung vascular 
permeability, inflammation and morphological information 
are required. In this connection, wide diffusion of single 
photon emission computed tomography (SPECT)/CT device 
would help the development of this new tool, since 
simultaneous dual isotope imaging is a unique feature of 
SPECT. Improving ARDS diagnosis with imaging may help 
to homogenize population of patients included in future 
clinical trials and increase the ability to detect significant 
differences between treatments. This technique may also 
help to differentiate ARDS from other conditions, since a 
great variety of diseases may fulfill the criteria of current 
ARDS definition [12-14]. 

WILL MY PATIENT AT-RISK, WHO IS AT RISK 
FOR ARDS, SUBSEQUENTLY DECLARE ARDS? 

 There is a wide variety of clinical disorders associated 
with subsequent development of ARDS, but only a small 
proportion of at risk-patients will ultimately develop this 
syndrome [3]. Early identification of these patients may be 
of paramount importance should new therapies be developed 
to prevent this disorder. In this connection, starting lung 
protective mechanical ventilation strategies before ARDS 
onset is one option among others. Because of its non-
invasiveness, lung imaging is an attractive tool in this 
setting. It should be stressed that patient transport to imaging 
facility is certainly safer before ARDS onset than once 
ARDS is fully established PET imaging is already being 
proposed for that purpose, since [

18
F]-fluorodeoxyglucose 

([
18

F]-FDG) uptake has been shown to increase significantly 
in patients with pulmonary contusion who subsequently 
develop ARDS, contrary to patients with favorable evolution 
[15]. This preliminary study needs to be confirmed, but 
favors future works in this direction. Nuclear Medicine 
imaging techniques are clearly the most likely candidates for 
this purpose, since functional changes precede 
morphological changes and may even be the earliest marker 
for the evolution towards ARDS. 

HOW CAN I ASSESS THE SEVERITY OF MY ARDS 
PATIENT AT ADMISSION? 

 Risk stratification in ARDS is crucial in order to design 
randomized controlled trials with homogeneous response to 
the tested intervention. Results of recent clinical trials 
suggest that response to ARDS therapies may indeed depend 
on the severity of underlying lung injury [16, 17]. For 
example, post-hoc analysis of the Express trial [16] has 
shown that high PEEP was associated with a decreased 
mortality in the most hypoxemic patients, and with an 
increased mortality in those patients with acute lung injury (a 
mild form of lung injury sharing identical criteria with 
ARDS except for PaO2/FiO2 ratio below 300 mmHg instead 
of 200 mmHg in ARDS [4]). However, PaO2/FiO2 ratio 

alone is an unreliable parameter for risk stratification [18], 
mainly since it can be manipulated by modifying PEEP or 
FiO2 among other variables [19]. Identification of patients 
with a high-risk of death may be performed by using 
standardized ventilatory settings during the first 24 hours 
after ARDS onset [19], but delayed inclusion may jeopardize 
the tested treatment and impede development of aggressive 
early therapies that have been shown beneficial in sepsis 
[20]. Lung imaging has already been shown efficient for risk 
stratification. Indeed, Gattinoni's group has shown that the 
percentage of potentially recruitable lung assessed with CT 
(defined as the proportion of lung tissue in which aeration 
was restored at airway pressures between 5 and 45 cm of 
water) was an independent risk factor for death in ARDS 
[21]. In this study, mortality increased from 15% to 41% 
between the quartile of patients with the fewer amount and 
the quartile with the greatest amount of potentially 
recruitable lung tissue. However, translation of this 
technique in the clinical setting is hardly conceivable, 
considering the requirement of time and resource consuming 
quantitative image analysis, and requirement for patient 
transport to imaging facility that would leave the most severe 
patients beyond the scope of this method. Electrical 
impedance tomography (EIT) is an attractive alternative to 
CT to assess lung recruitability [22]. It may be performed at 
the bedside, and is a strong candidate to help risk 
stratification in ARDS patients, based on the methodology 
developed by Gattinoni [21]. Lung ultrasonography is 
another technique with potential to assess non-invasively 
lung recruitment at the bedside [23], but its ability to give 
quantitative and not only semi-quantitative results remains to 
be proven. Finally, assessing lung permeability with portable 
-camera scintigraphy as a surrogate for severity of lung 

injury may be another way for risk stratification in ARDS, 
but preliminary results were disappointing [11]. 

IS MY ARDS PATIENT VENTILATED WITH SAFE 
SETTINGS? 

 Since high tidal volumes have been shown to increase 
ARDS mortality in a large randomized controlled trial [24], 
avoiding ventilator-induced lung injury (VILI) is one of the 
main concerns when ventilating ARDS patients. Despite 
initial controversies, setting the ventilator with a low tidal 
volume of 6 ml/kg of predicted body weight and targeting a 
plateau pressure of the respiratory system below 30 cmH2O 
has become a standard of care in ARDS treatment. However, 
approximately 30% of ARDS patients ventilated with these 
ventilatory settings still exhibit lung hyperinflation and 
excessive lung inflammation [25], favoring further reduction 
in tidal volume to avoid volotrauma (VILI secondary to 
excessive lung strain). Repetitive recruitment-derecruitment 
is another mechanism suspected to be involved in VILI [26], 
and may be prevented by optimizing PEEP level. However, 
setting the right PEEP remains a matter of intense debate, 
and disappointing results came from recent large randomized 
controlled trials comparing two PEEP levels irrespective of 
patient lung characteristics [16, 27, 28]. 

 Tailoring tidal volume to effective aerated volume in 
ARDS (so called "baby lung") to avoid lung hyperinflation 
and PEEP level to avoid repetitive lung recruitment-
derecruitment may be a solution, since lung aeration and 
respiratory mechanics are highly heterogeneous between 
ARDS patients. Computed tomography is a reliable tool to 
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assess both lung tidal hyperinflation and repetitive 
recruitment-derecruitment in clinical research studies, but 
requires patient transport, radiation exposure, and would 
require repetitive measurements over time [25] after each 
ventilatory adjustment. EIT may be an attractive alternative 
approach, with potential for repetitive measurements at the 
bedside, using mathematical modeling of regional 
impedance vs time curves [29]. However clinical validation 
of this methodology remains to be performed since several 
technical limitations may impair relevance of such 
measurements (low spatial resolution, acquisition limited to 
a small part of the lung, intensity of impedance signal not 
limited to lung aeration, among others). Nevertheless, with 
EIT or another emerging new technique available at the 
bedside, imaging-assisted mechanical ventilation may well 
become a major advance in mechanical ventilation in the 
near future. 

WHAT IS THE PHYSIOPATHOLOGY OF GAS 
EXCHANGE IN MY ARDS PATIENT? 

 Most of ARDS ventilatory treatments (PEEP, recruitment 
maneuvers, prone position,...) have not only an effect on 
lung ventilation and aeration, but also on lung perfusion [30-
32]. Some pharmacological agents frequently used in ARDS 
(nitric oxide [33], almitrine [34], recombinant human 
activated C protein [35], among others) also act on the lung 
perfusion and may interact negatively with treatments that 
act on the lung ventilation. Therefore, evaluation of 
ventilation-perfusion relationships is of paramount 
importance, when evaluating response to such therapies. For 
example, Musch et al. have shown using PET, that adverse 
response to recruitment maneuver may be explained by 
redistribution of pulmonary blood flow toward less-aerated 
dependent regions increasing shunt and altering gas 
exchange [36]. PET imaging is certainly the gold standard to 
study ventilation-perfusion relationships, but will probably 
be confined as a research tool considering the complexity 
and cost of such measurements. CT has an established 
potential to assess both lung perfusion (using contrast agent 
and modeling of their kinetics in the lung [37, 38]), and 
ventilation using inhaled Xenon and mathematical modeling 
of gas washout from the lung [39]. However, dynamic 
acquisition is required for mathematical modeling and hence 
increase radiation exposure. Furthermore, inhalation of 
hypoxic gas and transport requirement to imaging facility 
preclude application of this method in the most severe 
patients. Magnetic resonance imaging has also a confirmed 
potential for assessing both ventilation and perfusion [40-
42]. However, technique complexity, restricted access and 
transport requirement are major limitations in ARDS. 
Finally, EIT may again find a place in the clinical setting for 
that purpose, since variations of thoracic impedance are 
related to both lung aeration (and hence ventilation) and 
blood volume (and hence, lung regional stroke volume) [43, 
44], but this technique is still in its early stage of 
development. 

WHICH STRATEGY SHOULD I ADOPT IN PATIENTS 
WITH PERSISTENT ARDS? 

 ARDS patients who fail to improve respiratory function 
by day seven are deemed to present persistent or unresolving 
ARDS, characterized by persistent elevation in circulating 
and pulmonary levels of inflammatory cytokines and 

chemokines, elevated markers of alveolo-capillary 
membrane permeability and lung fibroproliferation. 
Mortality of this syndrome was considered in excess of 80%, 
based on studies performed in the 1980s [45-47], but may be 
lower (30-50%) on the basis of more recent studies [14, 48]. 
Randomized controlled trials using steroids to counteract 
pulmonary fibroproliferation gave conflicting results [48, 
49], and, to date, there is no established treatment of 
persistent ARDS. One of the reasons explaining these 
disappointing results is that physiopathology of this 
syndrome is highly heterogeneous. Systematic open lung 
biopsies have indeed found evidence for fibroproliferation in 
less than 50% of patients, infection in approximately 60% of 
patients, and miscellaneous diagnosis erroneously taken for 
ARDS in more than 10% of patients [14]. New 
developments in lung imaging could help selecting patients 
for inclusion in clinical trials focusing on treating 
fibroproliferation, help for differential diagnosis of ARDS, 
or possibly help selecting lung region to improve lung 
biopsy yield. Computed tomography may help the diagnosis 
of established fibrosis [50], but is usually useless at the early 
phases of fibroproliferation. Isotopic functional imaging may 
be of interest in this setting, should specific tracers for 
fibroproliferation and infection were to be developed. To 
date, collagen synthesis and extracellular matrix degradation 
may be tracked by PET using 

18
F-labeled proline analogs 

[51], and 
18

F-labelled metalloproteinase inhibitors [52, 53], 
respectively. SPECT imaging may also be of interest, by 
targeting somatostatin receptor subtype 2 expressed on 
activated fibroblast with 

111
In-octreotide, a synthetic 

somatostatin analog with strong affinity for this receptor 
[54]. However, none of the preceding tracers have been 
tested in persistent ARDS. 

CONCLUSION 

 Many unanswered questions in ARDS might be solved 
by lung imaging. EIT may be the technique of choice for risk 
stratification in ARDS, and to help managing ventilatory 
settings at the bedside, unless low spatial resolution and 
limited field of view restricted to a small part of the lung 
impair relevance of regional lung measurements obtained 
with this technique. Nuclear medicine techniques should 
help to identify at-risk patient before ARDS onset, to define 
subgroups of ARDS patients sharing similar 
physiopathology, to exclude other diagnosis than ARDS, and 
to early identify lung fibroproliferation. However, translation 
of these techniques to patient care may be hindered by 
requirement of patient transport to imaging facilities. 
Developing new imaging devices with availability at the 
bedside would thus be of paramount importance to improve 
management of ARDS patients in the future. 
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