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Abstract: Improved multipolar model of photon bremsstrahlung accompanying -decay is presented. A special emphasis 

is given to the development of an angular formalism of matrix elements. The model gives values of the angular probabil-

ity of the emission of photons in the absolute scale, without its normalization on experimental data. Spectra calculated on 

the basis of the model are found in a good agreement with the newest experimental data for the 
210

Po, 
214

Po, and 
226

Ra nu-

clei. A unified formula for the bremsstrahlung, probability during the -decay of an arbitrary nucleus, defined directly on 

Q -value and numbers Ad, Zd of nucleons and protons of this nucleus, has been constructed for the first time. Inside the re-

gion of the -decaying nuclei from 
106

Te up to nucleus with Ap = 266 and Zp = 109 at energy of the photons emitted from 

50 keV up to 900 keV a good coincidence has been achieved between the spectra obtained by the multipolar model (where 

duration of calculations for one selected nucleus is up to 1 day), and the spectra obtained by the unified formula (where 

duration of calculations is about some seconds, using the same computer). 
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I. INTRODUCTION 

 For the last two decades, many experimental and theo-

retical efforts have been made to investigate the nature of the 

bremsstrahlung emission accompanying -decay of heavy 

nuclei. A key idea of such researches consists of finding a 

new method of extraction of a new information about dy-

namics of -decay (and dynamics of tunneling) from meas-

ured bremsstrahlung spectra. The tunneling time in nuclear 

processes has extremely small values, close to nuclear one. 

This fact results almost in impossibility to test experimen-

tally the non-stationary methods of the tunneling. But with 

the study, researchers open new ways for obtaining new in-

formation about dynamics of nuclear processes. An increas-

ing interest in the study of the bremsstrahlung processes ac-

companying -decay is mainly explained by this, through 

analysis of the bremsstrahlung spectrum to estimate dynam-

ics of the -decay (perhaps, in its first stage) or to estimate 

the duration of tunneling of the -particle through the nu-

clear barrier. 

 At present, there are many approaches for the description 

of the bremsstrahlung emission accompanying the -decay. 

In particular, a main emphasis has been given to such theo-

retical investigations where the -decay was considered as 

the semiclassical spherically symmetric approximation (for 

example, see Refs. [1-3]). The semiclassical approach in a 

comparison with fully quantum approach allows working 

with such characteristics and parameters, for which the  
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physical sense is obvious. This allows to understand new 

questions quicker in this task. At present, in the semiclassical 

approach an enough good description of existing experimen-

tal data has been achieved, where a recent success in agree-

ment between theory and experiment for the controversial 
210

Po nucleus [4, 5] has been noted. Note good perspectives 

in the study of dynamics of the -decay with the analysis of 

the bremsstrahlung spectra [6-8], in the study of dynamics of 

tunneling in the -decay directly [9-12], and also an effect 

[13] named as Münchhausen effect, which increases the bar-

rier penetrability due to virtual photon emission during its 

tunneling and which can be interesting for further study of 

the photon bremsstrahlung during tunneling in the -decay. 

 However, the fully developed quantum approach (for 

example, see Refs. [14-17]) is the most accurate and cor-

rected description of emission of photons; the richest in the 

study of quantum properties and new effects in this task. In 

direction of development of the fully developed quantum 

approaches, a model proposed for the first time by Papen-

brock and Bertsch in Ref. [14] has been developed, mainly 

where wave function of photons is considered in the dipole 

approximation. It turns out that application of such approach 

for calculation of the matrix element of the photon emission 

increases essentially its convergence without visible decreas-

ing of accuracy, that makes this problem to be studied in the 

fully developed quantum approach practically for many re-

searchers. An angular quantum model had been developed 

where further angular corrections in description of the wave 

function of photons are taken into account and potential of 

interactions between the -particle and the daughter nucleus 

is used in realistic form, according to Ref. [18]. Within the 

frameworks of this model, two different approaches have 
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been developed for the calculation of the bremsstrahlung 

probability, based on different expansion of the wave func-

tion of photons: multipole expansion [19], and expansion in 

spherical waves [20, 21]. 

 In the second approach, enough good agreement have 

been achieved with experimental data for the 
210

Po, 
214

Po and 
226

Ra nuclei [22, 23]. The multipolar approach is less devel-

oped. At the same time, it is more accurate in angular de-

scription of the photons emission during the -decay, and 

therefore, there is an interest in improved realization of this 

approach to the needed level. It turns out that the model con-

structed within the multipolar approach allows to calculate 

absolute values of the bremsstrahlung probability without 

any normalization relatively experimental data, and achieves 

good enough agreement with them. This opens a possibility 

to study the bremsstrahlung in the -decays of other nuclei 

and to predict new spectra. At present, it is unclear as to how 

much energy of the -particle takes influence on the 

bremsstrahlung emission, and whether other characteristics 

which influence the bremsstrahlung emission, are essential. 

On such a basis, more intriguing task has been opened to 

compose a unified formula of the bremsstrahlung probability 

during the -decay of the arbitrary nucleus, which is directly 

expressed through all these parameters and characteristics. 

 This paper answers on these questions, which are orga-

nized so. At first, the improved multipolar model of the 

bremsstrahlung accompanying the -decay is presented, 

where emphasis is made on construction of the angular for-

malism of the matrix elements and calculation of the abso-

lute bremsstrahlung probability. Nucleus- -particle potential 

in the model, whose parameters are defined only by Q -value 

of the -decay, protons and neutron numbers for the studied 

nucleus, allows to apply this model for calculation of the 

absolute bremsstrahlung probability for arbitrary nucleus. 

Further, the model is tested in comparison of the calculated 

values of such probability with experimental data [4, 22, 23] 

for the 
210

Po, 
214

Po and 
226

Ra nuclei and I have been obtain-

ing good agreement. At the end, the formula of the 

bremsstrahlung probability during the -decay, based only 

on the Q -value and numbers of protons and neutrons of the 

decaying nucleus, has been constructed for the first time. 

Inside region of the -active nuclei from 
106

Te up to the nu-

cleus with numbers of nucleons and protons Ap = 266 and  

Zp = 109 (this region is taken from Ref. [24]) with energy of 

the photons emitted from 50 keV up to 900 keV, a satisfac-

tory agreement has been achieved between the spectra, ob-

tained on the basis of the multipolar model (where duration 

of calculations for one selected nucleus is up to 1 day), and 

the bremsstrahlung spectra obtained on the basis of the pro-

posed formula (where duration of calculations is about some 

seconds using the same computer!). By the opinion of 

author, this formula can be extremely useful for the quick 

estimation of the bremsstrahlung probability during the -

decay of the interesting nucleus (without a necessity to study 

enough complicated quantum models and variety of ap-

proximations, to realize enough laborious numerical algo-

rithms of computer calculations of the bremsstrahlung spec-

tra with resolution of divergence problem). 

II. MODEL 

A. Matrix Element of Transition 

 Let's formulate the starting points of the model. The 

bremsstrahlung probability has been defined during -decay 

of nucleus in terms of transition matrix element of the com-

posite system ( -particle and daughter nucleus) from its state 

before the photon emission (we call such a state as initial i-

state) into its state after the photon emission (we call such a 

state as final f-state). Index i or f to different characteristics 

and possible quantum numbers has been added for the initial 

or final state correspondingly, marking such state. The defi-

nition of the matrix element has been used like eq. (2.11) in 

Ref. [19] (in the first correction of the non-stationary pertur-

bation theory with stationary limits t0  and t1 + , 

and with normalization C 1 ): 
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and i (r) = ki  and f (r) = k f  are stationary wave func-

tions of the -decaying system in the initial i-state and final 

f-state, which do not contain number of photons emitted, 

 
ki = 2mEi /  and 

 
k f = 2mEf /  are wave vectors in the 

initial and final states. 
ii
wE =  and 

 
Ef = wf  are energies 

of the system in the initial and final states. 

Zeff = (2Ad 4Zd ) / (Ad + 4)  is an effective charge of the 

system, m is reduced mass of this system, Ad and Zd are 

numbers of nucleons and protons of the daughter nucleus. 

Further, an ndex ph has been added, marking different char-

acteristics for the emitted photon. In particular, kph is a wave 

vector (momentum) of the emitted photon, kph is its modulus 

and 
  
w

ph
= k

ph
= k

ph
. e

( )
 are unit vectors of polarization of 

this photon. Vectors e
( )

 are perpendicular to kph in Coulomb 

gauge. We have two independent polarizations e
(1)

 and e
(2)

 

for the photon with momentum kph (  = 1, 2). One can de-

velop formalism simply in the system of units where  = 1  

and c=1, but constants   and c have been written explicitly. 

Let’s find also square of the matrix element afi used in defi-

nition of probability of transition. Using the formula of 

power reduction of -function (see Ref. [25], § 21, p. 169): 
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[ (w)]2 = (w) (0) = (w) (2 ) 1 dt =

= (w) (2 ) 1 T ,
         (3) 

we find (T +  is higher time limit): 

  
a

fi

2

= 2 T F
fi

2

(w
f

w
i
+ w

ph
) ,         (4) 

that looks like (4.21) in Ref. [25] (with accuracy up to factor 

(2 )
2 

) and like (42.5) in Ref. [26] (exactly, see § 42, p. 189). 

B. Linear and Circular Polarizations of the Photon Emit-
ted 

 Rewrite vectors of linear polarization e
( )

 through vec-

tors of circular polarization μ with opposite directions of 

rotation (see Ref. [27], eq. (2.39), p. 42): 

 

±1 =
1

2
(e(1) ± i e(2) ), 0 = e

(3)
= 0.          (5) 

Then p (ki , k f )  can be rewritten so: 
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C. Expansion of the Vector Potential A by Multipoles 

 In further calculations of p (ki , k f ) , the different expan-

sions of function    e
i k

ph
r

 of the vector potential A of the 

electro-magnetic field of the daughter nucleus can be used. 

In this paper, the multipole expansion has been used, defin-

ing it according to Ref. [27] (see eq. (2.106) in p. 58) so: 
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where (see Ref. [27], eq. (2.73) in p. 49, eq.(2.80) in p. 51) 
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 Here, 
   
A

l
ph

(r, M )  and 
   
A

l
ph

(r, E)  are magnetic and 

electric multipoles, 
  
j
l

ph

(k
ph

r)  are spherical Bessel functions 

of order lph, 
   
T

l
ph

l
ph

,
(n)  are vector spherical harmonics, 1, 

2, 3 are angles defining direction of the vector kph, rela-

tively axis z, in selected frame system. According to Ref. 

[27] (see comments in p. 51), in the case of lph = 0, the mul-

tipoles 
   
A

l
ph

(r, M )  and 
   
A

l
ph

(r, E)  are zero. This corre-

sponds to such physical fact that, photon with spin 1 must 

have at least unity of the angular momentum: lph = 1. So, 

summation in eq. (8) was initiated from lph = 1. Matrix-

function 
  
D

μ

l
ph ( , ,0)  defines direction of the vector kph rela-

tively axis z in the frame system for r: angles  and  point 

to direction of the vector kph, but not the vector r. In general, 

the functions 
   
T

jl , m
(n)  have the following form ( 0 = 0, see 

Ref. [27], p. 45): 

Tjl,m (n) = (l, 1, j | m μ, μ, m)Yl,m μ (n) μ

μ=±1

,      (10) 

where (l, 1, j | m μ, μ, m)  are Clebsh-Gordon coefficients 

(see Appendix A) and Ylm ( , ) are spherical functions de-

fined according to Ref. [26] (see (B1) in Appendix B, also p. 

119, eqs. (28,7)-(28,8)). 

D. Approximation of the Spherically Symmetric -Decay 

 Formula (8) is defined for a case when the vector kph is 

directed arbitrary, relatively arbitrary fixed system of coor-

dinates. Let us orientate the system coordinates so that axis z 

will be parallel to the vector kph and 

  
D

μ

l
ph ( , ,0) =

μ
.         (11) 

Then, eq. (8) is transformed into the following (see Ref. [27], 

eq. (2.105) in p. 57): 
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       (12) 

This formula is convenient for a case when in a study of the 

-decay, the system of coordinates soes not needs to be fix 

by a definite way, relatively by the -decaying system (or 

the -decaying nucleus). This is a case when the -decaying 

system is considered in the spherically symmetric approxi-

mation. If the -decay has asymmetry then it needs to fix the 

system of coordinates, relatively the nucleus that decays. In 

such a case, the vector kph and axis z cannot be parallel and 

they need to use eq. (8). 

 Further, the -decay in the spherically symmetrical ap-

proximation has been studied. In such a case, the wave func-

tions of the -decaying system in the initial and final states 

are separated into the radial and angular components. Now 

these states are characterized by orbital and magnetic quan-

tum numbers l and m and index i or f marking the initial or 

the final state has been added. It was assumed that in the 

initial state we have li = mi = 0 (like our previous papers [19-

23] and different other papers at this topic, see for example 

[1-8, 14-17]). The interest was developed in such photon 

emission when the system transits to superposition of all 

possible final states with different values of the magnetic 

number mf at the same orbital number lf. The radial compo-
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nent of the wave function f (r) does not depend on mf for 

any selected lf. At present state, no restrictions have been 

applied for the possible values of lf, i. e. it is assumed that lf 

can be arbitrary starting from 0. Now, we write the wave 

functions so: 
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 Using gradient formula (see eq. (2.56), p. 46 in Ref. 

[27]): 
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and then, we calculate the partial magnetic and electric com-

ponents: 
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where the following integral functions are introduced (at 

arbitrary n=0,1,2…): 
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 Using the following value of the Clebsh-Gordon coeffi-

cient (see Appendix A): 

(110 |1, 1, 0) = (110 | 1,1, 0) =
1

3
,       (21) 

from eqs. (10) and (18) we obtain: 
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and for the angular integrals for transition into the superposi-

tion of all possible final f-states with different mf at the same 

lf from eq. (20) we obtain: 
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E. Vectors nr
i

, nr
f

, nph  and Calculations of the Angular 
Integrals 

 Let us analyze a physical sense of vectors nr
i

, nr
f

 and 

nph . According to the definition of wave functions 
   i
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(r) , the vectors 
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f
 determine orientation of 

radius-vector r from the center of frame system to point 

where these wave functions describes the particle before and 

after the emission of photon. Such description of the particle 

has a probabilistic sense and is fulfilled over whole space. 

Change of direction of motion (or tunneling) of the particle 

in the result of the photon emission can be characterized by 

the change of quantum numbers l and m in the angular wave 

function: 
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f )  (which changes the probabil-

ity of appearance of this particle along different directions, 

and angular asymmetry is appeared). The vector 
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mines orientation of radius-vector r from the center of the 

frame system to point where the wave function of photon 

describes its “appearance”. Using such logic, we have: 
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 As such a frame system has been used where axis z is 

parallel to vector kph of the photon emission, then dependent 

on r, integrant function in the matrix element represents am-

plitude (its square is probability) of appearance of the parti-

cle at point r after emission of photon, if this photon has 

emitted along axis z. Then, angle  (of vector nr) is the angle 

between direction of the particle motion (with possible tun-

neling) and direction of the photon emission. 

 Let us consider the angular integral in eq. (16) over d . 

Using eq. (17), we find: 
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where 
  
P

l

m (cos )  are associated Legandre’s polynomial (see 

Ref. [26], p. 752-754, eqs. (c,1)-(c,4); also see Ref. [27] eq. 

(2.6), p. 34), and we obtain the following restrictions on pos-

sible values of mf and lf (for more detais, see Appendix B): 
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when this integral is non-zero (in particular, at lf = 0 the inte-

gral in the left part of eq. (25) is zero). 
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Then, after integrating over , we find the total angular inte-
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 Now, let us introduce the following differential expres-

sions of these integrals by angle  (neglecting by limits of 

integration): 

  

d I
M

(l
f
; l

ph
,n)

sin d
= m

ph
h

m
i

l
f
+n+1

μ '=±1

C
l

f
l
ph

n

m
f
μ '

f
l

f
n

m
f
μ '

( ),

d I
E
(l

f
; l

ph
,n)

sin d
= h

m
i

l
f
+n+1

μ '=±1

C
l

f
l
ph

n

m
f
μ '

f
l

f
n

m
f
μ '

( ) .

  (30) 

On such a basis, new differential partial magnetic and elec-

tric components, 
 
dp

l
ph

M  and 
 
dp

l
ph

E , dependent on angle  have 

been defined as: 

  

d p
l
ph

M

sin d
=

d I
M

(l
f
,l

ph
,l

ph
)

sin d
J (l

f
,l

ph
) =

= mh
m

i
l

f
+ l

ph
+1

J (l
f
,l

ph
)
μ '=±1

C
l

f
l
ph

l
ph

m
f
μ '

f
l

f
l
ph

m
f
μ '

( ),

             

(31)

 

  

d p
l
ph

E

sin d
= h

m
i

l
f
+ l

ph
l

ph
+1

2l
ph
+1

J (l
f
,l

ph
1)

μ '=±1

C
l

f
,l

ph
,l

ph
1

m
f
μ '

f
l

f
,l

ph
1

m
f
μ '

( ) +

+ h
m
i

l
f
+ l

ph
+2 l

ph

2l
ph
+1

J (l
f
,l

ph
+1)

μ '=±1

C
l

f
,l

ph
,l

ph
+1

m
f
μ '

f
l

f
,l

ph
+1

m
f
μ '

( )

 

and new total differential component dp 

  

d p (k
i
, k

f
)

sin d
= 2

l
ph
=1

( i)
l
ph 2l

ph
+1

d p
l
ph

M

sin d
i

d p
l
ph

E

sin d
   (32) 

dependent on this angle also. One can see that integration of 

the differential components (31) over the angle  with limits 

from 0 to  gives the integral components 
 
p

l
ph

M  and 
 
p

l
ph

E  ex-

actly. 

 For transition into superposition of all possible final 

states with different mf at the same 
 
l

f
 instead of eq. (31), we 

obtain: 

   

d p
l
ph

M

sin d
= i

l
f
+l

ph
+1

J (l
f
, l

ph
) m

f
h

m
m

f
=±1 μ '=±1

C
l

f
l
ph

l
ph

m
f
μ '

f
l

f
l
ph

m
f
μ '

( ),

d p
l
ph

E

sin d
= i

l
f
+l

ph
l

ph
+1

2l
ph
+1

J (l
f
, l

ph
1) h

m
f

m
f
=±1 μ '=±1

C
l

f
,l

ph
,l

ph
1

m
f
μ '

f
l

f
,l

ph
1

m
f
μ '

( )

i
l

f
+l

ph
l

ph

2l
ph
+1

J (l
f
, l

ph
+1) h

m
f

m
f
=±1 μ '=±1

C
l

f
,l

ph
,l

ph
+1

m
f
μ '

f
l

f
,l

ph
+1

m
f
μ '

( ).

  (33) 

F. The Components 
 
p

l
ph

M
 and 

 
p

l
ph

E
 at the First Values of 

 
l

f
, 

 
l

ph
 

 The differential components (33) have been defined at 

the first values of fl  and phl . Following eqs. (14) and (26), 

we have: 

  
l

f
= 1, l

ph
= 1           (34) 

and we write: 

   

d
1

M
p

sin d
= i J (1,1)

m
f
=±1

m
f

h
m

μ '=±1

C
111

m
f
μ '

f
11

m
f
μ '

( ),

d
1

E
p

sin d
=

2

3
J (1,0)

m
f
=±1

h
m

f
μ '=±1

C
110

m
f
μ '

f
10

m
f
μ '

( ) +

+
1

3
J (1,2)

m=±1

h
m

f
μ '=±1

C
112

m
f
μ '

f
12

m
f
μ '

( ).

  (35) 

Calculating coefficients 
  
C

11n

m
f
μ '

 and functions 
  
f
1n

m
f
μ '

( )  (see 

Appendixes C and D), we obtain: 
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d
1

M
p

sin d
=

3

8

1
J (1,1) sin2 cos ,

d
1

E
p

sin d
= i

1

8

2
J (1,0) sin2

+

          (36) 

    
  
+ i

1

8

1
J (1,2) sin2 (1 3sin2 ).  

Integrating eqs. (36) over the angle , we find the integral 

components: 

   
1

M

p = 0,
1

E

p = i
1

6

2
J (1,0)

7

10
2 J (1,2) .       (37) 

G. Angular Probability of Emission of Photon with  
Momentum kph and Polarization e

( )
 

 The probability of transition of the system (during time 

unit) has been defined from the initial i-state into the final f-

states, being in the given interval 
 
d

f
, with emission of 

photon with possible momenta inside the given interval 

 
d

ph
, so (see Ref. [26], (42,5) § 42, p. 189; Ref. [28], § 44, 

p. 191): 

  

dW =
| a

fi
|
2

T
d = 2 | F

fi
|
2 (w

f
w

i
+ w

ph
) d ,

d = d
f

d
ph
,

      (38) 

where  d  are values characterizing photon and particle in 

the final f-state. If the emission of photon with momentum 

kph is considered then 

  

d
ph
=

d 3k
ph

(2 )3
=

w
ph

2 dw
ph

d
ph

(2 c)3
,          (39) 

where 
  
d

ph
= d cos

ph
= sin

ph
d

ph
d

ph
, 

 
k

ph
= w

ph
/ c . 

Substituting eq. (39) into eq. (38) and integrating eq. (38) 

over 
 
dw

ph
, we obtain: 

   

dW =
w

fi

2
| F

fi
|
2

(2 )2 c3
d

ph
d

f
,

w
fi
= w

i
w

f
=

E
i

E
f
.

        (40) 

 Now, concerning interval 
 
d

f
 has been noted. In defini-

tion (38), we use matrix element 
 
F

fi
, which is defined as an 

integral over space with possible summation by some quan-

tum numbers of the system in the final f-state. One can con-

sider such procedure as averaging by these characteristics, 

and then 
 
F

fi
 does not depend on them. Therefore, we shall 

suppose that interval 
 
d

f
 in definition (38) takes into ac-

count only such additional characteristics and quantum num-

bers of the system in the final f-state, by which integration or 

summation was not fulfilled in definition of 
 
F

fi
. 

 Substituting eq. (2) for 
 
F

fi
 into eq. (40), we obtain: 

    

dW =

2
Z

eff
e2

m2

w
fi

2 c3
p(k

i
, k

f
)

2

d
ph

d
f
=

=

2
Z

eff
e2

2 c3

w
fi

m2
=1,2

e
( ),

p(k
i
, k

f
)

2

d
ph

d
f
.

      (41) 

This expression represents probability of the photon emis-

sion with momentum kph (and with averaging by polarization 

e
( )

) where the integration over angles of the particle motion 

after the photon emission has already fulfilled. Such prob-

ability is averaged over all possible directions of the particle 

motion after emission, and therefore, does not depend on 

them. 

 I define the following probability of emission of photon 

with momentum kph when after such emission the particle 

moves (or tunnels) along direction 
  
n

r

f
: differential probabil-

ity concerning angle  (and differential probability concern-

ing solid angle ) is such a function, definite integral of 

which over the angle  with limits from 0 to  (definite solid 

integral over angles  and ) equals to the total probability 

of the photon emission (40). Let us consider two functions: 

   

dW (
f
,

f
)

d
ph

d
f

=
dW (

f
,

f
)

d
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f

d
f

d
f

=

2
Z

eff
e2

2 c3

w
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d

d
f
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i
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f
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,

dW (
f
)

d
ph
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=
dW (

f
)

d
ph

sin
f

d
f

=

2
Z

eff
e2

2 c3

w
fi

m2

d

sin
f

d
f

p(k
i
, k

f
)

2

.

   (42) 

 Using the definition (32) for the differential component 

dp, I rewrite eqs. (42) as: 

   

dW (
f
,

f
)

d
ph

d
f

=

2
Z

eff
e2

2 c3

w
fi

m2
p (k

i
, k

f
)
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f
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w
fi

m2
p (k

i
, k

f
)

d p (k
i
, k

f
,

f
)

d cos
f

+ h.e. .

  (43) 

One can see that so constructed functions satisfy exactly 

with the definition of the differential probabilities above. So, 

they can be used as definitions of the differential probabili-

ties. 

 The total (integrated over angles) probability of the pho-

ton emission is: 

   

W =

2
Z

eff
e2

2 c3

w
fi

m2
p (k

i
, k

f
)

2

.        (44) 

From eqs. (43) and (44) one can see that so defined angular 

probabilities are real. 

 If the probability W has dimension of mass and coincides 

with width  then one can define inverse value  to it: 

  

= , = W .           (45) 
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 In consideration of transition of the system from the ini-

tial state to the final one, the value  represents mean life 

time of this system in the initial state, i. e. before photon 

emission (see Ref. [25], p. 175). 

 The probability of photon emission is inversely propor-

tional to the normalized volume V, which can be used arbi-

trary. With a purpose to obtain the characteristics, which 

characterizes the process of emission and does not depend on 

V, it needs to divide the differential probability of emission 

dW on the flux j of outgoing -particles in -decay, which is 

also inversely proportional to this volume V. Write the dif-

ferential probability so: 

   
dW (

f
,

f
) = n

i
v(p

i
) dP,         (46) 

where 
i
n  is the average number of particles in time unit be-

fore photon emission (used for normalization of wave func-

tion in the initial i-state, we have 1
i
n = ), 

   
v(p

i
)  is a module 

of velocity of outgoing particle in the system of coordinates 

where colliding center does not move (which coincides with 

laboratory frame where the second particle does not move). 

Factor P is proportional to the element of the angle of the 

particle after its scattering as a result of photon emission and 

we shall call it as differential absolute probability (while 

value dW we shall call as the relative probability). 

 Velocity of the particle with finite mass is (for example, 

see § 21.4, p. 174 in Ref. [25] at c = 1): 

   
v =

c
2

p

E
, v =| v |=

c
2

p

E
.          (47) 

Taking into account, that the wave functions of the particle 

before and after the emission have not momentums pi and pf 

of this particle, but they have the wave vectors ki and kf, we 

rewrite eq. (47) so: 

   

v
i
=

c
2

k
i

E
i

.           (48) 

From here, we obtain equation of connection between differ-

ential relative and absolute probabilities: 

    

d P(
f
,

f
) =

dW (
f
,

f
)

n
i
v(k)

= dW (
f
,

f
)

E
i

c2 k
i

,       (49) 

and find the final expression for the differential absolute 

probability ( 1
i
n = ): 
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      (50) 

H. Multipolar Approach 

 Let us find the angular probability in eqs. (50) at the first 

values 
  
l

f
= 1  and 

  
l

ph
= 1 . Following eqs. (14), (32) and (15), 

we have: 
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d
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E
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   (51) 

 Using the found differential electric and magnetic com-

ponents (36): 

   

d
1

M
p
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3

8

1
J (1,1) sin2 cos ,

d
1

E
p
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= i

1

8

2
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1
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and the integral components (37): 
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7

10
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from eq. (51) we obtain: 
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       (52) 

                     
  

J (1,2) (1 3sin2 }sin2 .  

 Now we find the relative angular probability from eq. 

(43): 

   

dW
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f
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d
ph
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3

2
J (1,1) cos ) + h.e. } sin2  

and the absolute angular probability from eq. (50): 
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  (54) 
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I. Nucleus- -Particle Potential 

 Knowledge of the -nucleus interaction potential is a key 

for the analysis of various reactions between -particle and 

nuclei. The nucleus-nucleus interaction potential consists of 

both Coulomb repulsion and nuclear attraction parts. These 

two parts form a barrier at small distances between -

particle and nuclei. The Coulomb component of the potential 

is well-known. In contrast, the nuclear part of the potential is 

less well-defined. There are many different approaches to the 

nuclear part of the interaction potential between -particle 

and nuclei [29-39]. -decay [31, 33-35, 38] and various scat-

tering [29, 30, 32, 36, 37] data are used for evaluation of the 

-nucleus potential. Potentials [29-38, 32] evaluated for the 

same colliding system using different approaches differ con-

siderably, and it is difficult to describe various reaction data 

from many nuclei at energies deeply below and around the 

barrier by only one type of such a potential with a good ac-

curacy (e.g., the IAEA Reference Input Parameter Library 

[39]). 

 However, -decay half-lives depend strongly on the -

nucleus potential and they are used as a main test of the 

shape of the studied -nucleus potential for the -decay. At 

present, in two-body approach (for example, see Refs. [18, 

24, 40]), the found potential reproduces the measured half-

lives in a huge region of numbers Ad and Zd of the nuclei. 

But in several other papers [41-47], the alpha-decay half-

lives were calculated from more realistic potentials where 

the ratio between the experimental and calculated half-lives 

has been interpreted as preformation factor of the alpha-

particle in the decaying nucleus. By such approach, it be-

comes more suitable to describe properties of bound states 

[48]. Shapes of the barriers of such two types of the -

nucleus potential differ, and one hope that further study of 

the bremsstrahlung processes accompanying the -decay 

were allowed us to find the most suitable one. 

 But, at present stage, to describe the interaction between 

the -particle and the daughter nucleus the potentialhas been 

used in the following general form (see Refs. [22, 23]): 

  
V (r, , l,Q) = v

C
(r, ) + v

N
(r, ,Q) + v

l
(r),         (55) 

where the Coulomb ( )
C
v r, , nuclear ( )

N
v r Q, ,  and 

centrifugal ( )
l
v r  components are 

  

v
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2Ze
2

r
1+
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3 2
Y

20
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  (56) 

  

v
N

(r, ,Q) =
V ( A

d
,Z

d
,Q)

1+ exp
r r

m
( )

d

, v
l
(r) =

l (l +1)

2mr 2
.       (57) 

 For determination of parameters of the Coulomb and 

nuclear components An approach proposed in Ref. [18] has 

been used (see relations (14), (16)-(19) in this paper): 

  

V ( A
d
,Z

d
,Q) = (30.275 0.45838

1/3
Z

d
/ A

d
+

+ 58.270 I 0.24244Q),
      (58) 

  

R = R
p

(1+ 3.0909 / R
p

2 ) + 0.1243t,

R
p

= 1.24 A
d

1/3 (1+1.646 / A
d

0.191 I ),

t = I 0.4 A
d
/ ( A

d
+ 200),

d = 0.49290,

I = ( A
d

2Z
d
) / A

d
,

       (59) 

and: 

  

r
m

( ) = 1.5268 + R ( ),

R ( ) = R (1+
2
Y

20
( )).

         (60) 

Here, Q is the Q  -value for the -decay, R is the radius of 

the daughter nucleus, 
  
V ( A

d
,Z

d
,Q)  is the strength of the nu-

clear component, 
m
r  is the effective radius of the nuclear 

component, d is the parameter of the diffuseness, 
  
Y

20
( )  is 

the spherical harmonic function of the second order,  is the 

angle between the direction of the leaving -particle and the 

axis of the axial symmetry of the daughter nucleus, 
 2

 is the 

parameter of the quadruple deformation of the daughter nu-

cleus. Values of R, 
  
R ( ) , 

 
r

m
,  r ,  d  are used in fermi, 

whereas Q , 
  
V (r, , l,Q) , 

  
V ( A

d
,Z

d
,Q)  are used in MeV. 

III. CALCULATIONS AND ANALYSIS 

A. Bremsstrahlung Spectra for 
210

Po, 
214

Po and 
226

Ra: 

Comparison Theory and Experiments 

 With a purpose to estimate efficiency of the definition of the 

angular absolute probability of the photon emission and accu-

racy of the model, I shall calculate the spectra for the 
210

Po, 
214

Po and 
226

Ra nuclei has been calculated and compared with 

experimental data for these nuclei. Here, the bremsstrahlung 

probability was calculated by eq. (54) at   l = 0  in the calculation 

of 
  
p (w, ) . The angle  between the directions of the -

particle motion (with possible tunneling) and the photon emis-

sion is 90°. The nucleus- -particle potential is defined in eqs. 

(55)-(57), its parameters are defined in eqs. (58)-(60). Q  -value 

is +5.439 MeV for 
210

Po, +7.865 MeV for 
214

Po, +4.904 MeV 

for 
226

Ra, according to Ref. [24] (see p. 63). The best result in 

agreement between theory and experiment have been obtained 

for the 
214

Po nucleus (Fig. 1a), here there is no any normaliza-

tion of the calculated curve relatively experimental data). From 

the figure, one can see that for this nucleus, the calculated spec-

trum by the proposed approach is in enough good agreement 

with the experimental data [22] inside the region from 100 keV 

up to 750 keV. The calculated absolute probabilities of the 

bremsstrahlung in -decay of the 
210

Po and 
226

Ra nuclei and 

experimental data in Refs. [4] and [23] for these nuclei are pre-

sented in Fig. (1b, c). In both nuclei for low energies of the pho-

tons emitted, the calculated spectra are located below experi-

mental data, but for energies from 350 keV and higher, a good 

agreement has obtained between theory and experiment. 
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 Agreement between spectrum of the absolute 

bremsstrahlung probability calculated by the multipole 

model for the 
226

Ra nucleus (see solid red line 3 in Fig. (1)) 

and experimental data [23] for this nucleus (see scatter 1, in 

Fig. (1)) looks not so well as agreement between spectrum of 

the normalized bremsstrahlung probability calculated in Ref. 

[23] by another model (see dash-dot green line 2 in Fig. (1)) 

and the experimental data. But, in the angular description of 

the emission of photon during -decay the multipolar model 

looks the most accurate and motivated from the physical 

point of view among variety of different angular models and 

approaches. In particular, if in eq. (53), for the relative prob-

ability, and in eq. (54) for the absolute probability restricting 

ourselves by the first most important integral J(1,0) only in a 

comparison with other two integrals J(1,1) and J(1,2) then 

(without normalization constant) the spectrum in definition 

of the model in Ref. [23] has been obtained explicitely where 

expansion of the wave function of photons by spherical 

waves was used. As a result, applying such restriction and 

further normalization (which was used in Ref. [23]) by the 

multipolar model, spectrum 2 (see green dash-dot line, Fig. 

(1)) has been obtained exactly. Now a difference between 

old spectrum (see green dash-dot line 2, Fig. (1)) from Ref. 

[23] and new spectrum (see red solid line 3, Fig. (1)) ob-

tained by the multipolar model is explained by taking into 

account the non-zero magnetic components 
 
p

l
ph

M  in the total 

matrix element in eqs. (13) or (51) (J(1,2) is smaller than 

J(1,0) by 1-2 orders inside the energy region of the photons 

emitted from 50 keV up to 1 MeV practically). One can 

stress that in the angular study of the emission of photon the 

dipole approximation used by T. Papenbrock and G. F. 

Bertsch in Ref. [14] and by other researchers in further pa-

pers (for example, see Ref. [3, 5, 17]), which are based on 

such approximation, restricts the emission of photons to iso-

tropic (prove of this fact can be found in Appendix of Ref. 

[19]). The wave function f (r) of the -decaying system 

after the emission of photon has no any angular information 

about this photon. The angular integral in such dipole ap-

proach has no angular wave function of photons also. By 

other words, the dipole approach cannot give any useful in-

formation about angular distribution of the emission of pho-

tons. In particular, by such a reason attempts to explain a 

difference between experimental data [49] (obtained for the 

angle 90°) and experimental data [50, 51] (obtained for the 

angle 25°) by the different angle values on the basis of the 

dipole model has no sense (also see discussions in Refs. [52, 

53]). Such motivations confirm effectiveness of the multipo-

lar model in the calculations of the angular absolute prob-

ability, and the multipolar model has been used as needed, 

and perspective basis in further construction of unified for-

mula of the bremsstrahlung probability in the -decay are 

presented below. 

B. Formula of the Bremsstrahlung Probability in the -
Decay 

 Analyzing the Th isotopes, It was observed that trend of 

the bremsstrahlung spectrum depends on Q -value directly.  

 

 

 

 

Fig. (1). The bremsstrahlung probability in the -decay of the 
214

Po, 
210

Po and 
226

Ra nuclei: the absolute probability calculated by 

the multipolar model (red solid line), experimental data (scatter, 

data [22] for 
214

Po, data [4] for 
210

Po and data [23] for 
226

Ra) and 

curve calculated by formula (70) with (69) (dash blue line). De-

scription by the formula (70) with (69) can be improved further, if 

to pass from the linear dependence (64) of the probability on Ad and 
Zd to harmonic one. 

In Ref. [17], dependence of the bremsstrahlung probability 

on the electrical charge of the daughter nucleus was ana-

lyzed. Calculating the probability for nuclei with different 

mass numbers at the same charge, one can see that this prob-

ability depends rather on combination of numbers of protons  
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and neutrons of the nucleus than its electric charge (at the 

same Q ). So, The conclusion has been drawn on direct de-

pendence of the bremsstrahlung probability on the effective 

charge Zeff (at the first time) Formulas (2) confirm such de-

pendence explicitly. But it is interesting to know as to how 

much the bremsstrahlung depends on Q -value quantitatively 

and the most important other parameters of the -decay. It 

should be convenient to compose a unified formula, which 

calculates the bremsstrahlung probability in the -decay of 

arbitrary nucleus on the basis of all these parameters directly. 

But, whether is it possible to describe the bremsstrahlung 

spectra for all different nuclei by only one formula in gen-

eral? Whether is it possible to describe the bremsstrahlung 

spectrum for only one arbitrary nucleus with very high accu-

racy inside the energy region of the photon emitted used in 

experiments? 

 At present day, there are experimental data of the 

bremsstrahlung photons accompanying -decay for only four 

nuclei: 
210

Po, 
214

Po, 
226

Ra, 
244

Cm. Here, errors in experimen-

tal data for 
244

Cm to be larger, and therefore, three other nu-

clei 
210

Po, 
214

Po, and 
226

Ra are analyzed mainly in literature. 

By that reason, such supposed formula has been tried to con-

structed for the -decay of arbitrary nucleus, and then test it 

on the basis of the model, which as suppose should give the 

most reliable calculated spectra for arbitrary nucleus with 

arbitrary energy of -decay. As such a model, the multipole 

model is used, which is presented before. It is supposed that 

this model this model is the most accurate in calculations of 

the angular bremsstrahlung spectra in the -decay. This 

model has been tested on the basis of experimental data for 

the 
210

Po, 
214

Po, 
226

Ra nuclei. If some approximations were 

used then the results published previously were obtained by 

our group or by dipole approach (with normalization on the 

experimental data) and using corresponding shapes of the -

nucleus potential. 

 At first, let us restrict ourselves by only one nucleus and 

try to write such formula for it. After preliminary estimations 

of the spectra for different nuclei, the following form has 

been proposed: 

  

ln
dP
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4
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4
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d
ph
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= ln
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w
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4

w
n

4

,

       (61) 

where 
  
a

0
…a

4
 and 

  
n

1
…n

4
 are unknown constants which do 

not depend on energy of the photon emitted and are changed 

for the different nuclei. These constants reflect “structure” of 

the -decay for the studied nucleus. Therefore, they should 

depend on Q , Zeff, Zd and Ad of this nucleus. In further de-

termination of the unknown parameters 
  
a

0
…a

4
 and 

  
n

1
…n

4
, 

the angle f equal to 90° has been used. There are two rea-

sons for such a choice: (1) Experimental data [49, 52] are 

obtained at this angle. (2) The spectra should be maximal, 

and therefore, possible error in determination of 
  
a

0
…a

4
 and 

  
n

1
…n

4
 should be minimal. 

 With a purpose to find parameters 
  
a

0
…a

4
 
  
n

1
…n

4
 for the 

selected nucleus, the following characteristic are introduced: 
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i
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w
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w
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d
ph

d cos
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      (62) 

where dPmodel and dPparam are the bremsstrahlung probabili-

ties calculated by the multipolar model and by the formula 

(61), correspondingly. The  at selected set of parameters 

  
a

0
…a

4
 and 

  
n

1
…n

4
 is smaller, the curve dPparam obtained by 

formula (61) is closer to the spectrum dPmodel calculated by 

the multipolar model i.e. the most accurate description of the 

bremsstrahlung spectrum for the studied nucleus by formula 

(61) should be obtained at such choice of the parameters 

  
a

0
…a

4
 and 

  
n

1
…n

4
 when  is minimal. These parameters 

have been found requiring  being minimal. For conven-

ience, this approach has been called for determination of 

parameters for the selected nucleus as a method of minimiza-

tion. 

 In Ref. [54] (see p. D395), authors reported about ex-

perimental measurements of the bremsstrahlung accompany-

ing -decay of the 
228

Th nucleus and some perspectives. Of 

course, such experiments will be able to enlarge experimen-

tal data existed in this topic. With a purpose to reinforce such 

investigations, isotopes of this nucleus have been used in the 

first calculations. Thus, using the method of minimization, 

for the 
218

Th nucleus with Q-value equal to 9.881 MeV, the 

following values have been obtained (wmin = 50 keV and 

wmax = 900 keV are used; choice of the 
218

Th nucleus from 

different isotopes Th is made because it gives the best con-

vergence in calculations of the bremsstrahlung spectra by the 

multipolar model): 

  

n
1
= 1, n

2
= 0.5, n

3
= 1, n

4
= 2,

a
0
= 10.8, a

1
= 0.007, a

2
= 10, a

3
= 10, a

4
= 1.

      (63) 

 In Fig. (2a), comparison between the curve obtained by the 

formula (61) with parameters (63) (see dash-dot red line in this 

figure) and the spectrum calculated by the multipole model 

(see solid blue line in this figure) is presented. Here, one can 

see that agreement between such two lines looks extremely 

accurate up to 1 MeV! This confirms that the spectrum ob-

tained by formula (61) with parameters (63) is very close to 

the result obtained by the multipolar model for the -decay of 

the 
218

Th nucleus with Q-value 9.881 MeV. From here, it is 

concluded that the bremsstrahlung probability for arbitrary 
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one nucleus can be approximated by formula (61) with very 

high accuracy inside the energy region up to 1 MeV. Estima-

tions of parameters for other nuclei show that it is possible to 

describe the bremsstrahlung spectra with enough high accu-

racy for different nuclei using different values of the 
  
a

0
 and 

  
a

1
 parameters only, while the 

  
n

1
…n

4
 parameters and even the 

  
a

2
, 
  
a

3
, 
  
a

4
 parameters are fixed. 

 

Fig. (2). Comparison between the bremsstrahlung probability 

dPmodel for the 
218

Th nucleus calculated by the multipolar model 

(blue solid curve) and curve dPparam for this nucleus calculated by 

formula (70) with parameters (69) (red dash dot curve): (a) one can 

see that after minimization this curve describes the spectrum very 

accurately up to 1 MeV, (b) the difference between two spectra is 
presented in larger scale up to 150 keV. 

 This paper defines the 
  
n

1
…n

4
, 

  
a

2
, 

  
a

3
 and 

  
a

4
 parame-

ters for the different nuclei by eqs. (63). Let us find how 
  
a

0
 

and 
  
a

1
 can be described. Assuming dependence of 

  
a

0
 and 

  
a

1
 on Q, Ad and Zd to be linear, the following formula has 

been proposed: 

  

a
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(Q, A
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13
Z
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      (64) 

where new unknown parameters 
  
b

0i
 and 

  
b

1i
 (i = 0, 1, 2, 3) 

have been introduced and they do not depend on Q, Ad and 

Zd. Now a problem consists in finding of the unknown pa-

rameters 
  
b

0i
 and 

  
b

1i
. 

 The simplest way is to find 
  
b

01
 and 

  
b

11
. For the determi-

nation of the unknown parameters 
  
b

01
 and 

  
b

11
, a nucleus 

with two different Q-values is needed. Let us consider the 
228

Th nucleus. Two bremsstrahlung spectra has been calcu-

lated for this nucleus on the basis of the multipolar model at 

two different Q-values (I use: Q1 = 5.555 MeV, and Q2 = 10 

MeV), and then the 
  
a

0
 and 

  
a

1
 parameters (different for two 

Q-values) have been obtained using the method of minimiza-

tion above. Results of such calculations are presented in Ta-

ble 1, in the first two strings with numbers 1 and 2. Using 

data for this nucleus with such two Q-values, from eq. (64) 

one can write: 

  

a
0
(Q

1
) a

0
(Q

2
) = b
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(Q

1
Q

2
),

a
1
(Q

1
) a

1
(Q
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(Q

1
Q

2
).

 

 Dividing these equations on Q1 -Q2, we find: 

  

b
01
=

a
0
(Q

1
) a

0
(Q

2
)

Q
1

Q
2

, b
11
=

a
1
(Q

1
) a

1
(Q

2
)

Q
1

Q
2

.        (65) 

Thus, values for parameters b01, b11 have been obtained. 

 With a purpose to find the next four unknown parameters 

b02, b03, b12, b13, it needs to consider four different nuclei 

with the different Ad, Zd numbers at the same Q-value. One 

can suppose that accuracy in such calculations could be 

achieved as high as possible, if in addition to the previous 

nucleus two other nuclei with the largest difference between 

Ad and Zd were used. Let us use Table 1 in Ref. [24] where 

half-lives in the large region of -decaying nuclei are pre-

sented. From here 
106

Te and nucleus with Ap = 266, Zp = 109 

is selected. the bremsstrahlung spectra at Q -value equals to 

10 MeV has been calculated using the multipolar model, and 

then 
  
a

0
 and 

  
a

1
 has been found for them using the minimiza-

tion method. Results are presented in Table 1, in the next 

two strings with numbers 3 and 4. From eq. (64), we write: 
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and from here we find: 
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and then 

(a) 

(b) 
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b
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Q b
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13
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 Using data of Table 1, we calculate unknown 
  
b

0i
, 

  
b

1i
: 

  

b
00
= 4.60202, b

10
= 0.0204108,

b
01
= 0.22497, b

11
= 0.0019123,

b
02
= 0.11956, b

12
= 1.086956 10

6
,

b
03
= 0.25492, b

13
= 6.0068649 10

5
.

       (68) 

So, we have found the following dependence of 
  
a

0
 and 

  
a

1
 

on Q, Ad and Zd (Q is used in MeV) have been found: 
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and the bremsstrahlung formula (61) has transformed into 

such: 
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 For 4 studied nuclei, the difference between the values of 

  
a

0

(min)
 and 

  
a

1

(min)
 parameters has been obtained by the method 

of minimization, and the values of the 
  
a

0

(param)
 and 

  
a

1

(param)
 

parameters calculated by formula (70) less then 1 percent. 
i.e. we have described the bremsstrahlung spectra inside the 
energy region up to 1 MeV for four different nuclei (with 
such long maximal distance between their numbers Ad) with 
very good accuracy by only one, this formula with parame-
ters calculated only on the basis of values Ad, Zd, Q . But, 
unfortunately, it turns out that description of the 
bremsstrahlung spectra for all nuclei inside region Ad = 

107..262 at different Zd by the formula (70) with parameters 
(69) is not such good as expected before (maximal error in 
estimation of the probability is about half of order). How-

ever, one can improve such approximation essentially for the 
“problem” nuclei, if to pass from the linear dependence (64) 
of the bremsstrahlung probability on the Ad and Zd values to 
harmonic one (Fig. 3). 

 

Fig. (3). Harmonic dependence of the bremsstrahlung probability 

dPmodel on different Ad and Zd values of the nucleus under decay, 

calculated on the basis of the proposed multipolar model at the 
same energy of the photon emitted equal to 500 keV. 

IV. CONCLUSIONS 

 The improved multipolar model of the bremsstrahlung ac-
companying the -decay is presented in the paper. The angular 
formalism of calculations of the matrix elements is stated in de-
tails. Effectiveness of the developed formalism of the model and 
accuracy of the calculations of the bremsstrahlung spectra are 
analyzed in their comparison with experimental data for the 
210

Po, 
214

Po and 
226

Ra nuclei. Here, note the following. 

• The best result has been obtained in agreement be-
tween the calculated absolute probability of the 
bremsstrahlung emission for the 

214
Po nucleus and the 

newest experimental data [22] for this nucleus inside 
the region of photons energies from 100 keV up to 
750 keV (Fig. 1a), Q  = +7.865 MeV, the angle  be-
tween the directions of the -particle motion and the 
photon emission is used 90°). 

Table 1. Parameters 
  
a

0
 and 

  
a

1
 for 

228
Th, 

106
Te and Nucleus with Ad = 266 and Zd = 109 (

  
a

0

(min)
 and 

  
a

1

(min)
 are Parameters Calcu-

lated by Method of Minimization, 
  
a

0

(param)
 and 

  
a

1

(param)
 are Parameters Calculated by Formula (70)) 

 

-Decay Data Parameters 

No. Ad 
 
A

d

1/3
 Zd Zeff Q , MeV 

  
a

0

(min)
 

  
a

0

(param)
 

  
a

1

(min)
 

  
a

1

(param)
 

1 224 6.073177 88 0.42105 5.555 10.2 10.20083 0.0154 0.01531749 

2 224 6.073177 88 0.42105 10.0 11.2 11.20020 0.0069 0.00681732 

3 102 4.672328 50 0.03774 10.0 6.3 6.30084 0.00475 0.00440210 

4 262 6.398827 107 0.36090 10.0 10.9 10.90000 0.008 0.00799993 
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• The calculated absolute probabilities of the 
bremsstrahlung emission in -decay of the 

210
Po and 

226
Ra nuclei for low energies of the photons emitted are 

located below experimental data [4] and [23], but for the 
energies from 350 keV and higher a good agreement be-
tween the model and the experiment has been obtained 
(Fig. 1b) and (c), Q  = +5.439 MeV for 

210
Po and Q  = 

+4.904 MeV for 
226

Ra,  = 90°). 

• At the first time, the unified formula of the 
bremsstrahlung probability during the -decay of the 
arbitrary nucleus, defined directly on the Q -value and 
numbers Ad, Zd of protons and neutrons of this nucleus, 
has been constructed. Inside the region of the -active 
nuclei from 

106
Te up to the nucleus with numbers of 

nucleons and protons Ad = 262 and Zd = 102 (this region 
is taken from [24]) with energy of the photons emitted 
from 50 keV up to 900 keV a good agreement has been 
achieved between the spectra, obtained on the basis of 
the multipolar model (where duration of calculations 
for one selected nucleus is up to 1 day), and the 
bremsstrahlung spectra obtained on the basis of the 
proposed formula (where duration of calculations is 
about some seconds using the same computer). 

 This formula can be useful for quick estimation of the 
bremsstrahlung probability during the -decay of any inter-
esting nucleus (without a necessity to study enough compli-
cated quantum models and variety of approximations, to 
realize enough laborious numerical algorithms of computer 

calculations of the bremsstrahlung spectra with resolution of 
divergence problem). 
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APPENDIX A: CLEBSCH-GORDAN COEFFICIENTS 

 Definition of Clebsch-Gordan coefficients has been used, according to Table 1 in Ref. [27] (see p. 317). These coefficients 

at 
  
j
b
= 1  and 

  
m

b
= ±1  are presented in Table 2. Using this Table, I find: 

 

(011 |2, 1,1) = 0, (111 |2, 1,1) = 0, (211 |2, 1,1) =
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Table 2. Clebsch-Gordan Coefficients at 
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APPENDIX B: CALCULATION OF THE INTEGRAL IN EQ. (25) AND SELECTION RULES IN EQS. (26) 

 Let us find the integral in the left part of eq. (25). Taking into account different variants of definition of the spherical func-

tions 
  
Y

lm
( , ) , they are defined according to Ref. [26] (see p. 119, (28,7)-(28,8)): 
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where 
  
P

l

m (cos )  are Legandres polinomials. Now we rewrite the angular integral in eq. (25) so: 
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 This integral over  is non-zero only at fulfillment the following condition: 

 
m

f
= μ .                     (B3) 

 Taking into account 
 
μ = ±1 , we obtain the following restrictions on possible values of mf and lf : 

  
m

f
= μ = ±1, l

f
1,                     (B4) 

and also 

  
n μ μ ' = m

f
+ μ '                     (B5) 

 On such a basis we calculate integral (B2): 
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 So, we have just obtained the right part of eq. (25). 
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APPENDIX C: COEFFICIENTS 
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 We define the coefficient 
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At  l
  f
= 1 , 

  
l

ph
= 1  and   n = 0  we have: 

  
m = μ ' = ±1                      (C2) 

and the coefficient 
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l
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l
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mμ '  is: 

  
C

110

mμ '
=

3

64
(011 | 0,μ ', m).                   (C3) 

 At 
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= 1  and   n = 1 , the property (C2) is fulfilled and we obtain: 
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 At 
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= 1  and   n = 2 , the property (C2) is not fulfilled and 
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 Rewrite these coefficients at different   m = ±1  and 
 
μ ' = ±1 : 
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 Substituting here values (A1) for the Clebsh-Gordan coefficients, we find: 
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