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Abstract: The density-dependent interrelations among properties of nuclear matter and hyperonic neutron stars are 
studied by applying the conserving nonlinear mean-field theory of hadrons. The nonlinear interactions that will be 
renormalized as effective coupling constants, effective masses and sources of equations of motion are constructed self-
consistently by maintaining thermodynamic consistency (the Hugenholtz-Van Hove theorem, conditions of conserving 
approximations) to the nonlinear mean-field (Hartree) approximation. The characteristic density-dependent properties 
among nuclear matter and hyperonic neutron stars appear by way of effective coupling constants and masses of hadrons; 
they are mutually interdependent and self-consistently constrained via the bulk properties of infinite matter, such as 
incompressibility, 

 

K , symmetry energy, α4, and maximum masses of neutron stars. Consequently, the density-
dependence induced by nonlinear interactions of hadrons will determine and restrict the saturation properties (binding 
energy and density) of hyperons, hyperon-onset density and equation of state in high densities. 

The nonlinear hadronic mean-field and quark-based hadronic models will predict essentially different density-dependent 
behavior for hadrons in terms of effective masses and coupling constants, and discrepancies between the models are 
shown and discussed, which would improve and compensate for both approaches to nuclear physics. 
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1. INTRODUCTION 

 The relativistic linear 

 

! -

 

!  mean-field approximation of 
hadrons has been applied to finite and infinite nuclear matter 
system [1-3], and it is successful for simulations and 
descriptions of nuclear and high-density hadronic 
phenomena. As extensions of the linear 

 

! -

 

!  mean-field 
theory, nonlinear mean-field approximations and nonlinear 
chiral models [4-8] have been applied to examine nuclear 
and high-density phenomena quantitatively. The nonlinear 
mixing and self interactions of mesons, nonlinear vertex 
interactions can be understood as many-body effects and are 
renormalized as effective masses, effective coupling 
constants and density-sources in the renormalizable mean-
field models, which is one of the important results obtained 
from the conserving nonlinear mean-field approximation  
[9, 10]. 

 The theory of conserving approximations discusses self-
consistent approximations that maintain thermo- 
dynamic consistency to microscopically constructed appro- 
ximations, and it has been applied to diverse fields of many-
body theories, relativistic field theoretical approach  
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for finite nuclei and infinite nuclear matter [11-15]. The 
theory is based on the fundamental requirement of the 
Landau's quasiparticle theory [16, 17], which is expressed  
as:  

µ =
!"
!#

B

= E(k
F
) .      (1.1) 

where 

 

µ  is the chemical potential; ! and !
B

 are energy 
density and particle density; 

 

E(k
F
)  is the single particle 

energy at the Fermi surface (Fermi energy). The requirement 
(1.1) together with Feynman diagrams that maintain  
certain symmetries, self-consistent relations between 
equations of motion and self-energies will determine self-
consistent effective masses, effective coupling constants for 
nonlinear mean-field approximations [9]. The density 
functional theory is equivalent to the theory of conserving 
approximations [15], which is also based on the relation 
(1.1) [18, 19]. 

 The nonlinear 

 

! -

 

! -

 

!  mean-field lagrangian is 
renormalizable and has several parameters: coupling 
constants and masses of hadrons. The determination of 
coupling constants is essential for nonlinear mean-field 
lagrangians to extract physically meaningful results. Hence, 
it is imperative to have conditions to fix or confine 
parameters by way of theoretical and experimental  
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requirements. The coupling constants of the current 

conserving nonlinear - -  mean-field approximation are 

confined with experimental data: the binding energy at 

saturation density ( 15.75 MeV, k
F

= 1.30  fm
-1

), symmetry 

energy (
  
a4  30.0  MeV) and the maximum mass of neutron 

stars ( M max = 2.00  M ). With these empirical data as 

constraints, the lower bound of incompressibility is 

simultaneously searched by adjusting nonlinear coupling 

constants. Since the nonlinear interactions are interrelated by 

conditions of thermodynamic consistency, the nonlinear 

coupling constants are not free to adjust. One can examine 

that nonlinear coupling constants are confined by searching 

the lower bound of incompressibility and maintaining the 

empirical constraints, which results in obtaining the upper 

bounds of nonlinear coupling constants. 

 The constraints will emerge as density-dependent 

correlations among physical quantities in nuclear matter, 

hyperonic matter and neutron stars, such as binding energy, 

effective masses of hadrons, incompressibility, symmetry 

energy and maximum mass of neutron stars. The self-

consistent conserving approximation exhibits that the 

effective masses, effective coupling constants and other 

observables are strictly interrelated by way of density-

dependent interactions. Although the admissible upper 

bound values of nonlinear coupling constants seem to be 

large, corrections to coupling constants and masses of 

hadrons become small as long as conditions of 

thermodynamic consistency are maintained; the nonlinear 

corrections seem to be properly truncated, which can  

be checked numerically. The properties of nonlinear 

corrections to effective masses and coupling constants  

would be an example of naturalness in the level of self-

consistent mean-field approximations; naturalness and 

truncations of nonlinear corrections to physical quantities 

could be appropriately controlled and defined with 

thermodynamic consistency. This is an important result 

derived in the conserving nonlinear mean-field appro- 

ximation [10]. 

 As the binding energy of symmetric nuclear matter  

(fixed as 15.75 MeV at k
F

= 1.30  fm
-1

 or, 
0

= 0.148  

fm
-3

 in the current calculation) is important to study 

interactions of nucleons, the binding energy and density of 

hyperon matter are also essential to study interactions of 

hadrons. Since density-dependent interactions interconnect 

dynamical quantities of nucleons with those of hyperons, 

such as single particle energy, self-energy and effective 

masses of hyperons, the determination of physical  

quantities in symmetric nuclear matter simultaneously 

determine properties of binding energy and saturation, 

effective masses of hyperons. For example, neutron stars  

are expected to be composed of baryons, and the  

baryonic matter has been investigated by starting from 

symmetric nuclear matter through the process of general -

equilibrium phase transitions, such as ( n, p )-( n, p,e)-

( n, p, ,e) phase transitions [20]. The onset density of   

in the phase transition, ( n, p,e)-( n, p, ,e), depends on 

density-dependent effective masses and coupling constants, 

whose equation of state is delimited as M max = 2.00 M  for 

the current calculation. Hence, nucleon-nucleon interactions 

simultaneously determine the onset density, effective masses 

and binding energy of hyperons. 

 Since the onset density of a hyperon depends on hadronic 

interactions and self-consistent single particle energies, it is 

important to investigate interactions of NY  and YY , the 

order of onset of hyperons in symmetric nuclear matter and 

isospin asymmetric matter. For example, the determination 

of the order of the onset of  and  in isospin asymmetric 

( n, p,e) matter, either ( n, p,e)-( n, p, ,e) or ( n, p,e)-

( n, p, ,e), has important information on interactions of 

nucleons as well as binding energy and saturation of 

hyperons, effective masses, coupling constants and the 

maximum mass of neutron stars. Therefore, it is imperative 

to determine the order of onset of hyperons,  and , to 

check which hyperons could be energetically sensitive to be 

produced. This helps us understand the relation of self-

consistency, charge neutrality and binding energy for nuclear 

and hyperonic matter. 

 The phase-transition conditions given by chemical 

potentials of hadrons and charge neutrality determine the 

onset-density of a hyperon, but the density will be altered 

when other hyperons are produced together. For example,  

is produced at 
  
k

F
 1.7  fm

-1
 when it is produced as the 

phase transition: ( n, p,e)-( n, p, ,e). However, if  is 

produced along with  as ( n, p,e)-( n, p, ,e )-

( n, p, , ,e ), the onset-density of  is pushed up to a 

higher density: 
  
k

F
 2.4  fm

-1
. Similarly, the onset density of 

 appears at 
  
k

F
 1.6  fm

1
 when it is produced in the 

phase transition: ( n, p,e)-( n, p, ,e ). However, if the 

hyperonic matter changes through the phase transition 

( n, p,e)-( n, p, ,e)-( n, p, , ,e ), the onset-density of  

is pushed up to a higher density: 
  
k

F
 2.4  fm

-1
. The  

same phenomena are observed with other hyperons, and 

generally the onset-density of a hyperon is pushed up  

to a higher density [20]. We denote the phenomenon as  

the push-up of a hyperon onset-density in many-fold hyperon 

generations. 

 The push-up of the hyperon onset-density can be 

understood from the concept of Fermi energy in the theory  

of Fermi-liquid [16, 17]. The phase transition ( n, p,e)-

( n, p, ,e)-( n, p, , ,e ) indicates the generation of the 

single particle energies, En (k
F
) , Ep (k

F
) , E (k

F
)  and 

E (k
F
) , respectively. The nucleon single-particle energies 

of ( n, p,e), En (k
F
)  and Ep (k

F
) , are redistributed to 

( n, p, ) in the phase ( n, p, ,e) to maintain phase 

conditions; hence, the respective single particle energies 

develop slowly, resulting in a softer equation of state and 

incompressibility. This fact exhibits that the phase transition, 

( n, p,e)-( n, p, ,e), requires a higher energy, which results 

in the phase-transition at a higher density. The phase 
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transitions and variations of single particle energies are 

perceived as discontinuous changes of physical quantities, 

such as effective masses of baryons, incompressibility, K , 

and symmetry energy, a4 , in high densities. The 

redistribution of single particle energies at the phase 

transition can be examined numerically with chemical 

potentials ( μn , μ p , μ , μ ). It is also checked with the 

fact that the equation of state (EOS) is discontinuously 

softened when hyperons are produced. Because of the push-

up phenomena of the hyperon onset density, the hyperons 

relevant to determine the maximum mass of neutron stars are 

mainly  and . The similar results are discussed in  

the nonrelativistic Brueckner-Hartree-Fock calculations [21, 

22]. 

 The single particle energies are important to study 

saturation and self-boundedness of binding energies of 

hyperons. It is found in the nonlinear - -  self-consistent 

approximation that binding energy of hyperons will exhibit 

essentially different properties according to coupling 

constants and density dependence. The binding energies of 

 produced by self-consistent effective masses, coupling 

constants of nucleons and maximum masses of neutron stars, 

Mmax = 2.50  M  and M max = 2.00 M , are compared with 

coupling constants required by the SU(6) quark model for 

the vector coupling constants [23, 24]. The coupling 

constants expected from the nonlinear mean-field 

approximation will produce the binding energy of  which 

is bounded and saturates at a high density (the potential of 

V  is attractive). On the contrary, the coupling constants 

required by the SU(6) quark model generate positive binding 

energy in all densities, which shows that the potential of  

is repulsive in all densities; the result contradicts with the 

experimental values, 
 
V = 28 30  MeV. This may be a 

discrepancy between the prediction of hadronic and quark-

based models. 

 The many-body system of nuclear physics is the system 

of strong interaction of hadrons and composite particles of 

quarks and gluons. The hadronic models would be simple 

and consistent for nuclear phenomena in low-density region, 

whereas the effective quark models [25-29] should be 

consistent for high-density region. If calculations and 

predictions to nuclear physics from both models agree 

independently, we could obtain rigorous physical 

understanding for nuclear phenomena; both approaches 

could support and compensate each other to comprehend 

complex many-body physics in terms of each energy region 

of expertise. However, if there are certain discrepancies to 

nuclear physics from both approaches, it should be revealed 

as much as possible to understand properties of both models 

for nuclear physics. In the conserving mean-field 

approximation of hadrons, it is shown that the coupling 

constants of hyperons are expected to be 
 
g H / g N 1  and 

~> , whereas effective quark models require 

smaller values of coupling constant of hyperons, 

g H /g N = 2/3, ( H = , ). The values of coupling 

constant, 
 
g H / g N 1 , or g H /g N = 2/3 lead to essentially 

different results in terms of density-dependent interactions. 

The hadronic and effective quark models of hadrons seem to 

give distinct results for some physical quantities of nuclear 

matter [20]. The results will be discussed in the sec. 5 and 

remarks are in the sec. 6. The symmetric nuclear matter and 

hyperonic matter are very interesting to analyze theoretically 

and experimentally for both hadronic and effective quark-

based approaches to nuclear physics.   

2. THE CONSERVING NONLINEAR - -   
MEAN-FIELD APPROXIMATION 

 The nonlinear - -  lagrangian with nonlinear vertex 

interactions is defined by  

where VμV
μ = V0

2 V2  (μ = 0,1,2,3) . The neutral and 

charged vector meson field strengths are given by 

Fμ = μV Vμ
 and Lμ = μR Rμ g Rμ R , 

respectively. The fields, B  (
  B = n, p, , , ) and l  

( l = e ,μ ), denote the field of baryons and leptons. The 

nonlinear vertex interactions are introduced with the scalar 

field  in order to maintain Lorentz-covariance, 

thermodynamic consistency in a simple form. The coupling 

constants for nonlinear interactions of mesons and vertex 

interactions will be confined by self-consistency, saturation 

properties of symmetric nuclear matter (binding energy and 

density, symmetry energy) and the maximum mass of 

neutron stars ( M max = 2.00 
 
M in the present calculation). 

 L =  

B
B[i μ

μ g B μV
μ

g B

2 μ Rμ (M B g B )] B                        

           +
1

2
( μ

μ m2 2 )
g 3

3!
3 g 4

4!
4

                          

           
1

2
( μ

μ m2 2 )
g 3

3!
3 g 4

4!
4

                      (2.1) 

           
1

4
Lμ Lμ

+
1

2
m2Rμ Rμ

+
g 4

4!
(Rμ Rμ )2

+
g

4
2Rμ Rμ

+
g

4
V V (Rμ Rμ )                      

           +
l

l (i μ

μ ml ) l ,                          
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 The nonlinear - -  mean-field lagrangian, LNMF , with 

density-dependent effective masses and coupling constants is 

defined by  

 The lagrangian yields the nonlinear - -  Hartree 

approximation when direct interactions are properly 

renormalized, which is denoted as NHA [10]. The meson-

fields operators are replaced by expectation values in the 

ground state: 0  for the -field, V0 for the vector-isoscalar 

-meson. The neutral -meson mean-field, R0 , is chosen 

for 3 -direction in isospin space. The masses in (2.2)  

are: M = 939 MeV, m = 550  MeV, m = 783  MeV  

and m = 770  MeV, in order to compare the effects of 

nonlinear and density-dependent interactions with those of 

the linear -  approximation discussed by Serot and 

Walecka [1]. 

 The nonlinear model is motivated by preserving  

the structure of Serot and Walecka's linear -  mean- 

field approximation [1], Lorentz-invariance and renor- 

malizability, thermodynamic consistency, that is, Landau's 

hypothesis of quasiparticles [16, 17], the Hugenholtz-Van 

Hove theorem [30], the virial theorem [31], and conditions 

of conserving approximations [9-12]. The concepts of 

effective masses and effective coupling constants are 

naturally generated by nonlinear interactions of mesons and 

baryons. The conditions of conserving approximations will 

require self-consistent relations among single particle 

energy, effective masses and coupling constants, and then, 

empirical values of low-density nuclear matter and high-

density neutron matter will be restricted with the effective 

masses and coupling constants [9]. The admissible values of 

effective coupling constants and masses are confined in 

certain values due to strong density-dependent correlations 

among physical quantities of nuclear matter and neutron 

stars. The purpose of the analysis is to study density-

dependent correlations among properties of symmetric 

nuclear matter, hyperonic matter and neutron stars with the 

minimum constraints at nuclear matter saturation and the 

maximum masses of hyperonic neutron stars. 

 The density-dependent, effective coupling constants  

are induced by -field, preserving Lorentz-invariance  

and thermodynamic consistency as simple as possible, which 

is discussed in detail and listed here for convenience [9].  

We have assumed that only nucleon-meson coupling 

constants are density-dependent in the current analysis since 

we are interested in the density-correlations produced by 

interactions of symmetric nuclear matter. The density-

dependent nucleon-meson coupling constants that maintain 

thermodynamic consistency are defined by,  

g N = g N + (g N /2m ) 0 ,

g N = g N + g N 0/m ,

g N /2 = g N /2 + g N 0/m .
      (2.3) 

 The effective masses of mesons compatible with  

the effective coupling constants (2.3) are required to  

be:  

 Since the effective masses of mesons and coupling 

constants depend on fields, it is clearly seen that they are 

density-dependent through the scalar field 0  and have to be 

determined self-consistently. Note that the effective mass 

depends on the ( n, p ) scalar source of nucleons, sN . The 

nonlinear mean-field approximation is thermodynamically 

consistent only if effective masses of mesons and coupling 

constants are renormalized as (2.3) and (2.4). 

 The introduction of nonlinear N -vertex interac- 

tion is equivalent to define the effective mass of nucleon  

as,  

 
L

NMF
=      

B
B[i μ

μ g B 0V0

g B

2 0 3R0 (M B g B 0 )] B                        

                    
1

2
m2

0
2 ,

g 3

3! 0
3 g 4

4! 0
4

+
1

2
m2V0

2
+

g 4

4!
V0

4
+

g

4 0
2V0

2
                  (2.2) 

                    +
1

2
m2R0

2
+

g 4

4!
R0

4
+

g

4 0
2R0

2
+

g

4
V0

2R0
2
+

l
l (i μ

μ ml ) l .                       

m 2 = m2 (1+
g 3

2m2 0 +
g 4

3!m2 0
2 g

2m2 V0
2

g

2m2 R0
2 g N

2m3 sN ) ,

m 2 = m2 (1+
g 4

3!m2 V0
2

+
g

2m2 0
2

+
g

2m2 R0
2 ) ,

m 2 = m2 (1+
g 4

3!m2 R0
2

+
g

2m2 0
2

+
g

2m2 V0
2 ) .

                (2.4) 
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 Since the effective mass of hyperon H  is defined by,  

M H = M H g H 0 ,        (2.6) 

the effective masses of nucleons and hyperons are obtained 

from (2.5) and (2.6):  

M H M H =
g H

g N

(M N M N ) .        (2.7) 

 The total scalar source is obtained by the requirement of 

self-consistency:  

s = N
s

+ H
s =

g N
2

m 2 ( sN + sH ) ,       (2.8) 

and the scalar sources of nucleons ( N ) and hyperons ( H ) 

are respectively given by [19, 20] 

N
s = i

g N

m 2

d 4q

(2 )4 Tr

{(g N g NV0
0 / m g N R0

0
3 / m )G

D
(q)} =

g N
2

m 2 sN ,

   (2.9) 

where sN  is the modified scalar density defined by 

g N sN = g N sN g NV0 B /m g N R0 3/m ; GD (q)  is 

Green's function of baryons [1]. The hyperon sources  

are  

H
s =

g N
2

m 2

H

g H /g N
2 0

kFH dqq2 M H

EH (q)
=

g N
2

m 2 sH .      (2.10) 

where kFH
 is the Fermi-momentum of the hyperon H , and 

EH (k) = (k 2
+ M H

2)1/2. The sum is performed to baryons,  

and N  is used to denote proton and neutron: N = (p,n) ;  

the hyperons are denoted as, 
  H = , , 0, + , . The 

hyperon coupling constants are not density-dependent in  

the current investigation; however, the contributions of 

hyperon coupling constants are effectively modified as 

g H /g N . 

 The -meson and -meson contributions to the self-

energy are given by  

  

μ =
g N

2

m 2 μ ,0 and
(n
p )

μ =
g N

2

4m 2 3 μ ,0 ,     (2.11) 

where the isoscalar density, , is given by  

= p + n +

H

rHN H ,                   (2.12) 

and the density-dependent ratios of hyperon-nucleon 

coupling constants on -meson, rHN , are defined self-

consistently which will be explained in the next section. The 

self-energies, p
μ

 and n
μ

, are briefly denoted  

as 
(n
p )

μ ; the isovector density is denoted as 

3 = (kFp

3 kFn

3 )/3 2
 where the Fermi momentum kFp

 is for 

proton and kFn
 for neutron. The baryon-isovector density, 

3B , and the ratios of sigma-nucleon coupling constants on 

-meson are also defined; for example, 3B = 3 + r N 3 , 

where r N = g /g N  and 3 =
+

. 

 The energy density, pressure of isospin-asymmetric and 

charge-neutral nuclear matter are calculated by way of the 

energy-momentum tensor as:  

where kFB
 is the Fermi-momentum for baryons. One can 

check that the thermodynamic relations, such as 

NHA
+ p

NHA
=

B
En (kFn

)  and the chemical potential, 

μ =
NHA

/
B

= En (kFn
) = E (kFn

) 0 (kFn
) , are exactly 

satisfied for a given baryon density, B = 2kF

3/3 2 .  

One should note that the chemical potentials and self-

energies depend on effective masses and coupling constants 

when thermodynamic consistency is to be checked. 

 The conditions of thermodynamic consistency of 

propagators, self-energies and energy density with effective 

masses of hadrons ( M N , m , m , m ) and effective 

coupling constants ( g , g , g ) can be directly proved  

[9-12]. The functional derivative of energy density, 

NHA
( 0 ,V0 , R0 ,ni ) , with respect to the baryon number 

distribution, ni , is given by:  

 

M N = M N g N 0 = M N g N 0 (g N / 2m ) 0
2 .                   (2.5) 

NHA
=

B

1
2 0

kFBdkk2EB (k) +
m2

2 0
2
+

g 3

3! 0
3
+

g 4

4! 0
4 m2

2
V0

2 g 4

4!
V0

4 g

4 0
2V0

2

(
m2

2
+

g 4

4!
R0

2
+

g

4 0
2
+

g

4
V0

2 )R0
2
+

l=e ,μ

1
2 0

kFldkk2El (k) ,

             (2.13) 

p
NHA

=
1

3 2
B

0

kFBdk
k 4

EB (k)

m2

2 0
2 g 3

3! 0
3 g 4

4! 0
4
+

m2

2
V0

2
+

g 4

4!
V0

4
+

g

4 0
2V0

2

+(
m2

2
+

g 4

4!
R0

2
+

g

4 0
2
+

g

4
V0

2 )R0
2
+

l=e ,μ

1

3 2 0

kFldk
k 4

El (k)
,

             (2.14) 
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 Thermodynamic consistency requires: NHA

0

= 0 , 

NHA

V0

= 0  and NHA

R0

= 0  [9]. The conditions independently 

generate meson equations of motion and determine self-

energies of the approximation. The self-energies calculated 

by propagators and the condition of conserving 

approximations become equivalent, only if the effective 

masses and effective coupling constants of mesons and 

coupling constants are given by (2.3) and (2.4). The 

nonlinear mean-field approximation becomes thermo- 

dynamically consistent, relativistic, field-theoretical appro- 

ximation with the effective masses of mesons and coupling 

constants. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). The binding energies of ( n, p,e ) and ( n, p, ,e).  

The onset density of  is about kF = 1.6  fm
-1

. The ratios  

of -coupling constants, r
N

= g / g N = 1.0  (dotted line), 

r
N

= 2 / 3  (dashed line) and r
N

= 1 / 3  (dash-dotted line), are used 

respectively. The other coupling constants are fixed as in the Table 
1.  

3. THE PHASE TRANSITIONS FROM ( n, p,e ) TO 
( n, p,H ,e ) 

 The current nonlinear - -  mean-field approximation 

has several coupling constants whose values are not 

determined at the outset; however, with given experimental 

values of nuclear matter at saturation and the maximum mass 

of neutron stars at high density, adjusting coupling constants 

for searching the lower bound of incompressibility can 

delimit the values of coupling constants. One should be 

careful that if a parameter is changed, it affects saturation 

density and energy, incompressibility, symmetry energy and 

maximum mass of neutron stars. 

 The numerical procedure to determine nonlinear 

parameters is as follows. First, all nonlinear parameters have 

to be adjusted to produce constraints at saturation searching 

for the minimum value of incompressibility. Second, one has 

to produce EOS at high-density hyperonic matter in order to 

calculate the maximum mass of neutron stars. Note the (n, p, 

e)-(n, p, H ,e) phase transition (the first-order phase 

transition is assumed) when EOS is linked to TOV equation 

to calculate the mass of neutron stars. If the EOS does not 

produce the required maximum mass of neutron stars 

( M max = 2.00 M ), one has to adjust parameters to produce 

the maximum mass, and then, go back to nuclear matter to 

adjust constraints at saturation searching for the minimum 

value of incompressibility. Again, one has to produce EOS 

and calculate the maximum mass of neutron stars until both 

constraints should be satisfied. The upper bound of nonlinear 

parameters and the minimum value of incompressibility are 

found in the iterative process. One should be careful that 

thermodynamic consistency to one's approximation is 

essential to obtain the convergence of the numerical 

procedure. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The binding energies of ( n, p, e ) and ( n, p, , e ). The 

onset density of  is about kF = 1.7  fm
-1

. The ratios of -

coupling constants r N = g / g N = 1.0  (dotted line), r N = 2 / 3  

(dashed line) and r N = 1 / 3  (dash-dotted line), are used 

respectively.  

 In Figs. (1) and (2), the binding energies of ( n, p,e )-

( n, p, ,e) and ( n, p,e )-( n, p, ,e ) matter are shown. By 

comparing binding energies of phase-transitions from 

( n, p,e ) to ( n, p,H ,e ) matter, it is clearly examined that the 

equation of state (EOS) becomes softer when a hyperon, H , 

is produced. Note that the hyperon-coupling ratios are 

defined by ( r
N

= g /g N , r
N

= g /g N ) and 

( r N = g /g N , r N = g /g N ), respectively. The binding 

energies of hyperons with different coupling ratios, 

r
N

=1.0,2/3,1/3, exhibit almost the same results and 

produce similar maximum masses of neutron stars. The 

ratios, rHN  and rHN , are related to each other and will be 

explained in detail in sec. 4. 

NHA

ni

= E(ki ) +

i

( NHA

0

0

ni

+
NHA

V0

V0

ni

+
NHA

R0

R0

ni

) .                 (2.15) 
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 The phase transition begins at 
 

kF 1.6  fm
-1

 and 

 

kF 1.7  fm
-1

 respectively; the onset densities are almost 

fixed, even if the given ratios of coupling constants are 

changed as rHN =1,2/3,1/3, and the results are similar to 

those in the ref. [20]. The properties of nuclear matter and 

EOS of neutron stars are sensitive to density-dependent 

interactions, but the hyperon-onset densities of  and  

are not so sensitive, which should be experimentally checked 

if the onset densities of  and  are almost fixed in 

symmetric nuclear matter. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The effective masses of N and . Note that  

the effective mass of hyperon shows M /
 

M 1  when 

r
N

= 2 / 3 , r
N

= 1 / 3 . The smaller coupling ratios mean less 

density-dependent interactions for the hyperon.  

 The nonlinear coupling constants in the Table 1, g 4 , 

g 4 , g , | g | , | g | , | g N |, g N  and g N , should be 

understood as the upper limit to be consistent with binding 

energy at saturation ( 15.75 MeV at kF =1.30  fm
-1

), 

a4 = 30.0  MeV and M max = 2.00 
  
M

e
. The effective masses 

of hadrons are M N /M < 0.84 , m /m < 1.06 , m /m < 1.02  

at saturation, but incompressibility is the lower bound, 

K > 256 MeV, as explained in the section 2. One can vary 

the combinations of the values of nonlinear coupling 

constants so that constraints are satisfied, but the results will 

be M N /M < 0.84 , m /m < 1.06 , m /m < 1.02 , and 

K > 256 MeV, at nuclear matter saturation density. Note 

that g 4  is an exception and exhibits almost no effect in the 

numerical calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The effective masses of N and . Note that the effective 

mass of hyperon shows M /
 
M 1  when r N = 2/3, r N =1/3. 

The smaller coupling ratios indicate less density-dependent 

interactions for the hyperon.  

 The equations of motion, self-energies (2.9) ~ (2.11) 

enable one to obtain the effective coupling constants and 

masses, (2.3) and (2.4). In Figs. (3). and (4), the effective 

masses of nucleons and hyperons ( , ) after hyperon-

onset densities are shown respectively. The hyperon 

effective masses, M  and M , depend on the values of 

coupling ratios and change discontinuously when rHN < 1. 

The effective masses become 
 

M / M 1  and 

 
M / M 1  for rHN =1/3,2/3 , which show that density-

dependent interactions of hyperons are weak in high 

densities and generate softer EOS, resulting in the smaller 

Table 1. Coupling Constants and Properties of Nuclear Matter 

g  

7.629 

g  

6.675 

g  

5.810 

g 3  (MeV)  

20.0 

g 4  

80.0 

g 4  

80.0 

g 4  

4.00 

g  

72.0 

g  

-42.0 

g  

-42.0 

g N  

-38.50 

g N  

11.00 

g N  

31.35 

g  

6.879 

g  

7.103 

g  

8.252 
    

M N / M  

0.84 

m / m  

1.06 

m / m  

1.02 

 K (MeV)  

256 
 
a4 (MeV)  

30.0 

The properties of symmetric nuclear matter connected with isospin-asymmetric, beta-equilibrium matter ( n, p,e ) whose EOS produces M max (n, p, e) = 2.00  
 
M  are listed. 

The coupling constants are chosen from the data NHA2.00 in the paper [9]. The results with the beta-equilibrium matter ( n, p, e ) whose EOS produces M max (n, p, e) = 2.50  
 
M  

are discussed in the Ref. [20]. (Note that the current coupling constants, ( g
N

, g
N

, g
N

), correspond to m (g
N

, g
N

, g
N

) in the paper [16]). 
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maximum masses of neutron stars (see, the Table 1). On the 

contrary, the effective mass of hyperons for rHN =1  show 

that density-dependent interactions of hyperons become 

relatively strong, but the EOS will not become harder than 

that of ( n, p,e ), resulting in the smaller maximum masses of 

neutron stars. As the EOS becomes soft when hyperons are 

produced as ( n, p,e )-( n, p, ,e) and ( n, p,e )-( n, p, ,e ) 

matter, the two-fold hyperon production such as 

( n, p, , ,e) makes the EOS softer. Hence, the EOS of 

many-hyperon matter (
  
n, p, , ,H1,H 2, ,e) with the 

ratio, rHN < 1, would generate much softer EOS and be 

unable to support observed masses of neutron stars. 

 Hadronic models for nuclear physics model-

independently indicate strong density-dependent interactions 

and correlations among properties of nuclear matter and 

neutron stars, which is indicated by effective masses, 

M N /M N < 1 in high densities. On the contrary, if the 

coupling ratios, rHN =1/3 and 2/3, required by SU(6) 

effective quark model are employed in the nonlinear mean-

field approximation of hadrons, the results suggest that 

density-dependent interactions of hadrons appear to be weak 

in effective masses, equations of state and 

incompressibilities. The similar results are obtained and 

discussed in [20], and this is a prominent discrepancy 

between hadronic and effective quark models. The hadronic 

mean-field model demands the strong density-dependent 

interactions ( r
N

1.0  and r N 1.0 ) which are consistent 

with properties of nuclear and neutron stars. The effective 

masses of hyperons predicted from the hadronic mean- 

field and SU(6) effective quark model are intrinsically 

different. This should be investigated further to examine 

consistency and restriction for both hadronic and effective 

quark models. 

4. THE COUPLING CONSTANTS, BINDING ENERGY 

AND ONSET-DENSITY OF AN HYPERON 

 Suppose that ( n, p,H ,e )-phase is generated after 

( n, p,e )-phase. The phase transition condition is given by 

chemical potentials as,  

μH = μn qH μe ,        (4.1) 

where μH , μn  and μe  are the hyperon, neutron and electron 

chemical potentials, and qH  is the hyperon charge in the unit 

of e . The phase transition conditions (4.1) are generally 

obtained by minimizing the energy density (n, p,H ,e) , and 

the baryons are restricted by the baryon-number conservation 

and charge-neutrality. The leptons are produced to maintain 

charge-neutrality and the lepton densities slowly increase for 

a low density region, but they decrease rapidly and vanish in 

high densities since the energies of leptons are absorbed and 

used to produce higher energy hyperons; these phenomena 

are also observed in the current numerical calculations. The 

muon can be generated but restricted in a region narrower 

than that of an electron with the phase-equilibrium condition, 

μ
μ

= μ
e

, and so, the effect of the muon chemical potential 

is smaller than that of an electron. 

 The hyperon coupling constants, rHN  and rHN , are related 

to each other, since the coupling constants are required to 

produce the minimum value of binding energy (saturation 

energy) at the hyperon onset density. The relation of hyperon 

coupling constants can be calculated in terms of the effective 

masses, coupling constant and binding energy of a hyperon 

in the current conserving mean-field approximation. The 

binding energy at the onset-density, H , would be expected 

as the lowest energy level of the hyperon H  (the hyperon 

single particle energy at saturation). The Hugenholtz-Van 

Hove theorem of a self-bound system at the onset density 

( H = 0 ) leads to,  

 By employing the effective masses of baryons (2.7) and 

the self-energy of -meson (2.11) with 0 = g NV0 , one 

can obtain,  

where = p + n ; since H = 0 , H  is the lowest binding 

energy of a hyperon. The hyperon-coupling constants and 

the lowest binding energies of hyperons are expressed with 

effective masses and coupling constants of hadrons related to 

nonlinear interactions, nuclear observables and masses of 

neutron stars. The hyperon-onset density and hyperon EOS 

are intimately related to properties of nuclear matter by way 

of nonlinear and density-dependent interactions. The binding 

energies of  and  are chosen as = 28  MeV and 

= 20  MeV. Since the value of  has not been settled 

yet, we have varied the binding energy as 20 20 

MeV, and evaluated the EOS and neutron stars. If  is 

negative (attractive), it softens the EOS compared to that of 

EOS when  is positive (repulsive), but the onset density, 

EOS, maximum mass of neutron stars are qualitatively 

similar. It may be different for certain properties of finite 

nuclei and hypernuclei, which should be investigated for 

quantitative analyses.  

 The incompressibility, K , and nucleon symmetry energy, 

a4 , are respectively calculated in the conserving mean-field 

approximation as [32-34],  

H = (( /
B
)H M H )

H =0 = EH (0) M H = EH (0) H
0 M H

= g HV0 + M H M H .
                 (4.2) 

 

rHN =
m 2

g N g N

(
g H

g N

(M N M N ) + H ) =
m 2

g N g N

(M H M H + H ) ,                 (4.3) 
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Fig. (5). Incompressibilities of ( n, p,e )-( n, p, ,e ) matter are 

compared with isospin asymmetric ( n, p,e ) matter (solid line). The 

coupling ratios for dotted line are r N =1.00 and r N =1.24 , and 

r N = 0.595 and r N = 2/3 for dash-dotted line. Note that the 

shaded area of incompressibility (dotted line) shows the density 

region unstable against density fluctuations ( 2.65 B / 0 4.21) 

(see, for example, [35]).  

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Symmetry energies of ( n, p,e ), ( n, p, ,e ) and 

( n, p, ,e)-( n, p, ) are compared. The coupling ratios for 

dashed line are r
N

=1.00  and r
N

=1.31, and r N =1.00 and 

r N =1.24  for dash-dotted line. The ratios required by SU(6) 

quark model, r
N

= 2/3  and r N = 2/3, give similar results, 

respectively.  

       (4.4) 

 The computation of nucleon symmetry energy must be 

performed by maintaining phase equilibrium conditions, 

which will fix mean-fields, 0 , V0, R0  and the ground state 

energy, ( p , n ) ; then, the derivative of the energy density 

( p , n )  can be calculated by changing p   

and n  with fixed N = p + n  and mean-fields. 

Incompressibility and symmetry energy are important not 

only at nuclear matter saturation but also in high densities as 

probes for heavy-ion collisions and density-dependent 

correlations between properties of nuclear matter and 

neutron stars [35-41]. 

 In Fig. (5), incompressibilities of  matter with coupling 

ratios, ( r N =1.0, r N =1.24 ) and ( r N = 0.595, r N = 2/3), 

are compared. The hyperon-onset and softening of EOS are 

perceived as the discontinuity and abrupt reduction of 

incompressibility as shown in the Fig. (5). The coupling 

constants of  are expected to be unity, g N ,g N 1.0 ,  

in order to be consistent with properties of nuclear and 

neutron matter. The shaded area of incompressibility (dotted 

line) is the density region unstable against density 

fluctuations ( 2.65 B / 0 4.21), which is numerically 

found in the current conserving mean-field approximation. 

The similar phenomenon for nuclear matter in low densities 

is discussed in the Ref. [32]. The dash-dotted line 

( r N = 0.595, r N = 2/3) shows that incompressibility is 

small for high densities. In Fig. (6), symmetry energies of 

( n, p, ,e) with ratios r
N

=1.0 , r
N

=1.31) and 

( n, p, ,e ) matter with ratios ( r N =1.0, r N =1.24 ) are 

compared with ( n, p,e ) matter. The symmetry energies  

will increase monotonically about saturation of nuclear 

matter, but they reach the maximum values in a high density 

and decrease respectively, which is consistently examined  

in the conserving nonlinear mean-field approximations  

[10, 20]. The ratios required by SU(6) quark model 

( r
N

= 0.473, r
N

= 2/3) and ( r N = 0.595, r N = 2/3) 

exhibit qualitatively similar results for the nuclear symmetry 

energy. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). The equations of state (EOS) for ( n, p,e ) and ( n, p,e )-

( n, p, ,e) matter. The EOS of NHA (n ,p ,e )
2.00

 yields 

M max (n, p,e) = 2.00  M . The EOS with r
N

= 0.473 and 

r
N

= 2/3  (dash-dotted line) produces M max (n, p,e) =1.25 M , 

which is smaller than the expected lower bound mass of neutron 

stars (see, the Table 1).  
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Fig. (8). The equations of state for ( n, p,e )-( n, p, ,e ) matter. 

The EOS with r N = 0.595 and r N = 2/3 (dash-dotted line) 

produces M max (n, p,e) =1.42  M . The results in the case of 

r N =1.00 and r N =1.24  (dotted line) depend intimately on the 

-onset and phase transition densities (compare with the unstable 

density region for incompressibility in Fig. 5).  

 In Figs. (7) and (8), the equations of state for ( n, p,e )-

( n, p, ,e) and ( n, p,e )-( n, p, ,e ) matter are shown; p = E  

is the relativistic limit of EOS. The equations of state for 

( n, p,e )-( n, p, ,e) discontinuously change with the 

coupling ratios, whose discontinuities originate from charge-

neutrality and phase-equilibrium conditions constrained by 

self-consistent single particle energies [20]. As expected 

from energy densities in Fig. (1), the equations of state 

produce similar maximum masses of neutron stars. However, 

the coupling constant less than unity, such as 
 

r
N

1 / 3  and 

2/3, are not appropriate, since they produce much softer 

equations of state which produce the maximum mass of 

neutron stars, Mmax <~ 1.30  M , close to the observed 

minimum mass of neutron stars ~ 1.30 M  (see, the Table 2). 

The equations of state for  in Fig. (8) clearly exhibit softer 

equations of state and a phase transition (dotted line), or an 

unstable density region with respect to density fluctuations 

[32]. The unstable density region is consistent with the 

negative incompressibility ( K < 0) shown as the shaded 

density region in Fig. (5), which indicates that ( n, p, ,e ) 

matter may go through a phase transition; thermodynamic 

quantities, such as pressure, energy density and chemical 

potentials, have to be carefully evaluated by Maxwell 

construction [42]. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (9). Masses of neutron stars. LHA(n) is the pure neutron star 

calculated by employing the linear -  mean-field 
approximation. The solid line exhibits isospin asymmetric ( n, p,e ) 

neutron stars, and the dotted line is for ( n, p,e )-( n, p, ,e) 

neutron stars ( M max =1.25 M ) with the ratios, r
N

= 0.473, 

r
N

= 2/3 .  

 The masses of neutron stars are shown in Fig. (9) using 

the equations of state for ( n, p,e )-( n, p, ,e) with the 

coupling ratios, r
N

= 0.473, r
N

= 2/3 . The masses of 

( n, p,e )-( n, p, ,e ) neutron stars with coupling ratios, 

r N = 0.595, r N = 2/3, are shown in the Fig. (10). The 

results are compared with the pure neutron [42] and isospin 

asymmetric ( n, p,e ) matter [10]. The equation of state for  

( r N =1.00) is too complicated to use for the maximum 

mass calculation of neutron stars, because the phase 

transition of ( n, p,e )-( n, p, ,e ) and density fluctuations 

( n, p, ,e ) occur in a density region where the maximum 

mass of neutron stars apparently depend on; we tentatively 

Table 2. Hyperon Coupling Ratios and Properties of ( n, p, ,e), ( n, p, ,e ) Neutron Stars 

  (i) ( n, p,e )-( n, p, ,e)       (ii) ( n, p,e )-( n, p, ,e )  

r
N

 r
N

 M max  Ec   r N  r N  M max  Ec  

1.00  1.31  1.37  2.75    1.00  1.24      

0.473  2/3  1.25  1.57    0.595  2/3  1.42  1.16  

0.200  1/3  1.25  1.58    0.359  1/3  1.41  1.07  

The maximum masses, M max , and central energy densities, C (10
15

g / cm
3
) , of neutron stars produced by way of ( n, p, e )-( n, p, ,e ) and ( n, p,e )-( n, p, ,e ) are 

listed respectively. The EOS of the hyperon-phase ( n, p, ,e ) and ( n, p, ,e ) are calculated with the ratios, rHN = g H /g N = 2/3  [25-27] and other coupling ratios for 

comparison. The calculation of ( n, p, ,e ) matter with the coupling ratio, r N = g / g N = 1.0 , is explained in the sec. 4 (see, the Fig. 5). 
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linked the equations of state smoothly in several ways and 

evaluated the maximum mass numerically, resulting in 1.10 

~ Mmax ~ 1.40. We will evaluate the maximum mass more 

accurately by including vacuum fluctuation corrections and 

hadron-quark phase transitions in the near future. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Masses of neutron stars. The dotted line shows ( n, p,e )-

( n, p, ,e ) neutron stars ( M max =1.42 M ) with the ratios, 

r N = 0.595, r N = 2/3.  

 As a summary of this section, we conclude that the 

( n, p,e )-( n, p,H ,e ) phase transition and hyperon onset-

density are important for the equation of state and 

calculations of neutron stars. The effective masses and 

coupling constants of isospin symmetric ( n, p ) nuclear 

matter and onset-density are related with the binding energy 

and saturation properties of hyperons. Hence, properties of 

nucleons and order of hyperon-onset in symmetric nuclear 

matter are important for the analysis of binding energies, 

NN , NY  interactions and determination of maximum mass 

of neutron stars. It is also confirmed in the current 

calculation that hyperons relevant to determine properties  

of neutron stars are  and ; the similar results are  

also derived in a nonrelativistic Brueckner-Hartree- 

Fock calculation for -stable neutron star matter [21, 22], 

stating that the only strange baryons entering in -stable 

matter up to baryonic densities of 1.2 fm
3

 are  and . 

By comparing the results of M max
(n ,p ,e ) = 2.50  M  and the 

current calculation, M max
(n ,p ,e ) = 2.00  M , the results of 

M max
(n ,p ,e ) = 2.50  M  [20] are more likely to explain 

experimental data of nuclear and neutron stars. The 

maximum mass of neutron stars would be explained 

appropriately with isospin asymmetric neutron stars with 

M max
(n ,p ,e ) 2.50 , ( n, p, ,e) and ( n, p, , ,e) matter [21]. 

The nonlinear - -  mean-field approximation has 

revealed interesting properties of nuclear and hyperonic 

matter, which should be extended to extract more rigorous 

conclusions. 

5. BINDING ENERGIES OF PURE  MATTER 

 Thermodynamic consistency with constraints of nuclear 

and neutron matter will induce density-dependent relations 

among physical quantities, and nonlinear coupling constants 

of a mean-field approximation are confined, resulting in a 

self-consistent approximation. When the effective masses 

and coupling constants of nucleons are self-consistently 

determined in each density, binding energies and density-

dependent interactions of hyperons are self-consistently 

determined with the coupling constants, Nr  and Nr ,  

fixed by the eq. (4.3), which is an important result in  

the self-consistent calculation. Therefore, the determination 

of binding energy, effective masses and coupling constants 

will simultaneously determine hyperon binding energies, 

saturation properties and effective masses of pure -matter. 

Although information on hyperon-hyperon (YY ) 

interactions is not readily obtained from experiments  

in free space, it is crucial to study interactions for  

finite nuclei, symmetric nuclear matter and hyperonic matter 

[43]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Binding energies of pure  matter. The -equilibrium 

( n, p, e) -matter generated by NHA
2.50

),( pn  will produce 

Mmax = 2.50  M  [20]. The pure -matter with coupling ratios, 

( r N = 0.650, r N = 2 / 3 ) is denoted as 1  (dash-dotted line). 

Note that 1  is positive in all densities. The coupling ratios, 

( r N = 1.00, r N = 1.06 ) is denoted as 2  (dashed line).  

 In Fig. (11), the binding energy of symmetric nuclear 

matter ( 15.75 MeV, at k
F

= 1.30  fm
-1

) defined by the 

conserving nonlinear mean-field approximation is shown 

with a solid line (NHA
2.50

),( pn ); the equation of state for -

equilibrium ( ),, epn -matter will produce Mmax = 2.50  M . 

The pure -matter with coupling ratios, 

( r N = 0.650, r N = 2 / 3 ) is shown with dash-dotted line, 

denoted as 1 . The pure -matter with coupling ratios, 

( r N = 1.00, r N = 1.06 ) is shown with the dotted line, 2 . 

The coupling ratio, g / g N = r N = 2 / 3 , is employed from 

the SU(6) quark model for the vector coupling constants [23, 

24], and r N = 0.65  is obtained from the eq. (4.3). The 

binding energy of 1(r N = 2 / 3)  shows that it is positive in 

~
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all densities, which indicates that YY  interaction be 

repulsive. On the contrary, the binding energy of 
2

 (a 

dashed line) with r N = 1.00, r N = 1.06  shows that the 

binding energy exhibits saturation at a high density. The YY  

interaction is attractive at k
F

= 1.30  fm
-1

 and the binding 

energy is 19.95  MeV, at 
 
k

F
2.00  fm

1
. The results of 

r N = 2 / 3  and r N = 1.06  give essentially different results 

for the properties of hyperonic matter. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). Binding energies of pure  matter. The -equili- 

brium ( ),, epn -matter generated by NHA
2.00

),( pn  will produce 

Mmax = 2.00  M . The pure -matter ( 1 ) with coupling ratios, 

( r N = 0.595, r N = 2 / 3 ), is positive in all densities and unbound, 

whereas the ( 2 ) matter with the coupling ratios, 

( r N = 1.00, r N = 1.24 ) is deeply bound.  

 In Fig. (12), the binding energy of symmetric nuclear 

matter, which will produce the EOS of -equilibrium 

( ),, epn -matter with the maximum mass of neutron  

stars, Mmax = 2.00 M , is compared with 1 , 

( r N = 0.595, r N = 2 / 3 ; dash-dotted line), and 2  

( r N = 1.00, r N = 1.24 ; dashed line). The coupling constants 

required by SU(6) quark model will produce positive binding 

energy in all densities, whereas the coupling constants 

required by hadronic model will produce self-bound matter. 

Therefore, the coupling strength, g / g N = r N = 2 / 3 , 

required by quark model clearly generates different results 

for binding energies of hyperons. 

 The hyperon coupling constants required by the hadronic 

mean-field model (
 
r N 1.00  and 

 
r N 1.00 ) and the 

SU(6) quark model for the vector coupling constants 

( r N = 2 / 3 ) exhibit essentially different results on the 

problem of density-dependent interactions, binding energies 

and saturation of hyperonic matter. This may indicate 

another important discrepancy between hadronic model and 

effective quark model for hadrons, which should be 

investigated in other many-body approximations and 

hadronic models. 

6. REMARKS 

 The conserving nonlinear mean-field approximation has 

exhibited consistent properties for symmetric nuclear and 

hyperonic matter. The effective masses of hadrons, 

incompressibility and symmetry energy have shown strong 

density-dependent behavior consistently in the hadronic 

nonlinear mean-field approximation. The effective masses 

and coupling constants are important to examine self-

consistent, density-dependent interactions; therefore, 

conditions of thermodynamic consistency [9-15] are 

essential to extract consistent results from approximations. 

The conserving nonlinear mean-field approximation for 

nuclear matter has shown consistent density-dependent 

phenomena when it is connected with -equilibrium, 

hyperonic matter and neutron stars. 

 The analysis in the paper [20] and the present calculation 

lead us to the conclusion that the expected values of  

effective masses of hadrons and incompressibility should be, 

 
M N / M N 0.70 , 

 
m / m 1.02 , 

 
m / m 1.01 ,  K 320  

MeV and a4 = 30  MeV at saturation density of symmetric 

nuclear matter, in order to appropriately explain empirical 

values of nuclear matter and neutron stars. The effective 

mass of the scalar-isovector  meson, m / m , will 

slightly increase at saturation; on the contrary, the effective 

quark-model for hadrons [28, 29] predicts the decreasing 

effective mass of mm / . This is also another discrepancy 

between hadronic and quark-based hadronic models. The 

physical reason of the increase of effective mass of omega 

meson, m / m , can be clearly shown in the nonlinear 

mean-field approximation of hadrons in terms of 

thermodynamic consistency [10]; it should be actively 

investigated in other hadronic mean-field approximations. 

Although the characteristic behavior of effective mass of 

omega meson, m / m , has not been determined yet [44], it 

will certainly have great impact on understanding hadronic 

interactions; this problem will be discussed in the conserving 

nonlinear Hartree-Fock approximation ( , , , ) in the 

near future. The results and discrepancies shown in the 

present calculations should be checked by extending the 

current approximation to conserving, nonlinear relativistic 

Hartree-Fock, Ring, Brueckner-Hartree-Fock approximations 

so as to extract more quantitative results. 

 The hyperon-onset densities in phase transitions, such as 

( n, p, e )-( n, p, , e ) and ( n, p, e )-( n, p, , e ), are observed 

fairly fixed numerically, and the push-up phenomena of 

hyperon-onset densities, abrupt softening of the hyperon 

EOS, discontinuous variations of incompressibility and 

symmetry energy are consistently examined in the present 

calculations; this is consistent with the results obtained in the 

ref. [20]. It is also confirmed in the current nonlinear mean-

field approximation that the baryons entering in -stable 
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matter up to baryonic densities relevant to neutron star 

calculations are  and . The similar results are also 

derived in a nonrelativistic Brueckner-Hartree-Fock 

calculation [21, 22], which suggests that nonlinear terms in 

mean-field approximations be a manifestation of many-body 

interactions. 

 The determinations of properties of symmetric nuclear 

matter, such as binding energy at saturation, effective masses 

and coupling constants, incompressibility and symmetry 

energy, will simultaneously decide binding energy and 

saturation properties of hyperonic matter; the self-consistent 

relations are important to examine density-dependent 

correlations among nuclear and hyperonic matter. This fact is 

clearly shown in the results of the effective masses of 

hadrons and binding energies of -matter. The conserving 

nonlinear mean-field approximation and effective quark 

models require different coupling constants for hyperons. 

Since the hyperon coupling ratios, r N = 2 / 3 , required by 

SU(6) quark model produce weak density-dependent 

interactions for hadrons at saturation and high densities, it is 

not compatible with the coupling ratio, 
 
r N 1.0 , demanded 

by the current nonlinear mean-field approximation. One 

should note that the conserving nonlinear mean-field 

approximation includes foregoing linear and nonlinear mean-

field approximations and reproduces those results examined 

so far by adjusting coupling constants. The discrepancy 

between the nonlinear mean-field approximation and the 

effective quark models for hadrons may not be a simple 

matter which is corrected by adjusting coupling constants; 

however, the investigations of discrepancy between the 

hadronic and quark-based hadronic models would be 

constructive for both theoretical approaches. The 

discrepancy will be very interesting to investigate by 

extending the current nonlinear mean-field model to include 

chiral symmetry. 

 The results obtained in the nonlinear mean-field 

approximation are important to understand hadronic models 

of nuclear physics and should be applied to investigate 

properties of hypernuclei [45], heavy-ion, high-energy 

scattering experiments and compared to those of other 

hadronic models and quark-based effective hadronic models. 

The conserving nonlinear mean-field approximation has 

revealed interesting properties of hadronic matter; it is 

imperative to investigate binding energies of hypernuclei, 

isospin asymmetric matter and magic nuclei [46] in terms of 

hadronic and quark degrees of freedom. The applications to 

high-energy, high-density photoproduction reactions [47, 48] 

may be interesting to examine limitations and applicability 

of the hadronic mean-field models. 
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