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Abstract: Regge trajectories can be simply derived from the conservation of angular momentum in hyperbolic space. The 

condition to be fulfilled is that the hyperbolic measure of distance and the azimuthal angle of rotation in the plane be 

given by the Bolyai-Lobachevsky angle of parallelism. Resonances or bound states that lie along a Regge trajectory are 

relativistic rotational states of the particle that are quantized by the condition that the difference in angular momentum 

between the rest mass, assumed to be the lead particle on the trajectory, and the relativistic rotational state is an integer. 

Since the hyperbolic expression for angular momentum is entirely classical, it cannot take into account signature, and 

whether exchange degeneracy is broken or not. However, the changes in the angular momentum are in excellent 

agreement with non-exchange degeneracy which assumes four different rest masses in the case of , , a2, and f mesons 

trajectories, as well as in the case where there is only one rest mass in exchange degeneracy. A comparison is made 

between the critical and supercritical Pomeron trajectories; whereas the former has resonaces with higher masses, it has 

corresponding smaller linear dimensions. 
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INTRODUCTION 

 Regge trajectories link bound states and resonances with 
the same internal quantum numbers but with different values 
of the mass, m, and angular momentum, J. When the J-
values of the meson, or baryon, groups are plotted against 
the square of the mass linear trajectories result. They are 
known as Chew-Frautschi plots [1]. Regge theory cannot 
account for the linearity of these trajectories, and string 
theories cannot account for the intercept of these trajectories 
[2]. 

 It also became clear that many of the trajectories with 
different quantum numbers coincide. This became known as 
the principle of exchange-degeneracy [3]. The weak form of 
this principle states that only the trajectories with different 
quantum numbers coincide, while the strong form, which has 
subsequently been refuted by experiment, says that in 
addition the corresponding residue of the hadronic amplitude 
coincides with a given pole in the complex angular 
momentum plane. Weak exchange degeneracy was believed 
to be due to the opposite signature of otherwise identical 
trajectories [4], and seemed to violate the principle that a 
Regge trajectory produces a physical bound state, or 
resonance, each time J increases by a factor of two, and not 
one [5]. 

 The string model considers quarks and antiquarks for 
mesons to be held together by the color field. Unlike the 
lines of force of electric charges which tend to spread out, 
the gluon-gluon interaction pulls the lines together in the 
form of a tube which rotates about the axis through the 
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center of mass of the tube. The motion is considered 
relativistic, but since a uniform rotating string is not an 
inertial system, the Lorentz contraction cannot be employed. 
The total mass is expressed in terms of the angular 
momentum and the invariant pressure of the bag which 
exactly balances the vacuum pressure. To find the optimum 
length of the tube, the total mass is minimized with respect 
to the length at constant angular momentum. The stationary 
condition sets the angular momentum proportional to the 
square root of the invariant pressure. Asymptotically a linear 
trajectory is obtained, but the angular momentum is then no 
longer a constant, independent of the length of the tube, and 
consequently of the total mass, as it was assumed in the 
variational procedure to obtain the optimum length of the 
tube. 

 It is the purpose of this paper to show that Regge 
trajectories are relativistic rotational states of the particle 
trajectory that are quantized by their J values. Since there is 
no integration over the length of a tube, the intercept is 
obtained in terms of the mass and frequency of rotation of 
the particle whose resonances along the same linear 
trajectory are relativistic rotational states of the particle. In 
order to carry out the program, we must digress to discuss 
relativistic motion of a uniform rotating disc or string. 

HYPERBOLIC MOTION OF A UNIFORMLY 
ROTATING STRING 

 It was Riemann’s original idea that to free himself of the 
geometries of surfaces in E

3
, it was necessary to modify the 

definition of the dot product, , on tangent vectors, and to 
replace it by some more general inner product that would be 
applicable to any abstract surface not in E

3
. The hyperbolic 

inner product, , which involves a sign change in the 
denominator of the stereographic inner product, is [6]: 
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x y =
x • y

1 (x2 + y2 ) / (2R)2
,  (1) 

where K = –1/R
2 

is the constant, negative, Guassian curvature. 
As the radius of curvature, R , we recover the dot product 
of Euclidean geometry. The stereographic inner product is 
obtained by allowing the radius, R to become imaginary, R 
iR, thereby changing the sign in the denominator of (1). 

 The inner product, (1), means that we have to modify the 
Euclidean metric in the plane to become [7]: 

ds =
dr2 + r2d 2

1 r2 2 / c2
,  (2) 

which is expressed in polar coordinates (r, ). The metric (2), 
describing a uniformly rotating disc of velocity  = r, is 
hyperbolic with an absolute constant whose numerical value 
will depend on the arbitrary choice of a unit segment, 2R = c/ , 
the ratio of the speed of light, c, to the angular velocity, . 

 Since  is a cyclic coordinate, we know that a first 
integral exists: 

r2

(1 r2 2 / c2 ) 1+ r2 2
=

J

m0c
= const.,  (3) 

which is obtained from the stationary condition of the 

integral of (2) with respect to . All we know, so far, is that 

the constant of integration has dimensions of length. Solving 

(3) for , we get 

= ±
( J / m0 )(1 r2 2 / c2 )

r2 1 J / m0cr)
2 (1 r2 2 / c2 )2

.  (4) 

 If we set 

J (1 – r
2 2

/c
2
) = m0r

2
, (5) 

showing that J has units of angular momentum, if m0 is the 
mass, then (4) will reduce to 

= ±

c 1 r2 2 / c2
 (6) 

 If we choose the negative sign in (6), for 0 < cos–1(r /c) 
< , then upon integrating we will get the equation of a 
circle, 

r = 2R cos ,  (7) 

with radius R = c/2 . 

 Rather, if we express r in terms of a segment of a 
Lobachevsky straight line, 

r = 2R tanh( r /2R), (8) 

we can write (6) as 

d

dr
= (2r cosh(r / 2R))  (9) 

again choosing the negative sign. Equation (9) can be 
immediately integrated to give: 

2 tan 1 e r /2R
= ,  (10) 

which is none other than the fundamental formula of Bolyai-
Lobachevsky for the radian measure of the angle of 
parallelism. The angle of parallelism must be acute,  /2; 

this is the reason for have selected the negative sign in (9). 
Its Euclidean counterpart is a circle of radius R, (7). The 
square of the constant 2R occurs in the proportionality factor 
of area to defect in hyperbolic geometry. 

 Rearranging (5) to read: 

J = J J0 =
m0r

2

1 r2 2 / c22
=
m0c

2

sinh2 (r / c)  (11) 

we are immediately confronted by the apparent fact that the 
change in angular momentum, like the angular momentum 
itself, is not conserved. However, we must realize that if we 
modify the dot product to the inner product, (1), we must 
also modify the cross-product, 

 

x y =
x y

1 (x2 + y2 ) / (2R)2
,  (12) 

so that the trigonometric relation, cos
2
  + sin

2
  = 1, is 

satisfied. Consequently, (11) is an expression of angular 

momentum conservation in hyperbolic space. 

 An identical expression for the angular momentum has been 

obtained in Einstein’s general relativity [8]. However, there, it is 

concluded that (11) “cannot in general be interpreted as angular 

momentum, since the notion of a ‘radius vector’ occurring in the 

definition of the angular momentum has an unambiguous 

meaning only in a Euclidean space.” In contrast to general 

relativity the ‘radius vector’, r , in (8), is defined by the 

logarithm of the cross-ratio, 

r = 2R tanh 1(r / 2R) = R In
1+ r / 2R

1+ r / 2R
,  (13) 

which has an unambiguous meaning eventhough it is not in 
Euclidean space. 

REGGE TRAJECTORIES 

 Eliminating the square of the hyperbolic sine between 
(11), and the square of the relativistic mass, 

m2
= m0

2 cosh2 (r / c) = m0
2 {sinh2 (r / c +1}  (14) 

expresses the change in angular momentum to the square of 
the relativistic mass. We thus obtain the Regge trajectories, 

J = m
2 

+ (0), (15) 

with the slope, 

=
m0

,   (16) 

and intercept, 

(0) = J0
m0 ,  (17) 

in natural units,  = c = 1.  Expression (14) can also be 
written as 

m0
2

m2 = 1 (r )2 ,  (18) 

also in natural units. 

 It has been claimed [9] that if QCD is the correct theory 
there should be only a single parameter, either the Regge slope, 
the scale parameter, or the distance at which the effective charge 
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is unity. This length, together with the quark masses, should be 
sufficient to derive all of hadronic physics. Expression (16) 
relates the Regge slope to the scale parameter. To maintain 
units,  will be taken to be dimensionless, entering as a 
correction to the angular velocity of rotation. The scale 
parameter has been determined as  = 0.16 ± 0.08 GeV [9, p. 
334], where the large relative error is due to the logarithmic 
relation of scale parameter to the running coupling constant. We 
will assume  = 0.2, which is the numerical conversion factor 
of GeV

–1 
to fm, i.e., 1fm=5.07 GeV

–1
. J0 is the angular 

momentum of the lead particle of the Regge trajectory whose 
higher order resonances are relativistic expressions for the 
angular momenta. They are quantized by the condition that J 
is a positive integer. The relativistic nature of the trajectories 
comes solely from (18) when it is introduced into (11). The 
parameters 

–1 
and 0 r  < 1 give the linear dimensions of the 

particle and the degree of the relativistic state, respectively. 

 The meson trajectories in Table 1 contradict signature, or 
that the angular momentum must increase in units of two, 

not one, and were taken from ref. [4]. Since relativistic states 
do not depend on internal quantum numbers, or signature, 
the smallness in the relative error in angular momenta 
differences is quite remarkable. 

 Actually, the -trajectory is a superposition of four 
distinct trajectories. With the more recent data on 
resonances, the four trajectories are found to be [3]: 

(m2 ) = 0.88m2
+ 0.478

(m2 ) = 0.293m2
+ 0.435

2
(m2 ) = 0.857m2

+ 0.512

f (m
2 ) = 0.801m2

+ 0.697,

 

and the calculation of the angular momentum differences in 
Table 2 shows that the relativistic expressions are as close, if 
not closer, to those calculated in Table 1. These classic 
expressions cannot account for differences in the internal 
quantum numbers and signature. 

Table 1. Calculation of the Change in Angular Momentum for Meson-Trajectories 
 

(770)-Trajectory = 0.9 GeV –2 –1 = 0.6834 fm r(fm) r  J0 = 1 J J (cal) 

2(1310)   0.553 0.809 J = 2 1 0.997 

(1670)   0.6064 0.887 J = 3 2 1.95 

K*(890)-Trajectory = 0.9 GeV 
–2

 
–1 

= 0.7899 fm r(fm) r  J0 = 1 J J (cal) 

K (1414)   0.6138 0.770 J = 2 1 1.07 

K (1777)   0.6837 0.7492 J = 3 2 2.10 

(1020)-Trajectory = 0.9 GeV 
–2

 
–1 

= 0.905 fm r(fm) r  J0 = 1 J J (cal) 

f (1515)   0.7394 0.8167 J = 2 1 1.113 

(135)-Trajectory = 0.8 GeV 
–2

 
–1 

= 0.1065 fm r(fm) r  J0 = 0 J J (cal) 

B(1235)   0.1059 0.9943 J = 1 1 1.18 

 3(1660)   0.1062 0.9972 J = 2 2 2.16 

 

Table 2. Calculation of J for the Four , , a2 and f-Trajectories 

 

(770)-Trajectory = 0.880 GeV
–2

 
–1 

= 0.6682 fm r(fm) r  J0 = 1 J J (cal) 

(1700)   0.5958 0.8915 J = 3 2 1.994 

(2350)   0.6314 0.9448 J = 5 4 4.278 

(782)-Trajectory = 0.923 GeV
–2

 
–1 

= 0.7118 fm r(fm) r  J0 = 1 J J (cal) 

(1670)   0.6289 0.8836 J = 3 2 1.982 

2(1318)-Trajectory = 0.857 GeV
–2

 
–1 

= 1.1140 fm r(fm) r  J0 = 2 J J (cal) 

 3(2021)   0.8445 0.7581 J = 4 2 1.94 

 6(2450)   0.9604 0.8430 J = 6 4 3.688 

f2(1270)-Trajectory = 0.801 GeV
–2

 
–1 

= 1.003 fm r(fm) r  J0 = 2 J J (cal) 

f4 (2025)   0.7849 0.7824 J = 4 2 2.03 

f6 (2510)   0.8653 0.8625 J = 6 4 3.70 
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 All mesons trajectories, except for , deviate from strict 
linearity, and the deviation should be more pronounced the 
heavier the meson. The relative errors in Table 2 are largest 
for the a6 (2450) and f6(2510) resonances, 0.078, and 0.075, 
respectively. We might, therefore, try to replace the linear 
relation, (15), by a parabolic one [3]: 

(m2 ) = 0.8759 + 0.5858m2
+
1

2
0.0681m4  (19) 

 Table 3 shows that there is a marked deviation in the 
angular momentum difference, with a relative error of 0.28, 

so that the linear, Regge, plot is far superior to a parabolic 
one. 

–1 
was calculated using the intercept relation, (17), and 

not the slope, (16), for that would have given a value far too 
small. 

 Table 4 shows the angular momentum increments for 
baryons. Although all ’s have been listed to lie on the same 
Regge trajectory [p. 147][4], it clearly violates the principle 
that a Regge trajectory produces a bound state or resonance 
every time it increases by a factor of two. Thus, the  
trajectory should be considered as a superposition of Regge 

Table 3. Calculation of J for a Parabolic Relation 

 

a2(1293)-Trajectory = 0.5987 GeV
–2

 
–1 

= 0.8694 fm r(fm) r  J0 = 2 J J (cal) 

a6(2441)   0.7379 0.8694 J = 6 4 2.88 

Table 4. Calculation of J for Baryon-Trajectories 

 

(1232)-Trajectory = 0.9 GeV
–2

 
–1 

= 1.0935 fm r(fm) r  

  

J
0

=
3

2

 J J (cal) 

(1950)   0.8476 0.6008 J=
7

2
 2 2.028 

(2420)   0.9662 0.741 J=
11

2
 4 4.058 

(2850)   0.9861 0.8131 J=
15

2
 6 5.862 

(3230)   1.018 0.8545 J=
19

2
 8 7.939 

(1116)-Trajectory = 0.9 GeV
–2

 
–1 

= 0.9866 fm r(fm) r  

  

J
0

=
1

2

 J J (cal) 

(1520)   0.6698 0.4609 J=
3

2
 1 0.9415 

(1815)   0.7781 0.6219 J=
5

2
 2 1.811 

(2100)   0.8359 0.7176 J=
7

2
 3 2.781 

(2350)   0.8683 0.7744 J=
9

2
 4 3.930 

(2585)   0.8907 0.8151 J=
11

2
 5 4.854 

N (939)-Trajectory = 0.9 GeV
–2

 
–1 

= 0.8333 fm r(fm) r  

  

J
0

=
1

2

 J J (cal) 

N (1688)   0.6928 0.6906 J=
5

2
 2 1.750 

N (2200)   0.7552 0.8211 J=
9

2
 4 3.592 

(1190)-Trajectory = 0.9 GeV
–2

 
–1 

= 1.0562 fm r(fm) r  

  

J
0

=
1

2

 J J (cal) 

(1915)   0.8275 0.7835 J=
5

2
 2 1.998 
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trajectories with different internal quantum numbers, and 
different signatures. Again, the relativistic expression, (11), 
for the angular momentum cannot discriminate among the 
trajectories with the same slope. 

 The intercept of the Regge trajectory dominates the 
scattering process, and from the optical theorem the 
asymptotic expression for the total cross-section is  

tot s
(0)–1

. (20) 

 Table 5 compares the observed and calculated values of the 
intercept, (17). 

Table 5. Comparison of Observed and Calculated Values of 

the Intercept
1
 

 

Meson (0) (ob) (0) (cal) 

 0.478 0.485 

 0.436 0.443 

a2 0.512 0.532 

f 0.697 0.726 

K  0.3 0.297 

 0.1 0.077 

 0 –0.001 

Baryon (0) (ob) (0) (cal) 

N –0.3 –2.825 

 0 0.153 

 –0.6 –0.60 

 –0.8 –0.757 
1The deviation between the observed and calculated values for  indicates that the 
intercept may not actually be zero as given in ref. [4]. 

 

THE POMERON 

 Chew and Frautschi [1] also drew attention to the 
existence of a Regge pole with (0) = 1 that would carry the 
quantum numbers of the vacuum, and would be responsible 
for the forward scattering processes. Expression (20) 
indicates that as (0) 1, the total cross- section tends to a 
constant instead of vanishing asymptotically. It may, in fact, 
rise slowly with s [10]. We will consider both cases. The 
critical trajectory has an intercept equal to 1, while in the 

supercritical case it has an intercept greater than 1. The 
exchange of a Reggeon, which cannot distinguish a particle 
from its antiparticle, is known as the Pomeron. 

 Expression (15) shows that for a slope, p = 0.2, the rest 

mass, m0 = 2.236 GeV. Such a particle would have a linear 

dimension of 
–1 

= 0.441 fm, and the various excited states 

are shown in Table 6, taking into account that the Pomeron 

has even signature. 

 The values in Table 6 may be compared with the 

supercritical Pomeron for which the total cross-section, (20), 

continues to rise as s increases. A slope of p = 0.25 GeV
–2 

gives a good fit to the data from elastic p – p or p – p  

scattering over a range of s at different t values, and is the 

present generally accepted value [11]. The Regge trajectory 

will reach the value p (t) = 2 at a rest mass m0 = 1.924 GeV, 

and intercept p (0) = 1.075. Values of J are shown in Table 

7. 

 Whereas the critical Pomeron trajectory has a rest mass 

of 16
1

4
times the mass of the pion, the supercritical Pomeron 

trajectory will have a rest mass of 14
1

2
 times that of the 

pion. On the contrary, the size of the supercritical Pomeron 

has increased 1.07 times that of the critical Pomeron. 

 In conclusion, Regge trajectories, (15), are a 
consequence of the expression for the angular momentum 
change in hyperbolic space, (11). The identification of the 
corresponding term in relativistic conservation of energy, 

(m0c
2 )2 = E2 (pc)2

= (m0c
2 )2 {cosh2 (r / c) sinh 2(r / c)}.

 (21) 

with (11) gives the relativistic virial, 

2KE = p
2
/m0 = J . (22) 

 The change in the rotational energy is twice the kinetic 
energy. 
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Table 6. Calculation of J for the Critical Pomeron-Trajectory 

 

P (2236)-Trajectory = 0.2 GeV 
–2

 
–1 

= 0.441 fm r (fm) r  J0 = 2 J J (cal) 

P (3873)   0.3601 0.8165 J = 4 2 1.9772 

P (5000)   0.3944 0.8944 J = 6 4 3.944 

 

Table 7. Calculation of J for the Supercritical Pomeron-Trajectory 

 

P (1924)-Trajectory = 0.25 GeV
–2

 
–1 

= 0.474 fm r (fm) r  J0 = 2 J J (cal) 

P (3421)   0.3922 0.8270 J = 4 2 1.974 

P (4438)   0.4274 0.9011 J = 6 4 3.942 
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