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I. INTRODUCTION 

 A general theory of the least-squares method has been 

developed by A K Aziz, R B Kellogg and A B Stephens in 

[1]. The most important advantage of the least-squares 

method leads to a symmetric positive definite problem. The 

least-squares mixed finite element method approaches a 

least-squares residual minimization is introduced. This 

method has an advantage which is not subject to the LBB 

condition [2]. Finite element methods of least-squares type 

have been studying in many fields recently (see, e.g., Stokes 

equation [2], Elliptic problem [3], Newtonian fluid flow 

problem [4], Transmission problems [5]. 

 An adaptive least-squares mixed finite element method 

has been studied (see, e.g., the linear elasticity [6]). But the 

research about fourth-order elliptic equations which are 

widely used in hydrodynamics is not common. This paper 

mainly puts emphasis on an adaptive least-squares mixed 

finite element method for fourth-order elliptic equations. Our 

emphasis in this paper is on the performance of an adaptive 

refinement strategy based on the a posteriori error estimator 

inherent in the least-squares formulation by the local evalua-

tion of the functional. 

 This paper is organized as follows. The least-squares 

formulation of the fourth-order elliptic equations is described 

in Section 2. It includes the coercivity properties of the least-

squares variational formulation. Appropriate spaces for the 

finite element approximation and a generalization of the co-

ercivity are shown in Section 2 to the discrete form is dis-

cussed in Section 3. The error estimates of the fourth-order 

elliptic equations are derived in Section 4. In Section 5, a 

posteriori error estimators which are needed in an adaptive 

refinement algorithm are composed with the least-squares 

functional, and the posteriori errors are effectively estimated. 

Finally, we summarize our findings and present conclusions  
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in Section 6. In this paper, we define  c  to be a generic posi-

tive constant,  be a generic small positive constant. 

II. A LEAST-SQUARES FORMULATION OF 
FOURTH-ORDER ELLIPTIC EQUATIONS 

 We start from the equations of fourth-order elliptic in the 

form [7]: 

  
2u = f         in  ,              (1) 

  u = 0            on  ,              (2) 

  

u

n
= 0          on  ,             (3) 

where  R
n

 is a bounded domain, with boundary . 

We shall consider an adaptive least-squares mixed finite 

element method for (1)-(3). 

 Now we set  u = , then, we have: 

  
= f         in  ,             (4) 

  u + = 0     in  ,             (5) 

  u = 0             on  ,             (6) 

  

u

n
= 0          on  ,             (7) 

 We introduce the Sobolev spaces: 

  
H

1( ) = {p L
2 ( ) : p L

2 ( )},  

  
H

0

m ( ) = {v H
m ( ) : D v | = 0,| |< m}.  

 Now, let us define the least-squares problem: find 

  
( ,u) H

1( ) H
0

1( )  such that 

  
J ( ,u) = inf

q H
1( ),v H

0
1 ( )

J (q,v),            (8) 

where 

  
J (q,v) = ( q + f , q + f )

0,
+ ( v + q, v + q)

0,
.         (9) 
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 We introduce the least-squares functional: 

  
F( ,u) =|| + f ||

0,

2
+ || u + ||

0,

2 .        (10) 

 Taking variations in (9) with respect to 
 
q  and  v , the 

weak statement becomes : find 

  
( ,u) H

1( ) H
0

1( )  such that: 

  
B( ,u;q,v) = ( f , v),      ( v H

0

1( ), q H 1( )),       (11) 

where 

  
B( ,u;q,v) = ( , q)

0,
+ ( u + , v + q)

0,
.         (12) 

 Theorem 2.1. The bilinear form 
  
B( , ; , )  is continuous 

and coercive. In other words, there exist positive constants 

 and , such that 

  

B( ,u;q,v) (|| ||
0,

2
+ || ||

0,

2
+ || u ||

0,

2 )
1

2

(|| q ||
0,

2
+ || q ||

0,

2
+ || v ||

0,

2 )
1

2 ,

      (13) 

  
B(q,v;q,v) (|| q ||

0,

2
+ || q ||

0,

2
+ || v ||

0,

2 ),       (14) 

holds for all 
  
( ,u), (q,v) H

1( ) H
0

1( ) . 

 Proof: i) For the upper bound we have: 

   

B(q,v;q,v) = ( q, q)
0,

+ ( v + q, v + q)
0,

= q
0,

2
+ q + v

0,

2

C( q
0,

2
+ q

0,

2
+ v

0,

2 ).

 

 Since the bilinear form is symmetric, this is sufficient for 

the upper bound in Theorem 2.1. 

ii) For the lower bound. 

   

B(q,v;q,v) = ( q, q)
0,

+ ( v + q, v + q)
0,

= ( q, q)
0,

+ ( v, v)
0,

+ (q,q)
0,

+ 2( v,q)
0,

( q, q)
0,

+ ( v, v)
0,

+ (q,q)
0,

2 ( v,q)
0,

q
0,

2
+ q

0,

2
+ v

0,

2 ( v
0,

2
+

q
0,

2

)

= q
0,

2
+(1 ) q

0,

2
+(1 ) v

0,

2 ,

 

 So, we can select the positive constants  and , satis-

fying 

 
1 > 0,1 > 0.  

 So we obtain 

   
B(q,v;q,v) ( q

0,

2
+ q

0,

2
+ v

0,

2 ).  

 Then, we complete the proof. 

 Theorem 2.2. Let 
  
f H 1( ) . Then, (8) has a unique 

solution, and the solution is 
  
( ,u) H

1( ) H
0

1( ) . 

 Proof: From Theorem2.1, we know that the bilinear form 

  
B( , ; , )  is coercive and bounded on 

  
H

1( ) H
0

1( ) . Then 

the result follows from Lax-Milgram theorem. 

III. FINITE ELEMENT APPROXIMATION 

 In principle, the least-squares mixed finite element ap-

proach simply consists of minimizing (10) in finite-

dimensional subspaces 
  
H

h
( ) H

1( )  and 
  
M

h
( ) H

0

1( ) . 

Suitable spaces are based on a triangulation 
 
T

h
 of  and 

consist of piecewise polynomials with sufficient continuity 

conditions. 

 Let 
 
T

h
 be a class qusi-uniform regular partition of . 

   
H

h
( ) = span{ ( X

1
), , ( X

N
)}+ P

m

d
       (15) 

where   : R
d

R  is a radial basis function, 
 
P

m

d
denotes the 

space of polynomials of degree less than  m  and 

   
X = ( X

1
, , X

N
)  is a set of distinct nodes. 

 Consider  whose Fourier transform  
ˆ  has the prop-

erty in [8]: 

   
C

1
(1+ ) 2 ˆ C

2
(1+ ) 2 ,        (16) 

with positive constants 
  
C

1
 and 

  
C

2
. 

 The least-squares functional: 

   

F
h
( ,u) =

T T
h

( + f
0,T

2
+ u +

0,T

2 ).        (17) 

 Minimizing the functional (17) is equivalent to the fol-

lowing variational problem: find 
 h

H
h

 and 
 
u

h
M

h
 such 

that 

  
B

h
(

h
,u

h
;q,v) = ( f , v),         (18) 

holds for all 
  
(q,v) H

h
( ) M

h
( ) . 

 The discrete bilinear form 
  
B

h
( , ; , )  is defined as fol-

lows: 

  

B
h
(

h
,u

h
;q,v) =

T T
h

((
h
, q)

0,T
+ ( u

h
+

h
, v + q)

0,T
),  (19) 

where 

  
(

h
,u

h
) H

h
( ) M

h
( )

  
(q,v) H

h
( ) M

h
( ) . 

 Theorem 3.1. The bilinear 
  
B

h
( , ; , )  is continuous and 

coercive, i.e. there exist positive constants 
 h

 and 
 h

 such 

that 

   

B(
h
,u

h
;q,v)

h
(
T T

h

(
h 0,T

2
+

h 0,T

2
+ u

h 0,T

2 ))
1

2

(
T T

h

( q
0,T

2
+ q

0,T

2
+ v

0,T

2 ))
1

2 ,

       

(20)

 

   

B(q,v;q,v)
h

T T
h

( q
0,T

2
+ q

0,T

2
+ v

0,T

2 ),           (21) 
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which holds for all  

  
(

h
,u

h
) H

h
( ) M

h
( ) , 

  
(q,v) H

h
( ) M

h
( ) . 

 Proof: i) For the upper bound we have 

   

B
h
(q,v;q,v) =

T T
h

(( q, q)
0,T

+ ( v + q, v + q)
0,T

)

=
T T

h

( q
0,T

2
+ q + v

0,T

2 )

C
T T

h

( q
0,T

2
+ q

0,T

2
+ v

0,T

2 ).

 

 Since the bilinear form is symmetric, this is sufficient for 

the upper bound in Theorem 3.1. 

 ii) For the lower bound, 

   

B
h
(q,v;q,v) =

T T
h

(( q, q)
0,T

+ ( v + q, v + q)
0,T

)

=
T T

h

(( q, q)
0,T

+ ( v, v)
0,T

+ (q,q)
0,T

+ 2( v,q)
0,T

)

T T
h

(( q, q)
0,T

+ ( v, v)
0,T

+ (q,q)
0,T

2
1
( v,q)

0,T
)

T T
h

( q
0,T

2
+ q

0,T

2
+ v

0,T

2

1
(

1
v

0,T

2
+

q
0,T

2

1

))

=
T T

h

( q
0,T

2
+(1

1 1
) v

0,T

2
+(1 1

1

) q
0,T

2 ).

 

 So, we can select the positive constants 
 1

 and 
 1

, satis-

fying 

 

1
1 1

> 0,1 1

1

> 0.  

 We obtain 

   

B(q,v;q,v)
h

T T
h

( q
0,T

2
+ q

0,T

2
+ v

0,T

2 ).  

 Then we complete the proof. 

Theorem 3.2. Let 
  
f H 1( ) . Then, (18) has a unique so-

lution, and the solution is 
  
(

h
,u

h
) H

h
( ) M

h
( ) . 

 Proof: From Theorem3.1, we know that the bilinear form 

  
B

h
( , ; , )  is coercive and bounded on 

  
H

h
( ) M

h
( ) . Then 

the result follows from Lax-Milgram theorem. 

IV. ERROR ESTIMATES 

 The error estimates of the second-order elliptic problem 

have studied by Kim et al. [9]. In this section, we discuss the 

error estimates of the fourth-order elliptic equations. 

 Assume the domain  is convex, from the general finite 

element approximation theory we have the estimate [8]: 

 Lemma 4.1. Assume 
  

H
k ( ) ,  satisfies (16) with 

  
k > d / 2 + m.  Let 

  
H

h
( )  be given by (15). Then there 

exists a function 
  
s H

h
( )  such that for  x , the esti-

mate 

   
s

m,
ch

k m

k ,
         (22) 

is valid if  h  is sufficiently small. 

 We defined the: 

  
B(

h
,u

h
;q,v) = (

h
, q)

0,
+ ( u

h
+

h
, v + q)

0,
.       (23) 

 Since the exact solution 
  
(u, )  satisfy (12), using the 

condition (18), we get the following property: 

  

B(
h
,u u

h
;q,v) = ( (

h
), q)

0,
+ ( (u u

h
)

+(
h
), v + q)

0,

= 0,( q H
h
( ), v M

h
( ))

 

 Now we are ready to derive the following error estima-

tion. 

 Theorem 4.2. Suppose that 
  
u H

k ( )  and 
  

H
k ( )  

are the solutions of (12), and 
  
u

h
H

h
( )  and 

  h
H

h
( )  

are the solutions of (23). Then for sufficiently small  h , we 

have the error estimation 

   

h 0,

2
+ (

h
)

0,

2
+ (u u

h
)

0,

2
ch

2(k 2) ( u
k ,

2
+

k ,

2 )
       (24) 

 Proof: From (12), we have: 

   

B(
h
,u u

h
;

h
,u u

h
) = ( (u u

h
) + (

h
), (u u

h
)

+(
h
))

0,
+ ( (

h
), (

h
))

0,

= (u u
h
) + (

h
)

0,

2

+ (
h
)

0,

2

c( (
h
)

0,

2
+ (u u

h
)

0,

2

+
h 0,

2 ).

 From (14), we obtain the following inequality: 

   

(
I h

)
0,

2
+

I h 0,

2
+ (u

I
u

h
)

0,

2

B(
I h

,u
I

u
h
;

I h
,u

I
u

h
)

= B(
I
,u u

I
;

I h
,u

I
u

h
)

( (u u
I
) + (

I
), (u

I
u

h
) + (

I h
))

0,

+( (
I
), (

I h
))

0,

( (
I
)

0,

2
+ (u u

I
)

0,

2
+

I 0,

2 )
1

2

( (
I h

)
0,

2
+ (u

I
u

h
)

0,

2
+

I h 0,

2 )
1

2 ,

 

 So we have 

   

(
I h

)
0,

2
+ (u

I
u

h
)

0,

2
+

I h 0,

2

(
I
)

0,

2
+ (u u

I
)

0,

2
+

I 0,

2
 

 From above the inequalities, we have: 
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(
h
)

0,

2
+

h 0,

2
+ (u u

h
)

0,

2

(
I
)

0,

2
+ (u u

I
)

0,

2
+

I 0,

2

+ (
I h

)
0,

2
+ (u

I
u

h
)

0,

2
+

I h 0,

2

2( (
I
)

0,

2
+ (u u

I
)

0,

2
+

I 0,

2 )

 

where we used Lemma4.1, we have the following inequality: 

   

h 0,

2
+ (

h
)

0,

2
+ (u u

h
)

0,

2

ch
2(k 2) ( u

k ,

2
+

k ,

2 )
 

 Then we complete the proof. 

V. POSTIERIORI ERROR ESTIMATION 

 One of the main motivations for using least-squares finite 

element approaches is the fact that the element-wise evalua-

tion of the functional serves as an a posteriori error estima-

tor. 

 A posteriori estimate attempt to provide quantitatively 

accurate measures of the discretization error through the so-

called a posteriori error estimators which are derived by 

using the information obtained during the solution process. 

In recent years, the use of a posteriori error estimators has 

become an efficient tool for assessing and controlling com-

putational errors in adaptive computations [10]. 

 Now we defined the least-squares functional: 

   

F
h
(

h
,u

h
) =

T T
h

(
h
+ f

0,T

2
+ u

h
+

h 0,T

2 ).        (25) 

where 
  
(

h
,u

h
) H

h
( ) M

h
( ) . 

 We have 

   

F
h
(

h
,u u

h
) =

T T
h

( (
h
) + f

0,T

2

+ (u u
h
) +

h 0,T

2 ).

 

 So we define the posteriori estimator as following: 

  

F
h
(

h
,u u

h
) =

T T
h

2 .          (26) 

 Theorem 5.1. Let 
  
f H 1( ) , The least-squares func-

tional constitutes an a posteriori error estimator. In other 

words, for 

   

2
= (

h
) + f

0,T

2
+ (u u

h
) +

h 0,T

2
 

there exist positive constants 
 T

 and 
 T

 such that 

   

T T
h

2

T
T T

h

( (
h
)

0,T

2
+

h 0,T

2

+ (u u
h
)

0,T

2 ),

       (27) 

   

T T
h

2

T
T T

h

( (
h
)

0,T

2
+

h 0,T

2

+ (u u
h
)

0,T

2 ).

       (28) 

which holds for all 
  
(

h
,u

h
) H

h
( ) M

h
( ) . 

Proof: From (26) and 
  
f H 1( ) , we know 

   

T T
h

2
= F

h
(

h
,u u

h
)

=
T T

h

( (
h
) + f

0,T

2
+ (u u

h
) +

h 0,T

2 )

= C
T T

h

( (
h
)

0,T

2
+ (u u

h
) +

h 0,T

2 )

= CB
h
(

h
,u u

h
;

h
,u u

h
).

 

 From Theorem 3.1, we have: 

   

B
h
(

h
,u u

h
;

h
,u u

h
)

T
T T

h

( (
h
)

0,T

2

+
h 0,T

2
+ (u u

h
)

0,T

2 ),

   

B
h
(

h
,u u

h
;

h
,u u

h
)

T
T T

h

( (
h
)

0,T

2

+
h 0,T

2
+ (u u

h
)

0,T

2 ).

 

 The positive constants 
 T

= c
h

 and 
 T

= c
h

, this 

completes the proof. 

 Remark: The mesh is adapted based on a posteriori er-

ror estimate of the fourth-order elliptic equations. We use a 

mesh optimization procedure to compute the size of elements 

in the new mesh, based on the computed a posteriori error 

estimate . 

 The mesh is adapted using the mesh modification proce-

dures developed by Li et al. [11]. This requires the specifica-

tion of a mesh metric field to define the desired element size 

and shape distribution from the computed . The mesh is 

then adapted to satisfy the prescribed metric field by the 

processes of refinement, coarsening and re-alignment. 

 Adaptive refinement strategies consist in refining those 

triangles with the largest values of . 

VI. SUMMARY AND CONCLUSIONS 

 As the fourth-order elliptic equations belong to high-

order partial differential equations which possess complex 

numerical structure, and the select of finite element spaces is 

difficult, so the research about the fourth-order elliptic equa-

tions is still quite few. This paper describes an adaptive 

least-squares mixed finite elements method for the fourth-

order elliptic equations for the first time, constructes a poste-

riori error estimator by the least-squares functional, and es-

timates the posteriori errors effectively by composed bilinear 

form. 

 We describe an adaptive least-squares mixed finite ele-

ment procedure for solving the fourth-order elliptic equa-

tions in this paper. The procedure uses a least-squares mixed 

finite element formulation and adaptive refinement based on 

a posteriori error estimate. The method is applied to study 

the continuous and coercivity of the fourth-order elliptic 

equations. 

 In this paper, we applied relatively standard a posteriori 

error estimation technique to solve the fourth-order elliptic 

equations adaptively. 
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 This paper provides theory foundation for numerical 

computation in plate bending and fluid dynamics. 
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