An Adaptive Least-Squares Mixed Finite Element Method for FourthOrder Elliptic Equations

Gu Haiming*, Li Hongwei and Xie Bing
Department of Mathematics, Qingdao University of Science and Technology, Qingdao 266061, P.R. China

Abstract

A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth-order elliptic equations is analyzed and developed in this paper. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated.

Keywords: least-squares mixed finite element method, fourth-order elliptic equations, least-squares functional, a posteriori error.

I. INTRODUCTION

A general theory of the least-squares method has been developed by A K Aziz, R B Kellogg and A B Stephens in [1]. The most important advantage of the least-squares method leads to a symmetric positive definite problem. The least-squares mixed finite element method approaches a least-squares residual minimization is introduced. This method has an advantage which is not subject to the LBB condition [2]. Finite element methods of least-squares type have been studying in many fields recently (see, e.g., Stokes equation [2], Elliptic problem [3], Newtonian fluid flow problem [4], Transmission problems [5].

An adaptive least-squares mixed finite element method has been studied (see, e.g., the linear elasticity [6]). But the research about fourth-order elliptic equations which are widely used in hydrodynamics is not common. This paper mainly puts emphasis on an adaptive least-squares mixed finite element method for fourth-order elliptic equations. Our emphasis in this paper is on the performance of an adaptive refinement strategy based on the a posteriori error estimator inherent in the least-squares formulation by the local evaluation of the functional.

This paper is organized as follows. The least-squares formulation of the fourth-order elliptic equations is described in Section 2. It includes the coercivity properties of the leastsquares variational formulation. Appropriate spaces for the finite element approximation and a generalization of the coercivity are shown in Section 2 to the discrete form is discussed in Section 3. The error estimates of the fourth-order elliptic equations are derived in Section 4. In Section 5, a posteriori error estimators which are needed in an adaptive refinement algorithm are composed with the least-squares functional, and the posteriori errors are effectively estimated. Finally, we summarize our findings and present conclusions

[^0]in Section 6. In this paper, we define c to be a generic positive constant, ε be a generic small positive constant.

II. A LEAST-SQUARES FORMULATION OF FOURTH-ORDER ELLIPTIC EQUATIONS

We start from the equations of fourth-order elliptic in the form [7]:
$\Delta^{2} u=f$ in Ω,
$u=0 \quad$ on $\partial \Omega$,
$\frac{\partial u}{\partial n}=0 \quad$ on $\partial \Omega$,
where $\Omega \subset R^{n}$ is a bounded domain, with boundary $\partial \Omega$. We shall consider an adaptive least-squares mixed finite element method for (1)-(3).

Now we set $\Delta u=-\sigma$, then, we have:

$$
\begin{equation*}
-\Delta \sigma=f \text { in } \Omega \tag{4}
\end{equation*}
$$

$\Delta u+\sigma=0$ in Ω,
$u=0 \quad$ on $\partial \Omega$,
$\frac{\partial u}{\partial n}=0 \quad$ on $\partial \Omega$,
We introduce the Sobolev spaces:
$H^{1}(\Omega)=\left\{p \in L^{2}(\Omega): \nabla p \in L^{2}(\Omega)\right\}$,
$H_{0}^{m}(\Omega)=\left\{v \in H^{m}(\Omega):\left.D^{\alpha} v\right|_{\partial \Omega}=0,|\alpha|<m\right\}$.
Now, let us define the least-squares problem: find $(\sigma, u) \in H^{1}(\Omega) \times H_{0}^{1}(\Omega)$ such that
$J(\sigma, u)=\inf _{q \in H^{\prime}(\Omega), v \in H_{0}^{1}(\Omega)} J(q, v)$,
where
$J(q, v)=(\Delta q+f, \Delta q+f)_{0, \Omega}+(\Delta v+q, \Delta v+q)_{0, \Omega}$.

We introduce the least-squares functional:

$$
\begin{equation*}
F(\sigma, u)=\|\Delta \sigma+f\|_{0, \Omega}^{2}+\|\Delta u+\sigma\|_{0, \Omega}^{2} . \tag{10}
\end{equation*}
$$

Taking variations in (9) with respect to q and v, the weak statement becomes : find $(\sigma, u) \in H^{1}(\Omega) \times H_{0}^{1}(\Omega)$ such that:

$$
\begin{equation*}
B(\sigma, u ; q, v)=-(f, \Delta v),\left(\forall v \in H_{0}^{1}(\Omega), \forall q \in H^{1}(\Omega)\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
B(\sigma, u ; q, v)=(\Delta \sigma, \Delta q)_{0, \Omega}+(\Delta u+\sigma, \Delta v+q)_{0, \Omega} \tag{12}
\end{equation*}
$$

Theorem 2.1. The bilinear form $B(\cdot, \cdot ;, \cdot)$ is continuous and coercive. In other words, there exist positive constants α and β, such that

$$
\begin{align*}
& B(\sigma, u ; q, v) \leq \beta\left(\|\Delta \sigma\|_{0, \Omega}^{2}+\|\sigma\|_{0, \Omega}^{2}+\|\Delta u\|_{0, \Omega}^{2}\right)^{\frac{1}{2}} \\
& \left.\qquad \quad\|\Delta q\|_{0, \Omega}^{2}+\|q\|_{0, \Omega}^{2}+\|\Delta v\|_{0, \Omega}^{2}\right)^{\frac{1}{2}} \tag{13}\\
& B(q, v ; q, v) \geq \alpha\left(\|\Delta q\|_{0, \Omega}^{2}+\|q\|_{0, \Omega}^{2}+\|\Delta v\|_{0, \Omega}^{2}\right) \tag{14}\\
& \text { holds for all }(\sigma, u),(q, v) \in H^{1}(\Omega) \times H_{0}^{1}(\Omega)
\end{align*}
$$

Proof: i) For the upper bound we have:

$$
\begin{aligned}
B(q, v ; q, v) & =(\Delta q, \Delta q)_{0, \Omega}+(\Delta v+q, \Delta v+q)_{0, \Omega} \\
& =\|\Delta q\|_{0, \Omega}^{2}+\|q+\Delta v\|_{0, \Omega}^{2} \\
& \leq C\left(\|\Delta q\|_{0, \Omega}^{2}+\|q\|_{0, \Omega}^{2}+\|\Delta v\|_{0, \Omega}^{2}\right)
\end{aligned}
$$

Since the bilinear form is symmetric, this is sufficient for the upper bound in Theorem 2.1.
ii) For the lower bound.

$$
\begin{aligned}
B(q, v ; q, v) & =(\Delta q, \Delta q)_{0, \Omega}+(\Delta v+q, \Delta v+q)_{0, \Omega} \\
& =(\Delta q, \Delta q)_{0, \Omega}+(\Delta v, \Delta v)_{0, \Omega}+(q, q)_{0, \Omega}+2(\Delta v, q)_{0, \Omega} \\
& \geq(\Delta q, \Delta q)_{0, \Omega}+(\Delta v, \Delta v)_{0, \Omega}+(q, q)_{0, \Omega}-2 \varepsilon(\Delta v, q)_{0, \Omega} \\
& \geq\|\Delta q\|_{0, \Omega}^{2}+\|q\|_{0, \Omega}^{2}+\|\Delta v\|_{0, \Omega}^{2}-\varepsilon\left(\delta\|\Delta v\|_{0, \Omega}^{2}+\frac{\|q\|_{0, \Omega}^{2}}{\delta}\right) \\
& =\|\Delta q\|_{0, \Omega}^{2}+\left(1-\frac{\varepsilon}{\delta}\right)\|q\|_{0, \Omega}^{2}+(1-\varepsilon \delta)\|\Delta v\|_{0, \Omega}^{2}
\end{aligned}
$$

So, we can select the positive constants ε and δ, satisfying
$1-\varepsilon \delta>0,1-\frac{\varepsilon}{\delta}>0$.
So we obtain

$$
B(q, v ; q, v) \geq \alpha\left(\|\Delta q\|_{0, \Omega}^{2}+\|q\|_{0, \Omega}^{2}+\|\Delta v\|_{0, \Omega}^{2}\right)
$$

Then, we complete the proof.
Theorem 2.2. Let $f \in H^{-1}(\Omega)$. Then, (8) has a unique solution, and the solution is $(\sigma, u) \in H^{1}(\Omega) \times H_{0}^{1}(\Omega)$.

Proof: From Theorem2.1, we know that the bilinear form $B(\cdot, \cdot ;, \cdot)$ is coercive and bounded on $H^{1}(\Omega) \times H_{0}^{1}(\Omega)$. Then the result follows from Lax-Milgram theorem.

III. FINITE ELEMENT APPROXIMATION

In principle, the least-squares mixed finite element approach simply consists of minimizing (10) in finitedimensional subspaces $H_{h}(\Omega) \subset H^{1}(\Omega)$ and $M_{h}(\Omega) \subset H_{0}^{1}(\Omega)$. Suitable spaces are based on a triangulation T_{h} of Ω and consist of piecewise polynomials with sufficient continuity conditions.

Let T_{h} be a class qusi-uniform regular partition of Ω.

$$
\begin{equation*}
H_{h}(\Omega)=\operatorname{span}\left\{\Phi\left(\cdot-X_{1}\right), \cdots, \Phi\left(\cdot-X_{N}\right)\right\}+P_{m}^{d} \tag{15}
\end{equation*}
$$

where $\Phi: R^{d} \rightarrow R$ is a radial basis function, P_{m}^{d} denotes the space of polynomials of degree less than m and $X=\left(X_{1}, \cdots, X_{N}\right) \subseteq \Omega$ is a set of distinct nodes.

Consider Φ whose Fourier transform $\hat{\Phi}$ has the property in [8]:
$C_{1}(1+\|\omega\|)^{-2 \varsigma} \leq \hat{\Phi} \leq C_{2}(1+\|\omega\|)^{-2 \varsigma}$,
with positive constants C_{1} and C_{2}.
The least-squares functional:
$F_{h}(\sigma, u)=\sum_{T \in T_{h}}\left(\|\Delta \sigma+f\|_{b, T}^{2}+\|\Delta u+\sigma\|_{0, T}^{2}\right)$.
Minimizing the functional (17) is equivalent to the following variational problem: find $\sigma_{h} \in H_{h}$ and $u_{h} \in M_{h}$ such that
$B_{h}\left(\sigma_{h}, u_{h} ; q, v\right)=-(f, \Delta v)$,
holds for all $(q, v) \in H_{h}(\Omega) \times M_{h}(\Omega)$.
The discrete bilinear form $B_{h}(\cdot, \cdot ;, \cdot)$ is defined as follows:

$$
\begin{equation*}
B_{h}\left(\sigma_{h}, u_{h} ; q, v\right)=\sum_{T \in T_{h}}\left(\left(\Delta \sigma_{h}, \Delta q\right)_{0, T}+\left(\Delta u_{h}+\sigma_{h}, \Delta v+q\right)_{0, T}\right), \tag{19}
\end{equation*}
$$

where
$\left(\sigma_{h}, u_{h}\right) \in H_{h}(\Omega) \times M_{h}(\Omega), \quad(q, v) \in H_{h}(\Omega) \times M_{h}(\Omega)$.
Theorem 3.1. The bilinear $B_{h}(\cdot, \cdot ;, \cdot)$ is continuous and coercive, i.e. there exist positive constants α_{h} and β_{h} such that

$$
\begin{align*}
B\left(\sigma_{h}, u_{h} ; q, v\right) \leq & \beta_{h}\left(\sum_{T \in T_{h}}\left(\left\|\Delta \sigma_{h}\right\|_{0, T}^{2}+\left\|\sigma_{h}\right\|_{0, T}^{2}+\left\|\Delta u_{h}\right\|_{0, T}^{2}\right)\right)^{\frac{1}{2}} \tag{20}\\
& \left(\sum_{T \in T_{h}}\left(\|\Delta q\|_{b, T}^{2}+\|q\|_{0, T}^{2}+\|\Delta v\|_{b, T}^{2}\right)\right)^{\frac{1}{2}} \\
B(q, v ; q, v) \geq & \alpha_{h} \sum_{T \in T_{h}}\left(\|\Delta q\|_{0, T}^{2}+\|q\|_{b, T}^{2}+\|\Delta v\|_{b, T}^{2}\right), \tag{21}
\end{align*}
$$

which holds for all
$\left(\sigma_{h}, u_{h}\right) \in H_{h}(\Omega) \times M_{h}(\Omega),(q, v) \in H_{h}(\Omega) \times M_{h}(\Omega)$.
Proof: i) For the upper bound we have

$$
\begin{aligned}
B_{h}(q, v ; q, v) & =\sum_{T \in T_{h}}\left((\Delta q, \Delta q)_{0, T}+(\Delta v+q, \Delta v+q)_{0, T}\right) \\
& =\sum_{T \in T_{h}}\left(\|\Delta q\|_{0, T}^{2}+\|q+\Delta v\|_{0, T}^{2}\right) \\
& \leq C \sum_{T \in T_{h}}\left(\|\Delta q\|_{0, T}^{2}+\|q\|_{0, T}^{2}+\|\Delta v\|_{0, T}^{2}\right)
\end{aligned}
$$

Since the bilinear form is symmetric, this is sufficient for the upper bound in Theorem 3.1.
ii) For the lower bound,

$$
\begin{aligned}
B_{h}(q, v ; q, v) & =\sum_{T \in T_{h}}\left((\Delta q, \Delta q)_{0, T}+(\Delta v+q, \Delta v+q)_{0, T}\right) \\
& =\sum_{T \in T_{h}}\left((\Delta q, \Delta q)_{0, T}+(\Delta v, \Delta v)_{0, T}+(q, q)_{0, T}+2(\Delta v, q)_{0, T}\right) \\
& \geq \sum_{T \in T_{h}}\left((\Delta q, \Delta q)_{0, T}+(\Delta v, \Delta v)_{0, T}+(q, q)_{0, T}-2 \varepsilon_{1}(\Delta v, q)_{0, T}\right) \\
& \geq \sum_{T \in T_{h}}\left(\|\Delta q\|_{0, T}^{2}+\|q\|_{0, T}^{2}+\|\Delta v\|_{0, T}^{2}-\varepsilon_{1}\left(\delta_{1}\|\Delta v\|_{0, T}^{2}+\frac{\|q\|_{0, T}^{2}}{\delta_{1}}\right)\right) \\
& =\sum_{T \in T_{h}}\left(\|\Delta q\|_{0, T}^{2}+\left(1-\varepsilon_{1} \delta_{1}\right)\|\Delta v\|_{0, T}^{2}+\left(1-\frac{\varepsilon_{1}}{\delta_{1}}\right)\|q\|_{0, T}^{2}\right) .
\end{aligned}
$$

So, we can select the positive constants ε_{1} and δ_{1}, satisfying
$1-\varepsilon_{1} \delta_{1}>0,1-\frac{\varepsilon_{1}}{\delta_{1}}>0$.
We obtain
$B(q, v ; q, v) \geq \alpha_{h} \sum_{T \in T_{h}}\left(\|\Delta q\|_{0, T}^{2}+\|q\|_{0, T}^{2}+\|\Delta v\|_{0, T}^{2}\right)$.
Then we complete the proof.
Theorem 3.2. Let $f \in H^{-1}(\Omega)$. Then, (18) has a unique solution, and the solution is $\left(\sigma_{h}, u_{h}\right) \in H_{h}(\Omega) \times M_{h}(\Omega)$.

Proof: From Theorem3.1, we know that the bilinear form $B_{h}(\cdot, \cdot ;, \cdot)$ is coercive and bounded on $H_{h}(\Omega) \times M_{h}(\Omega)$. Then the result follows from Lax-Milgram theorem.

IV. ERROR ESTIMATES

The error estimates of the second-order elliptic problem have studied by Kim et al. [9]. In this section, we discuss the error estimates of the fourth-order elliptic equations.

Assume the domain Ω is convex, from the general finite element approximation theory we have the estimate [8]:

Lemma 4.1. Assume $\omega \in H^{k}(\Omega), \Phi$ satisfies (16) with $\varsigma \geq k>d / 2+m$. Let $H_{h}(\Omega)$ be given by (15). Then there exists a function $s \in H_{h}(\Omega)$ such that for $x \in \Omega$, the estimate
$\|\omega-s\|_{m, \Omega} \leq c h^{k-m}\|\omega\|_{k, \Omega}$
is valid if h is sufficiently small.
We defined the:

$$
\begin{equation*}
B\left(\sigma_{h}, u_{h} ; q, v\right)=\left(\Delta \sigma_{h}, \Delta q\right)_{0, \Omega}+\left(\Delta u_{h}+\sigma_{h}, \Delta v+q\right)_{0, \Omega} \tag{23}
\end{equation*}
$$

Since the exact solution (u, σ) satisfy (12), using the condition (18), we get the following property:

$$
\begin{aligned}
B\left(\sigma-\sigma_{h}, u-u_{h} ; q, v\right)= & \left(\Delta\left(\sigma-\sigma_{h}\right), \Delta q\right)_{0, \Omega}+\left(\Delta\left(u-u_{h}\right)\right. \\
& \left.+\left(\sigma-\sigma_{h}\right), \Delta v+q\right)_{0, \Omega} \\
& =0,\left(\forall q \in H_{h}(\Omega), \forall v \in M_{h}(\Omega)\right)
\end{aligned}
$$

Now we are ready to derive the following error estimation.

Theorem 4.2. Suppose that $u \in H^{k}(\Omega)$ and $\sigma \in H^{k}(\Omega)$ are the solutions of (12), and $u_{h} \in H_{h}(\Omega)$ and $\sigma_{h} \in H_{h}(\Omega)$ are the solutions of (23). Then for sufficiently small h, we have the error estimation

$$
\begin{align*}
& \left\|\sigma-\sigma_{h}\right\|_{b, \Omega}^{2}+\left\|\Delta\left(\sigma-\sigma_{h}\right)\right\|_{b, \Omega}^{2}+\| \Delta\left(u-u_{h}\right) \\
& \|_{0, \Omega}^{2} \leq c h^{2(k-2)}\left(\|u\|_{k, \Omega}^{2}+\|\sigma\|_{k, \Omega}^{2}\right) \tag{24}
\end{align*}
$$

Proof: From (12), we have:

$$
\begin{aligned}
B\left(\sigma-\sigma_{h}, u-u_{h} ; \sigma-\sigma_{h}, u-u_{h}\right) & =\left(\Delta\left(u-u_{h}\right)+\left(\sigma-\sigma_{h}\right), \Delta\left(u-u_{h}\right)\right. \\
& \left.+\left(\sigma-\sigma_{h}\right)\right)_{0, \Omega}+\left(\Delta\left(\sigma-\sigma_{h}\right), \Delta\left(\sigma-\sigma_{h}\right)\right)_{0, \Omega} \\
& =\left\|\Delta\left(u-u_{h}\right)+\left(\sigma-\sigma_{h}\right)\right\|_{0, \Omega}^{2} \\
+ & \left\|\Delta\left(\sigma-\sigma_{h}\right)\right\|_{0, \Omega}^{2} \\
& \leq c\left(\left\|\Delta\left(\sigma-\sigma_{h}\right)\right\|_{0, \Omega}^{2}+\left\|\Delta\left(u-u_{h}\right)\right\|_{0, \Omega}^{2}\right. \\
+ & \left.\left\|\sigma-\sigma_{h}\right\|_{0, \Omega}^{2}\right) .
\end{aligned}
$$

From (14), we obtain the following inequality:

$$
\begin{aligned}
& \left\|\Delta\left(\sigma_{I}-\sigma_{h}\right)\right\|_{b_{, \Omega}}^{2}+\left\|\sigma_{I}-\sigma_{h}\right\|_{0_{, \Omega}}^{2}+\left\|\Delta\left(u_{I}-u_{h}\right)\right\|_{0, \Omega}^{2} \\
& \leq B\left(\sigma_{I}-\sigma_{h}, u_{I}-u_{h} ; \sigma_{I}-\sigma_{h}, u_{I}-u_{h}\right) \\
& =B\left(\sigma-\sigma_{I}, u-u_{I} ; \sigma_{I}-\sigma_{h}, u_{I}-u_{h}\right) \\
& \leq\left(\Delta\left(u-u_{I}\right)+\left(\sigma-\sigma_{I}\right), \Delta\left(u_{I}-u_{h}\right)+\left(\sigma_{I}-\sigma_{h}\right)\right)_{0, \Omega} \\
& +\left(\Delta\left(\sigma-\sigma_{I}\right), \Delta\left(\sigma_{I}-\sigma_{h}\right)\right)_{0, \Omega} \\
& \leq\left(\left\|\Delta\left(\sigma-\sigma_{I}\right)\right\|_{0, \Omega}^{2}+\left\|\Delta\left(u-u_{I}\right)\right\|_{0, \Omega}^{2}+\left\|\sigma-\sigma_{I}\right\|_{0, \Omega}^{2}\right)^{\frac{1}{2}} \\
& \quad\left(\left\|\Delta\left(\sigma_{I}-\sigma_{h}\right)\right\|_{0, \Omega}^{2}+\left\|\Delta\left(u_{I}-u_{h}\right)\right\|_{0, \Omega}^{2}+\left\|\sigma_{I}-\sigma_{h}\right\|_{0, \Omega}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

So we have

$$
\begin{aligned}
& \left\|\Delta\left(\sigma_{I}-\sigma_{h}\right)\right\|_{0, \Omega}^{2}+\left\|\Delta\left(u_{I}-u_{h}\right)\right\|_{0, \Omega}^{2}+\left\|\sigma_{I}-\sigma_{h}\right\|_{0, \Omega}^{2} \\
& \leq\left\|\Delta\left(\sigma-\sigma_{I}\right)\right\|_{0_{, \Omega}}^{2}+\left\|\Delta\left(u-u_{I}\right)\right\|_{0, \Omega}^{2}+\left\|\sigma-\sigma_{I}\right\|_{0, \Omega}^{2}
\end{aligned}
$$

From above the inequalities, we have:

$$
\begin{aligned}
& \left\|\Delta\left(\sigma-\sigma_{h}\right)\right\|_{0, \Omega}^{2}+\left\|\sigma-\sigma_{h}\right\|_{0, \Omega}^{2}+\left\|\Delta\left(u-u_{h}\right)\right\|_{, \Omega}^{2} \\
& \leq\left\|\Delta\left(\sigma-\sigma_{I}\right)\right\|_{0, \Omega}^{2}+\left\|\Delta\left(u-u_{I}\right)\right\|_{0, \Omega}^{2}+\left\|\sigma-\sigma_{I}\right\|_{0, \Omega}^{2} \\
& +\left\|\Delta\left(\sigma_{I}-\sigma_{h}\right)\right\|_{0, \Omega}^{2}+\left\|\Delta\left(u_{I}-u_{h}\right)\right\|_{0, \Omega}^{2}+\left\|\sigma_{I}-\sigma_{h}\right\|_{, \Omega}^{2} \\
& \leq 2\left(\left\|\Delta\left(\sigma-\sigma_{I}\right)\right\|_{0, \Omega}^{2}+\left\|\Delta\left(u-u_{I}\right)\right\|_{0, \Omega}^{2}+\left\|\sigma-\sigma_{I}\right\|_{0, \Omega}^{2}\right)
\end{aligned}
$$

where we used Lemma4.1, we have the following inequality:

$$
\begin{aligned}
& \left\|\sigma-\sigma_{h}\right\|_{0, \Omega}^{2}+\left\|\Delta\left(\sigma-\sigma_{h}\right)\right\|_{b, \Omega}^{2}+\left\|\Delta\left(u-u_{h}\right)\right\|_{0, \Omega}^{2} \\
& \leq c h^{2(k-2)}\left(\|u\|_{k, \Omega}^{2}+\|\sigma\|_{k, \Omega}^{2}\right)
\end{aligned}
$$

Then we complete the proof.

V. POSTIERIORI ERROR ESTIMATION

One of the main motivations for using least-squares finite element approaches is the fact that the element-wise evaluation of the functional serves as an a posteriori error estimator.

A posteriori estimate attempt to provide quantitatively accurate measures of the discretization error through the socalled a posteriori error estimators which are derived by using the information obtained during the solution process. In recent years, the use of a posteriori error estimators has become an efficient tool for assessing and controlling computational errors in adaptive computations [10].

Now we defined the least-squares functional:
$F_{h}\left(\sigma_{h}, u_{h}\right)=\sum_{T \in T_{h}}\left(\left\|\Delta \sigma_{h}+f\right\|_{0, T}^{2}+\left\|\Delta u_{h}+\sigma_{h}\right\|_{0, T}^{2}\right)$.
where $\left(\sigma_{h}, u_{h}\right) \in H_{h}(\Omega) \times M_{h}(\Omega)$.
We have
$F_{h}\left(\sigma-\sigma_{h}, u-u_{h}\right)=\sum_{T \in T_{h}}\left(\left\|\Delta\left(\sigma-\sigma_{h}\right)+f\right\|_{b, T}^{2}\right.$
$\left.+\left\|\Delta\left(u-u_{h}\right)+\sigma-\sigma_{h}\right\|_{, T}^{2}\right)$.
So we define the posteriori estimator as following:

$$
\begin{equation*}
F_{h}\left(\sigma-\sigma_{h}, u-u_{h}\right)=\sum_{T \in T_{h}} \eta^{2} \tag{26}
\end{equation*}
$$

Theorem 5.1. Let $f \in H^{-1}(\Omega)$, The least-squares functional constitutes an a posteriori error estimator. In other words, for
$\eta^{2}=\left\|\Delta\left(\sigma-\sigma_{h}\right)+f\right\|_{b_{, T}}^{2}+\left\|\Delta\left(u-u_{h}\right)+\sigma-\sigma_{h}\right\|_{6, T}^{2}$
there exist positive constants α_{T} and β_{T} such that
$\sum_{T \in T_{h}} \eta^{2} \leq \beta_{T} \sum_{T \in T_{h}}\left(\left\|\Delta\left(\sigma-\sigma_{h}\right)\right\|_{0, T}^{2}+\left\|\sigma-\sigma_{h}\right\|_{0, T}^{2}\right.$
$\left.+\left\|\Delta\left(u-u_{h}\right)\right\|_{0, T}^{2}\right)$,
$\sum_{T \in T_{h}} \eta^{2} \geq \alpha_{T} \sum_{T \in T_{h}}\left(\left\|\Delta\left(\sigma-\sigma_{h}\right)\right\|_{0, T}^{2}+\left\|\sigma-\sigma_{h}\right\|_{0, T}^{2}\right.$
$\left.+\left\|\Delta\left(u-u_{h}\right)\right\|_{0, T}^{2}\right)$.
which holds for all $\left(\sigma_{h}, u_{h}\right) \in H_{h}(\Omega) \times M_{h}(\Omega)$.

Proof: From (26) and $f \in H^{-1}(\Omega)$, we know

$$
\begin{aligned}
\sum_{T \in T_{h}} \eta^{2} & =F_{h}\left(\sigma-\sigma_{h}, u-u_{h}\right) \\
& =\sum_{T \in T_{h}}\left(\left\|\Delta\left(\sigma-\sigma_{h}\right)+f\right\|_{0, T}^{2}+\left\|\Delta\left(u-u_{h}\right)+\sigma-\sigma_{h}\right\|_{0, T}^{2}\right) \\
& =C \sum_{T \in T_{h}}\left(\left\|\Delta\left(\sigma-\sigma_{h}\right)\right\|_{b, T}^{2}+\left\|\Delta\left(u-u_{h}\right)+\sigma-\sigma_{h}\right\|_{b, T}^{2}\right) \\
& =C B_{h}\left(\sigma-\sigma_{h}, u-u_{h} ; \sigma-\sigma_{h}, u-u_{h}\right) .
\end{aligned}
$$

From Theorem 3.1, we have:

$$
\begin{aligned}
& B_{h}\left(\sigma-\sigma_{h}, u-u_{h} ; \sigma-\sigma_{h}, u-u_{h}\right) \leq \beta_{T} \sum_{T \in T_{h}}\left(\left\|\Delta\left(\sigma-\sigma_{h}\right)\right\|_{0, T}^{2}\right. \\
& \left.+\left\|\sigma-\sigma_{h}\right\|_{0, T}^{2}+\left\|\Delta\left(u-u_{h}\right)\right\|_{0, T}^{2}\right), \\
& B_{h}\left(\sigma-\sigma_{h}, u-u_{h} ; \sigma-\sigma_{h}, u-u_{h}\right) \geq \alpha_{T} \sum_{T \in T_{h}}\left(\left\|\Delta\left(\sigma-\sigma_{h}\right)\right\|_{0, T}^{2}\right. \\
& \left.+\left\|\sigma-\sigma_{h}\right\|_{0, T}^{2}+\left\|\Delta\left(u-u_{h}\right)\right\|_{0, T}^{2}\right) .
\end{aligned}
$$

The positive constants $\alpha_{T}=c \alpha_{h}$ and $\beta_{T}=c \beta_{h}$, this completes the proof.

Remark: The mesh is adapted based on a posteriori error estimate of the fourth-order elliptic equations. We use a mesh optimization procedure to compute the size of elements in the new mesh, based on the computed a posteriori error estimate η.

The mesh is adapted using the mesh modification procedures developed by Li et al. [11]. This requires the specification of a mesh metric field to define the desired element size and shape distribution from the computed η. The mesh is then adapted to satisfy the prescribed metric field by the processes of refinement, coarsening and re-alignment.

Adaptive refinement strategies consist in refining those triangles with the largest values of η.

VI. SUMMARY AND CONCLUSIONS

As the fourth-order elliptic equations belong to highorder partial differential equations which possess complex numerical structure, and the select of finite element spaces is difficult, so the research about the fourth-order elliptic equations is still quite few. This paper describes an adaptive least-squares mixed finite elements method for the fourthorder elliptic equations for the first time, constructes a posteriori error estimator by the least-squares functional, and estimates the posteriori errors effectively by composed bilinear form.

We describe an adaptive least-squares mixed finite element procedure for solving the fourth-order elliptic equations in this paper. The procedure uses a least-squares mixed finite element formulation and adaptive refinement based on a posteriori error estimate. The method is applied to study the continuous and coercivity of the fourth-order elliptic equations.

In this paper, we applied relatively standard a posteriori error estimation technique to solve the fourth-order elliptic equations adaptively.

This paper provides theory foundation for numerical computation in plate bending and fluid dynamics.

ACKNOWLEDGMENTS

The authors wish to thank the referees for several useful suggestions.

REFERENCES

[1] Aziz AK, Kellogg RB, Stephens AB. Least-squares methods for elliptic systems. Math Comput 1985; 44: 53-70.
[2] Haiming G, Dangping Y, Shulin S, Xinmin L. Least-squares mixed finite element method for a class of stokes equation. Appl Math Mech 2000; 21(5): 557-66.
[3] Haiming G, Xiu-ling X. The least-squares mixed finite element methods for a degenerate elliptic problem. Math Appl 2002; 15(1): 118-22.
[4] Cai Z, Lee B, Wang P. Least-squares methods for incompressible newtonian fluid flow: linear stationary problems. SIAM J Numer Anal 2004; 42: 843-59.
[5] Maischak M, Stephan EP. A least squares coupling method with finite elements and boundary elements for transmission problems. Comput Math Appl 2004; 48: 995-1016.
[6] Cai Z, Korsawe J, Starke G. An adaptive least squares mixed finite element method for the stress-displacement formulation of linear elasticity. Numerical Methods Partial Differ Equ 2005; 21: 132-48.
[7] Luo ZD. Theoretical Bases and applications for finite element methods and application. Shan Dong Education Publishing House: Jinan 1996.
[8] Li J. Mixed methods for fourth-order elliptic and parabolic problems using radial basis functions. Adv Comput Math 2005; 23: 21-30.
[9] Kim Y, Lee S. Least-squares mixed method for second-order elliptic problems. Appl Math Comput 2000; 115: 89-100.
[10] Yang S-Y. Analysis of a least squares finite element method for the circular arch problem. Appl Math Comput 2000; 114: 263-78.
[11] Li X, Shephard MS, Beall MW. 3D anisotropic mesh adaptation using mesh modifications. Comp Meth Appl Mech Eng 2005; 194: 4915-50.
© Haiming et al.; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by$\mathrm{nc} / 3.0 /$) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

[^0]: *Address correspondence to this author at the Department of Mathematics, Qingdao University of Science and Technology, Qingdao 266061, P.R. China; Tel: 8653288956987; Fax: 8653288956987;
 E-mail: guhm@public.qd.sd.cn

