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Abstract: In this paper the second generation wavelets are applied as a basis in finite element method. The wavelet basis 

is constructed over typical nonequispaced nodes and on boundaries. In addition the wavelet bases are tailored to the 

Poisson's operator. The wavelet basis is lifted to enforce operator orthogonality, this eliminates coupling between coarse 

and detail parts of the stiffness matrix. The scale decoupled stiffness matrix permits optimal O(N) computation. The 

Lagrangian second order wavelets are chosen for demonstration purposes, and a Poisson equation is solved. The potential 

application of this method in simulating a heterogenous material is outlined. 
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1. INTRODUCTION 

 The partial differential equations (PDEs) are 
approximately solved in the finite element method by 
expressing the solution as a linear combination of basis 
functions. The projection coefficients on this finite basis 
could be determined from minimization of functional 
associated with a weak form of the PDE. Several possible 
choices exist for a basis function like piecewise polynomials 
[1], moving least squares (MLS) [2], reproducing kernel 
functions [3], partition of unity functions [4]. Choosing a 
suitable basis expansion is crucial and it is mostly 
determined by the nature of solution. 

  One of the difficulties with classical FEM is that it 
provides a single scale solution to a PDE, but it is an 
established fact that most of the natural phenomena occur 
over a range of length and time scales, and hence the 
governing PDEs are multiscale in nature. An interesting 
multiscale phenomena is elastostatic response of a solid with 
non homogeneities, multiple phases, or defects. The solution 
exhibits multi scale features like coarse solution in the whole 
domain and details near singularities. In the conventional 
FEM the coarse and detail part of the solution are coupled 
together, this necessitates recalculation of solution on a finer 
mesh to get the desired convergence. The costs associated 
with remeshing the domain and recomputing the solution 
makes it unattractive to use FEM for problems involving 
multiscale features and singularities.  

 To address the multiscale problems, Yserentant [5, 6] 
introduced the idea of hierarchical basis (HB) in FEM, these 
basis functions provide multiresolution properties so they 
can be interpreted as a primitive kind of wavelets. The HB 
function could be refined adaptively [7], that is we can refine 
by augmenting the basis with narrowly supported functions 
at a finer scale (Fig. (1)). Adaptive refinement eliminates the 
need to remesh the whole domain. The major shortcoming of  
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Fig. (1). A comparision of the nodal basis and hierarchical basis. 

Fig. (a, b) demonstrate the element refinement in traditional nodal 

basis while (c, d) demonstrate adaptive refinement in hierarchical 

basis.  

HB FEM is that in general it can not achieve scale 
decoupling. 

 The multiresolution capabilities of wavelets resulted in 
the development of wavelet Galerkin method [8, 9], in this 
method the solution is expanded into a basis comprising of 
scaling function and wavelets, the solution to the PDE is thus 
obtained hierarchically at scales provided by the scaling 
functions and wavelets. Compactly supported wavelets 
perform well in resolving high gradients in the solution, e.g. 
stress concentrations, crack tip stress field and other material 
or geometric non-linearities. The problem in this approach is 
that the wavelets like other spectral methods can provide 
solution over infinite or periodic systems. These wavelets 
can not be constructed on bounded domains and on non-
equispaced grids. 

  Second generation wavelets [10-12] are a generalization 
of wavelets with additional properties and customizability. 
We can tailor the properties of wavelets by choosing suitable 
lifting coefficients and stable completions. The lifting 
scheme is used to enforce vanishing moments, while stable 
completions provide other useful properties like compact 
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support. We have demonstrated in our results that the 
vanishing moment condition enforces operator orthogonality 
which decouples the stiffness matrix. The scale-decoupled 
system is easier to solve adaptively, as we do not need to 
update the coarser parts of the solutions while the details are 
added to the solution. This decoupling could facilitate 
development of distributed algorithms for solution of 
multiscale PDE's.  

  The second generation wavelets can be constructed over 
irregularly spaced grids and on bounded domains. The 
wavelets are constructed in spatial domain using lifting 
scheme, so they are no longer translates and dilates of each 
other. However, they inherit the properties of first generation 
wavelets and can be constructed on general settings like 
irregular nodes and on boundaries. These additional 
propeties makes them ideal candidate for solving PDEs in 
the wavelet Galerkin framework. 

  The wavelet basis has following advantages over 
alternative basis sets: 

• The basis set can be locally enriched, one can add 
more wavelets in regions where more information is 
required.  

• Different resolutions can be used in different 
regions of space, one can add higher resolution 
wavelets in regions where the solution is rapidly 
varying. So we have a framework to zoom in to 
regions where some interesting phenomena is 
happening at a smaller scale, and zoom out at 
smoother regions to save computational effort.  

• The second generation wavelets generalizes the 
wavelets to irregular grids and on boundaries.  

• The wavelets can be customized in the second 
generation framework to get scale decoupling in the 
solution.  

• The computational cost scales linearly with respect 
to the system size.  

 In this paper, we have generated second order Lagrangian 
scaling functions and wavelets over irregularly spaced nodes. 
The node spacings were chosen apriori, such that the nodes 
are closely spaced in regions of high gradient, e.g. material 
non-homogeneity. In the homogenization [13, 14] based on 
first generation wavelets non uniform node distribution were 
not permissible. In this research we demonstrate that 
choosing irregular nodes can result in faster convergence to 
solution. In our adaptive scheme we choose higher density of 
nodes in regions where sharp change or gradient is expected, 
the oracle determines which nodes are to be kept and which 
to be killed. After increasing resolution to a higher level the 
solution starts to converge. The adaptive scheme is demons-
trated on non-homogeneous two phase materials, our solu-
tion adapts well to these irregularities. The large wavelet 
coefficients points to the critical regions of the domain 
where more wavelets should be added. By increasing the 
resolution we have found solution to desired accuracy. 

2. BASIS REFINEMENT USING SECOND GENE-
RATION WAVELETS 

 In finite element the usual approach for adaptive 
calculation is to refine the mesh using a single level basis 

functions, but this approach leads to poorly conditioned 
stiffness matrix. The better approach is to use a Hierarchical 
or a multiscale basis consisting of wavelets, the resulting 
multiscale stiffness matrices are well conditioned. 

 Fig. (1a) shows a nodal basis used in FEM. Approxi-
mation space Vj, is spanned by single level basis of linear 
Lagrangian scaling functions at level j. Fig. (1c) depicts a 
hierarchical basis, the essential feature of this representation 
is that spaces Vj+1 can be partitioned as: Vj+1 = Vj  Wj, where 
Wj is the detail-space, which is spanned by wavelets at level 
j. Scaling functions can be further decomposed into coarser 
functions and details until the coarsest level is reached, this 
results in a full multiresolution decomposition of the space 
Vj:  
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  In this representation, coarse basis functions covers the 
full domain while details could be added selectively to 
enrich specific nodes. 

 Sweldens [10] demonstrated that one can build scaling 
functions and wavelets in a general setting, such as on 
boundaries, irregular samples etc. These second generation 
wavelets inherit powerful properties of first generation 
wavelets like fast transforms, localization and good 
approximation. 

  The approximation spaces Vj are spanned by scaling 
functions. Any function u can be approximately represented 
at level j as a linear combination of scaling functions at scale 
j as 
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where 
j

ku  are expansion coefficients. 

  The scaling functions satisfy refinement relation 
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 is a low pass filter associated with the 

scaling function. The summation is taken over l-nodes in the 

immediate neighborhood of the node k. For irregular 

sampling the filter coefficients are different for each scaling 

function. Since the scaling functions are interpolating the 

above equation could be simplified as 
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  The complimentary detail spaces Wj are spanned by 
wavelets. The wavelets are constructed using lifting scheme, 
in this scheme a wavelet is built by adding "lifted" 
neighboring scaling functions to a more primitive wavelet, 
which is chosen to be a simple scaling functions from a finer 
level. 
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  The lifting coefficients are obtained by the condition of 
vanishing moments over wavelets. The HB functions are a 
special case of this more general second generation 
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framework, HB results when all the lifting coefficients are 
taken as zero in above equation. 

 The detail function at level j can be expressed as  

  

d j (x) =
k

d
k

j

k

j .  (6) 

  The detail function represents the details lost while going 
from a finer resolution Vj+1 to coarser resolution Vj, 

  
u j+1(x) = u j (x) + d j (x)  (7) 

  The projection of a function u(x) on space Vj+1, can be 
written in multiresolution format as 

  

u j+1(x) = u0 (x) +

i=0

j

d i (x).  (8) 

where u
0
(x) is the projection of function on coarsest space 

V0, while d
i
(x) are its projection in space Wj. The projection 

can be further expressed in terms of basis and projection 
coefficients, the resulting MRA of function u(x) on space 
Vj+1 becomes:  
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where 
j

lu  and 
j

md  are projection coefficients of u(x) in the 

spaces Vj and Wj. The coefficients 
j

lu  are termed as scaling 

functions while 
j

md  are known as detail coefficients. The 

detail coefficients provides a guideline for adaptive 

refinement. We can keep adding details until the 

approximation is within error bounds. An error estimate  

can be defined as  

  
= max | d j |= max | u j+1 u j |  (10) 

  In this paper we have chosen second order Lagrangian 
interpolation functions so the HB can be lifted once to 
enforces one vanishing moment. Due to inheritance of 
vanishing moments [15, 16], the wavelets with one vanishing 
moment is operator orthogonal with respect to the Poisson's 
operator. So this choice of wavelet scale decouples the 
stiffness matrix arising from the variational form of the 
Poisson's PDE. 

3. WAVELET GALERKIN METHOD 

  A bar with axial distributed force f(x) is shown in (Fig. 
(3)), the governing Euler's equation is 

  

d

dx
(E(x)A(x)

du

dx
) + f (x) = 0 0 < x < L  (11) 

with boundary conditions u(0) = 0 u(L) = 0, where u(x) is the 
axial displacement, E(x) is the modulus of Elasticity and A(x)  
is area of cross section.  

 The weak or variational form of above PDE is 
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where  is the variation in the displacement field. We 
approximate the displacement field at level j+1  and 

substitute equation 9 in above equation to obtain MRA of 
stiffness matrix: 
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It can be written as:  

eee fuK =  (14) 

where f
e
 is the nodal force vector of element.  
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where, l is the length of element, and  is the element local 
coordinate. 

 K
e
 is the multiresolution stiffness matrix of the element. 

The entries of this matrix can be formulated from the 
variational form of the PDE (equation 14): 
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where, (r, c) represents the row and column of the entry, and 
m, k are the level of resolution. 

 The wavelets are customized to ensure operator 

orthogonality w.r.t the Poisson's operator. The second order 

Lagrangian basis is used, the wavelets arising from the 

hierarchical basis functions are lifted with one interior 

scaling function. The lifting coefficient is chosen to ensure 

one vanishing moment i.e. d  = 0 so this wavelet can kill 

zeroth order polynomials, the inheritance of vanishing 

moments provides two vanishing moments to d /d  hence it 

kills first order polynomials {1, }. This property makes 

d /d   orthogonal to d /d , and to the first derivatives of 

wavelets at other scales. This choice of lifted wavelets 

ensures that the off diagonal terms like
  
K

k ,0 (r,c) , 
  
K

0,k (r,c) , 

and 
  
K

m,k (r,c)  in the stiffness matrix are zero. The 
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customized wavelets scale decouples the multiresolution 

stiffness matrix and provides a way for adaptive solution, 

where the details are added incrementally to the solution 

without remeshing the whole domain. 
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 The assembly cost of the scale decoupled multiresolution 
matrix is O(N) as we only need to compute the diagonal 
terms in the stiffness matrix.  

4. NUMERICAL EXAMPLES 

 A beam with a softer midsection (Fig. (2)) is chosen to 
demonstrate the adaptivity and the computational efficiency 
resulting from non uniformly distributed nodes. The beam 
has unit cross sectional area and a uniaxial body force f(x) = 
x is applied to the beam, both ends of the beam are fixed. 
The governing equation for this problem is: 

  

d
2
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+ x = 0 0 < x < 1  (21) 

along with boundary conditions:  

u(0) = 0 

u(1) = 0 

 In the adaptive scheme [17] we use thresholding 

parameters 
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analysis at the resolution level j is finished, to proceed to 

next finer resolution j+1 following adaptive procedure is used: 
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Fig. (2). A beam with a weakened midsection, with linearly varying 

body force. 

 
Fig. (3). The scaling functions and wavelets arising from irregular node placement. 
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 In our simulation child wavelets are successively added 
near the midsection to capture the results. The irregular node 
placement allows the freedom to add child wavelets near the 
midsection in arbitrarily. This results in faster convergence 
to solution. 

 The nodes are irregularly spaced to get more resolution 
around the midsection. The scaling functions and wavelets 
arising from irregular node distribution is shown in Fig. (3). 
These wavelets are enriched according to an adaptive 
strategy and the resolution is increased for convergence. The 
results obtained by using linear Lagrangian basis functions 
using Hierarchical basis (HB) are shown in Fig. (4) while 
those obtained by using quadratic Lagrangian wavelet basis 
are demonstrated in Fig. (5). Although both linear HB and 
quadratic wavelet basis provides solution in multiresolution 
format, it is evident that the quadratic wavelet basis 

outperform linear HB, and error goes down to 10
5
 in first 

level of resolution, while the error remains 10
4
 even in 

second and third level of resolution of linear HB. The single 
scale FEM provides solution at first resolution, and to 
progress to higher resolutions remeshing of the whole 
domain has to be done. 

 The quadratic wavelet basis has significant advantages 
over single scale FEM or multiscale HB. The cost of 
assembling the multiresolution and its solution is 
significantly reduced, assembly cost scales linearly with 
system size. The solution can be enriched in desired regions 
by adding details, so the costly remeshing and recomputing 
solution over whole domain is avoided. The proposed 
method is more efficient and has significant advantages over 
other methods available for solving heterogenous systems, 
and in simulating multiscale materials. 

 

Fig. (4). The approximations and detail solution of Eulers beam equation obtained using linear hierarchical basis (HB). 

 

Fig. (5). The approximations and detail solution of Eulers beam equation obtained using quadratic wavelet basis. 
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5. CONCLUSIONS 

  The construction of second generation wavelets is 
demonstrated, the lifting framework provides flexibility to 
design the wavelets such that solution cost scales linearly 
with the system size. This is achieved by tailoring wavelets 
with vanishing moments, so that complete operator 
orthogonality is achieved in the wavelet Galerkin 
framework. The resulting system of equation can be easily 
solved in hierarchical, incremental and adaptive manner. The 
detail solution can be added to localized regions of sharp 
transition without the need for remeshing and solving over 
whole domain. Our results demonstrate the potential 
application in studying heterogeneous materials with 
multiscale features like defects, multiple phases, or other 
discontinuities or singularities. To achieve efficient results in 
studying heterogeneous media, it is important to use 
irregularly spaced nodes. We have choosen initial node 
distribution with higher concentration around regions of 
sharp gradients, this results in faster convergence to solution 
by incorporating fewer detail levels. The second generation 
based wavelet Galerkin procedure results in an efficient, 
hierarchical and adaptive algorithm which scales linearly 
with systems size. Its potential application in studying 
heterogeneous system is demonstrated.  
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