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Abstract: A model for determining the permeability of fractural porous media based on the double percolation model is 

presented. The results are close to that by fractural permeability tensor model. The non-uniformity of the permeability and 

the pore pressure are investigated by parameter study. It is shown that rocks could be divided into “pore-controlling” per-

meability and “fracture-controlling” permeability according to the fracture length. This model can not only account for the 

effects of pores and fractures together, but also deal with simulation of fracture network in large scale fast and simply. 
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1. INTRODUCTION 

Evaluating permeability of reservoir is very important in 
engineering practices. For an example, during the geological 
sequestration of captured CO2, the permeability of reservoir 
determines the effects of CO2 injection during oil and gas 
production, the permeability of reservoir determines whether 
oil and gas can be exploited [1-3]. However, reservoirs are 
fractured porous media, in which the flow passes through 
pores and fractures. 

The conventional approach to study the impact of  
geological factors on reservoir recovery is to build a detailed 
reservoir model according to the measured geophysical and 
geological data, and then perform seepage simulation [4-6]. 
If fractures in a rock are poorly interconnected and the ma-
trix rock is very low impermeable, the flow may be blocked 
in the network of fractures. Otherwise, if the matrix is per-
meable and the fractures are inerratic and highly intercon-
nected, fractures and matrix can be treated as separate con-
tinuums occupying the entire domain. In order to estimate 
the performance parameters, it is necessary to construct res-
ervoir models and run flow simulations to determine the 
permeability. This method is time costing and computation-
ally expensive [7]. Therefore, there is a great incentive to 
produce much simpler physically-based models to quickly 
predict the permeability of a stratum.  

Percolation theory is an effective method to investigate 
the connectivity of reservoir [8-10] which is first developed 
in the late 1950s [11]. The global static and dynamic proper-
ties of such systems are linked to the density of objects (e.g., 
the fractures and pores in this study) placed randomly in 
space. In percolation theory a medium is defined as an infi-
nite set of sites. A fluid flows between these sites along paths 
which connect certain pairs of sites (these paths are called 
bonds). Then the connectivity and permeability can be  
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estimated directly by using percolation theory. This method 
can easily estimate the effects of complex geometry in a 
fraction of a second on a spreadsheet, but it ignores much of 
the flow physics and subtleties of the heterogeneity distribu-
tion, including the effects of fracture’s thickness.  

This paper reports a method to determine the permeabil-
ity of fractural porous media based on a double percolation 
model. To obtain the permeability of a fractural porous me-
dia, first the connected cluster in the considered area is ana-
lyzed by the double percolation model; then the permeability 
is solved by only considering the fractures in the connected 
cluster. The effects of main factors are discussed. This 
method can simulate the seepage in fractural porous double 
media in large scale fast and conveniently by combining the 
pore percolation and fracture percolation. In the second sec-
tion the basic model of double percolation is introduced; in 
the third section, the comparison of the results between the 
seepage tensor theory used in fractural rocks and the double 
percolation theory by neglecting the pore percolation; in the 
fourth section, the effects of main factors of the double per-
colation are investigated. 

2. INTRODUCTION OF THE MODEL FOR SOLVING 

THE PERMEABILITY BY DOUBLE PERCOLATION 
MODEL 

2.1. The Pore Pressure in Fracture Network 

As shown in Figs. (1 and 2), the sum of the intersection 

points among fractures Points of A、C、E、F in Fig. (2) 

and connection points among pores Points of B、D in Fig. 

(2) are N in a percolation cluster. These intersection points 

and connection points form the basic elements for the com-

putation of permeability. There are three types of formation: 

two neighboring intersections in a fracture, such as the line 

element (fractural connection element) EF in Fig. (2); the 

neighboring intersection points and connection point in a 

fracture, such as the elements of AB and AD in Fig. (2); two 

connection points in two neighboring fractures such as the 
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line element of BD (porous connection element) in Fig. (2). 

If M elements are formed in a percolation cluster, and the 

two intersection points / connection points are taken as a 

node in computation, each node is corresponding to a value 

of coordination and each line element is described by a 

length i , an angle i  and a width bi , which satisfies eq. (1). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Seepage model for a double percolation network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Intersection and line element in a connected cluster. 

 

Large pores can form connective channel between any 
two fractures not intersected to cause them connected with 
some probability, e.g. pore connective probability p. Each 
fracture’s center is mapped as a “site”, and the connected 
pores between any two fractures are mapped as a “bond”. In 
this paper the quadrangle network is used, with each fracture 
having four “bonds” to connect neighboring fractures. If the 
probability of connection between any two bonds is larger 
than a critical value, these two bonds are taken as connected; 
Furthermore, if any two fractures are intersected, they are 
considered connected. The main point is to find the condi-
tions required to form a connective cluster. 

The fractures in the rock are assumed as a cluster of  

cylindrical pipes. In each pipe the single fluid obeys the 

Poiseuille flow, e.g.: 

qi =
Pibi

3

12μ i

      (1) 

in which 
i

P  is the pressure difference, μ the viscosity of 
the fluid, iq the flow rate.  

For any node j, the total flow rate can be expressed as the 

sum of the flow rates of N '
 line elements intersected at this 

node considering that the outflow and the inflow are equal 

by neglecting the compressibility of the pore fluids:  

qi
i=1

N '

= 0       (2) 

If the double percolation network has N nodes, then we 
can obtain the following equation by eq. (2): 

Aq̂ = 0       (3) 

in which q̂ = (q1,q2 , ...,qN )
T , A = aij{ }

N M
 is called as a N M  

matrix of the double percolation network， ij
a  equals 0,1 or 

-1 corresponding to three conditions respectively: j element 

is not connected with the node i, j element is connected 

with the node i and qj is in the direction of node i , 

or j element is connected with the node i and j
q is in the 

inverse direction of node i . 

Assuming that the flow-rates on the boundaries of AD 

and BC are zero, and the pressures on the boundaries of AD 

and BC Fig. (1) are constants, then the mathematical formu-

lation of the double percolation network is: 

qi
i=1

N '

=
Pibi

3

12μCO2 i

= 0

B.C. : P |AB= P1
B.C. : P |CD= P2

I .C. :
P

n
|AD,BC = 0

    

 (4) 

A set of linear algebra equations can be formed by build-

ing an equation for each node i  according to eq. (4). The 

pore pressure at each node can be obtained by solving this 

set of equations.  

3. THE METHOD FOR SOLVING PERMEABILITY 

Snow [11] presented a seepage tensor model for describ-

ing the fractural rocks based on the statistics of fractures. 

This model took the fractural rocks as pure fracture systems 

with singular geometrical configuration, and the permeabil-

ity due to porosities were neglected. In this model, the scale, 

shapes and positions were all considered.  

The seepage tensor of a rock with n groups of fractures is 

as follows by summing up the permeability in each direction 

Fig. (3): 
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Fig. (3). Model of seepage tensor: accumulated by n groups of frac-

tures. 

k[ ] =
kei 1 cos2 1i( )

i=1

n

kei cos 1i cos 2i
i=1

n

kei cos 2i cos 1i
i=1

n

kei 1 cos2 2i( )
i=1

n

kei = k fi
bi
di
, k fi =

bi
2

12μg

       (5) 

in which fik , 
i

b , 
i

d  are respectively the equivalent 

permeability, average fractural width and average distance of 

i group fractures; and cos 1i , cos 2i  are the corresponding 

direction cosines.  

 For the fractural porous meida, assuming that there are 

0
N  fractures with equal lengths and widths, and 

1
N  frac-

tures belongs to the percolation cluster. The randomly dis-

tributed
1

N  fractures are divided into x  groups. Factures in 

each group are in the same directions 

( 1， 2，…， x ),
 

2 1 = 3 2 = = x x 1 = 0 . 

Any fracture is included in the 1
th

 group with the direction 

angle of 
i
if its direction angle is in the 

range i

1

2 0 , i +
1

2 0 （
 

i 1, 2 , x{ }）. So, each 

group has the fractures of xN /
1

. Each group is equivalently 

simplified as y  parallel and equal-distance fractures accord-

ing to the rule that the total fracture length is equal. Each 

fracture can penetrate the whole area. The distance of the i
th

 

group fractures is denoted by
i

d . So if the relation of i ~ di  

is obtained, the equivalent seepage tensor can be computed 

by eq. (5).  

di  can be obtained by the way of equivalent area Fig. (4). 

The computing area is in the square formed by bold line. 

Dashed lines denote the i
th

 group parallel fractures. Thin-line 

square is a square, whose two boundaries are coincided with 

the parallel fractures for the supplement of computation. The 

rule of the method is that the ratio of the total length of the 

fractures in the bold-line square to that in the thin-line square 

is equal to the area ratio of the two squares.  

The area of the bold-line square is: A1 = L
2
=

2  

The area of the thin-line square is: 

A2 = sin + cos( )L
2
= sin + cos( )

2
 

The total length of the fractures in the thin-line square is: 

sin + cos( )
2
μ N1 / x  

The equivalent quantity of fractures is: 

sin + cos μN1 / x  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Sketch of the equivalent area method. 

 

So the distance of 
i

d  can be obtained:  

di =
sin + cos

sin + cos μN1 / x 1
   (6) 

or 

1

di
=
1 μN1

x

1

sin + cos
     (7) 

Then the parameter 
ei

k  can be obtained: 

kei = k fi
bi
di

=
k fibi μN1

x

1

sin + cos
=

bi
3

12μ

μN1

x

1

sin + cos

(8) 

Instituting eq.(8) into eq. (5), the tensor of the permeabil-
ity coefficients can be obtained as follows:  

k[ ] =
kei 1 cos2 1i( )

i=1

n

kei cos 1i cos 2i
i=1

n

kei cos 2i cos 1i
i=1

n

kei 1 cos2 2i( )
i=1

n

=
bi
3

12μg

μN1

x

1

sin 2i + cos 2i

1 cos2 1i( )
i=1

n μN1

x

1

sin 2i + cos 2i

cos 1i cos 2i
i=1

n

μN1

x

1

sin 2i + cos 2i

cos 2i cos 1i
i=1

n μN1

x

1

sin 2i + cos 2i

1 cos2 2i( )
i=1

n

 

(9) 

The physical permeability is: 

K[ ] =
bi
3

12

μN1

x

1

sin 2i + cos 2i

1 cos2 1i( )
i=1

n μN1

x

1

sin 2i + cos 2i

cos 1i cos 2i
i=1

n

μN1

x

1

sin 2i + cos 2i

cos 2i cos 1i
i=1

n μN1

x

1

sin 2i + cos 2i

1 cos2 2i( )
i=1

n

 

(10) 

To decrease the non-uniformity due to the simple group-
ing of fractures, the physical permeability is assumed as av-
erage of that in x  and y  directions:  

K = K11K22                     (11) 
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4. COMPUTING RESULTS 

In computation, the parameters are adopted as follows: 

the area is 100m 100m, e.g. = 100 , the number of fractures 

is set as 900 ( N0 = 900 ), the angles and positions of the frac-

tures are randomly distributed and 
 

= 1.57 90( ) , the lengths 

of the fractures range 5~16m (It is assumed  disconnected 

when the length is less than 8m, so the permeability is zero.), 

the fracture width is 0.1mm, the connection probability of 

the pores is zero, e.g. p = 0 , the viscosity coefficient of the 

pore water is 0.001Pa.s, the density of the pore water is 

1000kg/m
3
. The pores’ diameters are all assumed as 

0.001mm .  

The following conclusions can be obtained from Figs. 

(5~8): (1) the average length corresponding to the connec-

tion decreases when p  increases; (2) the equivalent perme-

ability is very small when the average length of the fractures is 

just equal to the percolation threshold because in this case the 

pores are the main contributor to the permeability and some 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Permeability versus average length( 0.0=p ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Permeability versus average length( 1.0=p ). 

zones are not connected; and it increases fast when the aver-

age length equals the percolation threshold at p = 0  because 

in this case the fractures has form a connected network and 

the flow rate in the fracture is larger than that in pores. In the 

double percolation media, the permeability of the pores is 

smaller than that of the fractures. When the fractures are too 

short to form a network of percolation, the percolation is 

controlled by pore connection. Otherwise, it is controlled by 

fracture connection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Permeability versus average length ( 2.0=p ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Permeability versus average length. 

 

The distributions of the seepage skeletons and pressures 
for pore-controlled percolation and fracture-controlled perco-
lation are shown in Figs. (9~12). 

(1) In Figs. (9 and 10), the conditions, p = 0.2 , μ = 0.054 , 

are just satisfied the threshold. So it is pore-controlled perco-

lation. The seepage penetrates into the area from the left side 

where the pressure is higher than that in other positions be-

cause no flow can form in the disconnected zone and so no 

pressure occurs. The distribution of the seepage is consistent 

with that of pressure. The zone with high pressure gradient is 
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located at the interface between the connected zone and the 

disconnected zone due to no seepage here . The catastrophic 

pressure is located at their interface. So the failure of the 

stratum will be first happen here. During the exploitation of 

oil and gas in the stratum of pore-controlled percolation, 

some measures such as hydraulic fracturing or blast-induced 

fracture techniques should be used to make the disconnected 

zone permeable. This kind of stratum is not suit for the geo-

logical sequestration of captured CO2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Distribution of pressure at P = 0.2,μ = 0.054 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Distribution of seepage at P = 0.2,μ = 0.054 . 

 

(2) In Figs. (11 and 12), at the conditions of p = 0.2  

and μ = 0.08 , the fracture network can form connected chan-

nel. So it is fracture-controlled percolation. In this case, 

seepage is fully distributed in the whole area, and the pres-

sure decreases from the left side to the right side because the 

fracture networks are uniformly distributed in the whole 

zone according to the method described in the third section. 

The zone with high pressure gradient is located at the zone 

between two densely connected fracture clusters which is 

connected by pores since the flow in pores is smaller than 

that in fractures and so the pressure is higher at their inter-

face marked by dashed line in Fig. (12). This kind of stratum 

is suit for the exploitation of oil and gas and the geological 

sequestration of captured CO2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Distribution of pressure at P = 0.2,μ = 0.08 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). Distribution of seepage at P = 0.2,μ = 0.08 . 
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Generally, it can be seen that except for the simulation of 
fracture network in large scale fast and simply, the model 
presented in this paper can distinguish and eliminate the dis-
connected fractures, which can lead to a more accuarate 
permeability than the fracture tensor model. 

4.1. Compared with the Theory of Seepage Tensor Model 

Used in Fractural Rocks 

The comparison between the computing results by the 
double percolation model and that of the fracture tensor 
model is shown in Fig. (13). The tendency of the permeabil-
ity with the average fracture length computed by these two 
methods are similar though the values are about 40-50% 
different which may be caused by the different of the con-
nective area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13). Comparison of computing and theoretical results. 

 

5. CONCLUSIONS 

By introducing the cubic law used in fracture seepage, 
the double percolation model can be used to compute the 
permeability of fractural porous media. 

The model presented in this paper can consider the low 
permeability while the fractural seepage tensor model can-

not. However, the results are similar computed by these two 
models when the pore percolation can be neglected. 

The seepage can be divided into two types: “pore-
controlled” and “fracture-controlled” seepage according to 
the fracture length. The critical value is the average length of 
fractures when the seepage can form by only the fracture 
network. 

In the condition of “pore-controlled” seepage, the perco-
lation area and permeability are both small. The pressure 
gradient is located at the interface between the seepage and 
non-seepage zones. In the condition of “fracture-controlled” 
seepage, the permeability is several orders higher than that of 
“pore-controlled” seepage. The percolation area is large. The 
pressure gradient is located between connected clusters.  
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