
12 The Open Numerical Methods Journal, 2011, 3, 12-19

 1876-3898/11 2011 Bentham Open

Open Access

Markov Chain Monte Carlo Algorithms Allowing Parallel Processing –II

Guthrie Miller*

Los Alamos National Laboratory, Group RP-2, USA

Abstract: A variant of the Metropolis-Rosenbluth-Teller algorithm that allows parallel processing has been described in a

previous paper (“Markov Chain Monte Carlo Calculations Allowing Parallel Processing Using a Variant of the Metropolis

Algorithm”) that appeared in this journal in 2010. In this follow-on paper, the new algorithm as well as the Metropolis-

Rosenbluth-Teller and Barker algorithms are analyzed for finite, integer-valued Markov Chains, which are easier to un-

derstand in detail than continuous variable chains. The new algorithm is shown to approximately satisfy detailed balance

when the random walk step is much larger than the support region of the desired steady-state distribution function. Paral-

lelizable versions of the MRT and B algorithms are given. The time to reach a steady state is calculated and compared for

these three different algorithms and different number of multiple candidates, potentially offering different degrees of par-

allel processing.

Keywords: Metropolis algorithm, parallel processing, markov chain monte carlo (MCMC), bayesian statistics, data analysis.

1. INTRODUCTION

Markov Chain Monte Carlo is a very powerful and useful
technique in Bayesian data analysis as well as in statistical
physics, where it originated with the 1953 paper [1] by Nico-
las Metropolis, Adriana Rosenbluth, Marshall Rosenbluth,
Agusta Teller, and Edward Teller (MRT algorithm). Another
algorithm was proposed by Barker [2] in 1965 (B algorithm).
The new algorithm considered here was described and dem-
onstrated in a preceding paper [3]; however, that paper con-
tains a serious oversight in failing to note that detailed balance
is no longer satisfied exactly with the new algorithm. This
would seem to be a very serious problem and it is addressed in
the present paper. For reasons of simplicity and clarity, the
analysis is done for finite, integer-valued Markov Chains. This
type of analysis is similar to that of Rubenstein et al. [4].

The preceding paper [3], which is easily assessable
through open access, provides general background and
literature references. In addition to the references cited there,
references [5-7] may be helpful to the reader.

The motivation for this work is to find Markov Chain
Monte Carlo algorithms that allow parallel processing,
because increases in computer processing power in the future
will more and more come about through having multi-
processing systems. To take advantage of such systems for a
single problem requires a parallel algorithm, pieces of which
can be executed in parallel on many different processors.

2. THE ALGORITHMS

We begin by simply stating the algorithms for the case of
continuous variables, because henceforth everything else
will be done for integer variables. In this way the motivation
for the work with integer variables will be clearer.

The Markov Chain algorithm (the rule telling the com-
puter how to select the next point in parameter space,

*Address correspondence to this author at the Los Alamos National Labora-

tory, Group RP-2, USA; Tel: 505 667 5547; Fax: 505 665 6071;
E-mails: guthriemiller@earthlink.net; guthrie@lanl.gov

given that the chain is at a current point) is the following.

First l candidates for the new point, labeled by i = 1, l, are

generated from a conditional probability distribution

)|(q (read as “the probability distribution of given,

or conditioned on, ”). This “candidate” probability distri-

bution is chosen to be a random walk ()2/1(+= x ,

where x is a random number uniformly distributed between 0

and 1, and is a fixed parameter, for all or some subset of

the dimensions of . The “energy” calculations for the l

candidates can be done using parallel processing.

The chain is moved to the next point i = 0, l with discrete

probability),(
i

, where the point i = 0 represents the

unchanged current point.

Three different Markov Chain algorithms are considered.
These will be stated in terms of the candidate distribution
and the desired steady state distribution function f.

The Barker (B) algorithm, as generalized to include a
general candidate distribution by Hastings [8], has

=

>

+

=

),(

0,

)|(

)(

)|(

)(

)|(

)(

1
),(i

q

f

q

f

q

f

l

ii

i

i

i

i
 , (1)

where denotes what is required by normalization, namely

=

=

l

i

i

1

),(1),(

One can verify the detailed balance condition

1
)()|()|(

)()|()|(
=

fq

fq

ii

iii .

The Metropolis-Rosenbluth-Teller algorithm, has

Markov Chain Monte Carlo Algorithms Allowing Parallel Processing The Open Numerical Methods Journal, 2011, Volume 3 13

0,),(

01,
)(

)|(

)|(

)(
min

1
),(

==

>=

i

i
f

q

q

f

l

i

i

i

i , (2)

and one can similarly verify detailed balance.

For the new algorithm,

=

=
l

k k

k

i

i

i

q

f

q

f

0)|(

)(

)|(

)(

),(
 . (3)

For i = 0 in the above,
i

 is to be replaced by . The
detailed balance relationship is

=

=

=
l

k ik

k

l

k k

k

ii

iii

q

f

q

f

fq

fq

0

0

)|(

)(

)|(

)(

)()|()|(

)()|()|(.

When the candidate distribution)|(kq is independent

of the initial point , this is exactly equal to 1 for l = 1 (it

reduces to the B algorithm) and approximately equal to 1 for

any l when the region explored by the candidate distribution

is large enough to encompass the support region of the de-

sired steady state distribution function f.

In the random walk situation q is simply either 0 or a
constant

2
||,

1
)|(<=q ,

and it drops out of the formulas.

Note that for the MRT and B algorithms with multiple
candidates, the acceptance probability is just the average
over the candidates of the original, single-candidate expres-
sions.

A single Markov chain is run; however for each iteration
l candidates for the next position of the chain are generated.
Only a single one of these candidates will be probabilisti-
cally selected as the next position of the chain. One of these
candidates is the current chain position.

A simple example of the use of these algorithms is given
in Appendix 1.

3. ANALYSIS FOR FINITE, INTEGER-VALUED
MARKOV CHAINS

For finite, integer-valued Markov Chains it is possible to
fairly simply carry out a comprehensive mathematical analy-
sis.

Markov Chains model the ergodic theorem of statistical
mechanics, where time averages are shown to be equal to
ensemble averages. In the present application of Markov
Chains, ensemble averages will be replaced by time aver-
ages.

Consider an integer-valued function of time i(t) repre-
senting some dynamical variable. Imagine an ensemble of
dynamical systems with different initial conditions. Averag-

ing over the entire ensemble there is some probability that
system is in state i at time t, given by

)|()(tiPtfi
.

The definition of a Markov Chain is that

()

() jiji

j

ijjii

AjiPA

tAftfAtf

,,

,

)|(

)()()1(

=

==+
 , (4)

where the conditional transition probabilities P(i | j) are in-
dependent of time, and we have used matrix notation to de-
note the square matrix of transition probabilities A and the
column matrix f(t) representing the distribution function at
time t. Because probabilities must be normalized,

=

=

i

ji

i

i

A

tf

1

1)(

,

 .

Also, it is clear from Eq. (4) that

)0()0(...)(fAfAAAtf t

timest
== , (5)

where A
t
 denotes the t

th
 power of the matrix A (the matrix

multiplied by itself t times).

The ergodic theorem deals with time averages of an arbi-
trary function g of the dynamical variable. Such time aver-
ages are seen to be equal to averages over the steady state
distribution function of the system

() =
= i

i

T

t
T

igftig
T

)()(
1

lim
1

 ,

where,

)(lim tff i
t

i
 .

The matrix A can be brought to diagonal form with an-
other square matrix L.

1
= LDLA ,

where D is a diagonal matrix. Therefore

1
= LLDA

tt
 , (6)

which, from Eq. (5), provides a general solution for the dis-
tribution function at time t.

The columns of L are the eigenvectors u of A satisfying

uAu = .

Let us consider a specific example.

For two dimensions the most general form of the transi-
tion matrix is the following

=

21

21

11 pp

pp
A . (7)

The eigenvalues are the roots of the equation

0)det(=IA , (8)

14 The Open Numerical Methods Journal, 2011, Volume 3 Guthrie Miller

where I is the identity matrix, expressing the fact for the

equation 0)(=uIA to admit a nonzero solution u, the

matrix A – I must be singular.

In this case Eq. (8) is quadratic, with the roots,

()

21,1

2

)1()1(4)1(1 1221

2

2121

pp

pppppppp

=

+±+
= .

One can see that eigenvectors (without a particular nor-
malization) are

=

=

1

1

1

2

1

2

1

u

p

p
u

 .

Therefore the matrices L and L
-1

 are given by

12

211

1

2

1

1

11

11

1

pp

pp
L

p

p
L

+
=

=

 .

Let us consider an arbitrary initial distribution given by

=

1

1

1
)0(

f

f
F

and ask what is the distribution at time t. The answer is pro-
vided by Eqs. (5) and (6) and is given in this case by

())1()()(

1

)(1

)(

)(

121212

12

1

2

ppfppptT

pp

tTp

tTp

tF

t
+=

+

+

= . (9)

Notice the following properties of Eq. (9). The transient
power term decays exponentially with time constant

|)log(|

1

2

= (10)

where
212

pp= is the second largest eigenvalue (the

largest is always 1), which is a long time if || 2 is close to

1. After this transient period, the distribution becomes a

unique steady state f , independent of the starting distribu-

tion. The chain steady state satisfies the detailed balance

condition

iijjji fAfA
,,

= , (11)

which, in words, means that in steady state, the number of
transitions from state j to i is balanced by the number of
transitions from i to j.

In general, the distribution function satisfies the equation

()=
j

iijjji

i fAfA
t

f
,,

 ,

so that detailed balance implies the steady state solution

ff = .

Now we consider the uniqueness of the steady state solu-
tion more carefully.

Imagine that instead of Eq. (7), the transition matrix was
given by

=

43

43

21

21

11

11

pp

pp

pp

pp

A . (12)

Clearly in this case there are two steady states, one in-
volving indices 1 and 2 and another involving indices 3 and
4, and the final steady state is not unique. However, in this
case the transition matrix is not ergodic, ergodic meaning
that every state can be reached by every other state. We see
from Eq. (12) that the state with index 3 mixes only with
state 4 and not with 1 and 2. The matrix given by Eq. (12) is
not ergodic. In general, if the matrix is ergodic, there is a
single unique steady state with eigenvalue 1. If not, there
will be more than one unity eigenvalue.

The actual problem we will be concerned with is to de-

termine the transition matrix A that gives a specified steady

state f . Then, the average of a function over f can be

evaluated as a time average of the function of the dynamical

variable.

There are many ways to come up with a transition matrix
that gives a specified steady state. Such transition matrices
are constructed using the detailed balance condition, Eq.
(11), together with the requirement that the columns of A
contain positive numbers normalized to unity. Detailed bal-
ance implies that elements of Ai,j reflected through the di-
agonal (the transposed elements) are in the inverse ratio of
the desired steady state distribution function

j

i

ij

ji

f

f

A

A
=

,

,
 .

In fact, the most basic solution of Af = f contains just two
nonzero off-diagonal elements in corresponding transposed
positions satisfying the detailed balance relation with neither
exceeding unity. The diagonal element in both columns is
then what is required by normalization, the complement of
the corresponding off-diagonal element. Other solutions can
be constructed as a probabilistic average of these basic tran-
sition matrices using the fact that a probabilistic mixture of
solutions is itself a solution.

In our consideration of some explicit solutions, we start
with a simple case of a random-walk transition matrix A
where, from state j, transitions occur only to one other state j
+1 or j 1.

Markov Chain Monte Carlo Algorithms Allowing Parallel Processing The Open Numerical Methods Journal, 2011, Volume 3 15

As a starting point, let the jth column of A have two
nonzero elements given by

=

=

jj

jjj

A

fA

,

1,1
 , (13)

where denotes what is required by column normalization,

namely
1

1 jf . One sees immediately that the detailed

balance condition is satisfied.

The above remains a solution if the off diagonal matrix
elements are multiplied by a positive constant a less than 1.
This multiplying factor need be constant only with respect to
transposed positions within the matrix A, and it can be
greater than 1 as long as it does not upset the column nor-
malization condition.

The diagonal band can be increased from one adjoining
state to l = 2, 3 … adjoining states and this form provides a
solution when the off diagonal matrix elements are given by
Eq. (13) multiplied by a/l. One should note that for l = 1,
even though satisfying the detailed balance requirement, the
transition matrix is not ergodic. The transition matrix in that
case appears as

.

...

The solution given by Eq. (13) has the important draw-
back that it requires the normalized steady state distribution
function. Nonetheless, we will use it to study the effect of
the multiplying factor a.

Table 1 shows the result of a numerical study using a
FORTRAN code available for download as supplementary
material from the publisher's web site along with the pub-
lished article. The discrete space has 100 points and the as-
sumed distribution function is a Gaussian centered on i = 50
with a standard deviation of 20. The transition matrix and the
100 eigenvalues and eigenvectors are calculated numerically
for a symmetrical random walk where the half width of the
random walk step is 1 (l = 2) with different values of the
constant a. The eigenvalues are real and positive having a
maximum value of 1 for one eigenvector. That eigenvalue-1
eigenvector, when normalized, returns the assumed steady
state. The second largest eigenvalue gives the time to reach
steady state from Eq. (10). In Table 1 are shown the times 3
for three different values of a.

Clearly the multiplying factor a should be as large as
possible without upsetting column normalization in order to
have the smallest times to reach steady state.

We can let the quantity a be specific to a particular trans-
pose pair of off-diagonal matrix elements of A rather than
being a constant, and a solution so modified will remain a
solution. For the Barker (B) algorithm

jj

jj
ffl

a
+

=

1

,1

11
 , (14)

Table 1. Number of Chain Iterations Required to Reach

Steady State (3) with Different Values of the Mul-

tiplying Factor a

a 3 t

10 1.05 104

1 1.05 105

0.1 1.05 106

while for the Metropolis, Rosenbluth, Teller algorithm
(MRT) it is given by

),max(

11

1

,1

jj

jj
ffl

a = . (15)

Notice that the MRT factor from Eq. (15) is always
greater than the B factor from Eq. (14).

This also corresponds to the relative size of the times to
reach steady state given in Table 2.

Table 2. Number of Chain Iterations Required to Reach

Steady State (3) for the B and MRT Algorithms

Under the Same Conditions as Table 1

Algorithm 3

B 4.4 103

MRT 2.3 103

In this sense the MRT algorithm can be viewed as the

maximally efficient member of the family of exact solutions
of detailed balance of this type, as has been shown by
Peskun [9]. Notice that these algorithms do not require the
normalized distribution function.

The new algorithm gives up exact solution of detailed
balance in exchange for more rapid convergence and com-
patibility with parallel processing.

For the new algorithm the columns of the transition ma-
trix are given by

iji fA
,

 , (16)

including the diagonal element, with the proportionality con-
stant chosen to provide column-by-column normalization.
This solution provides a proper Markov Chain transition
matrix, but the steady state is now only approximately given
by the desired distribution function. When the size of the
diagonal band (the size of the random walk step) is many
times larger than the size of the support region of the desired
steady-state distribution function, we would expect the ap-
proximation to be quite good.

This is illustrated by the following numerical example
shown in Fig. (1). The discrete space has 100 points and the
assumed distribution function is a Gaussian centered on i =
50 with a standard deviation of 4. Two cases are considered,
symmetrical random walks where the half width of the ran-

16 The Open Numerical Methods Journal, 2011, Volume 3 Guthrie Miller

dom walk step is 1 (l = 2) and 10 (l = 20). The transition
matrix and the 100 eigenvalues and eigenvectors for the
three algorithms are calculated numerically. The eigenvalue-
1 eigenvector gives the steady state, and this eigenvector is
compared with the desired steady state distribution function.
For the MRT and B algorithms the agreement is exact, as it
must be. For the new algorithm, when the random walk step
size is small, the actual steady state is significantly narrower
than the assumed distribution. On the other hand, when the
random walk step size is larger, the agreement is quite good.

Fig. (1). Steady state distribution functions obtained using the new

algorithm.

It is of interest to note that for l = 1, the new algorithm is

exactly the same as the B solution and is an exact solution of
the detailed balance condition, even though for l = 1 the tran-
sition matrix is not ergodic.

When investigating these algorithms numerically, one
finds that for a wide diagonal band, the rate of convergence
for the new algorithm is much better than for the other two
algorithms. This is illustrated in Fig. (2), which shows the
eigenvalue spectrum for the three algorithms in two cases,
narrow and broad random walk step.

Recall that the transient states decay like
t
, where t is

the chain iteration number and is the eigenvalue. The ini-

tial state is some mixture of the 100 eigenvectors. So, we

desire small values of the eigenvalues in order for the system

to quickly reach a steady state.

One can also visualize the effect by considering the ex-
ploration of a large parameter space where the support region
of the distribution function occupies only a small fraction.
Using our numerical example, assume the chain is at point j
= 50 and the distribution function is peaked at i = 75. The
new state after one step is given by A(i,50) and is as shown
in Fig. (3). The random-walk step size of l = 70 is such that
the random walk region includes the distribution peak.

Using the new algorithm, the distribution is very close to
the desired steady state distribution in only 1 step!

Fig. (2). Eigenvalue spectrum for the three different algorithms and

different random walk step size. For a large random walk step, the

new algorithm converges much more rapidly than the others.

In practice the transition probabilities are not used di-

rectly but represent the ensemble averages of the underlying
dynamics of the system. How do we stochastically simulate
this dynamics in such a way as to reproduce the desired tran-
sition matrix?

Assume that the system is in state j. Let us assume that
the new state i is probabilistically generated by first gener-
ating a candidate point i with probability ji

q
,

 in the diago-
nal band excluding the center point and then accepting this
new state with probability ji, . If the new state is not ac-
cepted, the system remains in state j. The ensemble average
of this process is

jijiji qA
,,,

= , (17)

for off-diagonal matrix elements. The diagonal elements are
determined by column normalization. Notice that the col-
umns of q are probability distributions over the diagonal
band of width l excluding the actual diagonal, while the col-
umns of A are probability distributions over all l + 1 ele-
ments in the diagonal band.

Markov Chain Monte Carlo Algorithms Allowing Parallel Processing The Open Numerical Methods Journal, 2011, Volume 3 17

Fig. (3). Distribution, with the chain initially at i = 50, after one step.

So far we have assumed a uniform random walk candi-

date distribution with

l

q ji

1
,
= .

The acceptance probability follows from the transition
matrix. From Eq. (15) the acceptance probability for the
MRT algorithm in this case can be written as

=

ij

j

ji

i

ji

i

ji

q

f

q

f

q

f

,,

,

,

,max

 . (18)

Notice that the acceptance probability is less than or
equal to 1, which means that column normalization of A goes
through, because the column-by-column summation of off-
diagonal terms of A will be less than 1.

Equation (18) provides a more general form of the MRT
algorithm [8].

We can now reconsider the new algorithm. Let us as-
sume a candidate distribution given, within the template of
nonzero elements in the diagonal band, by

=

jj

j

i

ji
f

f
q

,

 , (19)

where the summation is over l indices around, but excluding
j. In this case, from Eqs. (17) and (18),

=

ij

j

jj

j

i

ji

ff

f
A

,max

,

 , (20)

instead of

+
=

jj

jj

i
ji

ff

f
A

,

 , (21)

for the new algorithm. Equation (20) is approximately the
same as Eq. (21) in the limit where the diagonal band is

large, in which case both summations in Eq. (20) are ap-
proximately the same and much larger than the diagonal term
included with the summation in the denominator of Eq. (21).
The algorithm given by Eq. (20) corrects the detailed balance
deficiency of the new algorithm, but numerical studies show
that the convergence of this algorithm can be poor.

The simulation of the dynamics consists in first generat-
ing a candidate point, calculating the acceptance probability
for this candidate, and, if the candidate is accepted, moving
to the new point. If the transition probability just involves
the desired distribution function evaluated at the points j and
i, this process requires one new evaluation of the desired
distribution function at the candidate point i.

From the standpoint of parallel processing we would like to

be able to advantageously use more than one evaluation of

the desired distribution function at each chain iteration, be-

cause these calculations, which usually involve the bulk of

the computer time, could then be performed in parallel. To

do this, the l probabilities jiA
,

for all the possible new points

can be calculated in parallel (in the continuous variable case,

a new distribution function evaluation is needed for each off-

diagonal point), and the new chain position is then probabil-

istically generated from this discrete probability distribution.

This parallelization method works for any of the algorithms,

but as Appendix 1 demonstrates, is only advantageous for

the new algorithm. This is also illustrated in Table 3, which

shows the times required to reach a steady state from Eq.

(10) for the sample problem we have been considering (as-

sumed steady state distribution is a Gaussian centered at i =

50 with standard deviation 4).

Table 3. Number of Chain Iterations Required to Reach

Steady State (3) with Different Numbers of Multi-

ple Candidates (l) for the Three Algorithms

Algorithm l 3

MRT 2 106

B 193.5

MRT 20 7.1

B 9.2

New 1.8

Eq. (20) 5 109

Fig. (4) shows the distribution after 7 iterations with an ini-
tial state i =1 for the new algorithm, the MRT algorithm, and
the algorithm defined by Eq. (20). As before, l = 20 and the
assumed steady state distribution is a Gaussian centered at i
= 50 with standard deviation 4.

With the intial state concentrated at i = 1, the new algo-

rithm moves the distribution towards the steady state as

much as possible given the size of the diagonal band, while

Eq. (20) leaves it almost unchanged, even more so than for

the MRT algorithm, because in the tail of the distribution the

second summation term dominates in the denominator, and

all the off-diagonal transition probabilities are very small.

18 The Open Numerical Methods Journal, 2011, Volume 3 Guthrie Miller

Fig. (4).Distribution, with the chain initially at i = 1, after 7 steps.

4. DISCUSSION AND CONCLUSIONS

In practice, often the issue of overriding importance is

the computation time. The column (3) in Table 3 is the

number of chain iterations required to reach a steady state. If

parallel processing is used and the evaluations of f for mul-

tiple candidates are done in parallel, this number is a meas-

ure of the computation time. The last column in Table 1 is a

measure of the total number of evaluations of f required

reaching a steady state and thus the computer time.

One should note with caution that these results confuse
the effect of the number of multiple candidates with the ef-
fect of a larger random walk step size.

In Appendix 1 the continuous version of the new algo-
rithm is compared with the MRT algorithm. The striking
good performance of the new algorithm makes this an algo-
rithm of great interest.

ACKNOWLEDGEMENT

The author is grateful to James Gubernatis for helpful

discussions of this work.

APPENDIX 1—EXAMPLE OF USE OF CONTINUOUS

VARIABLE MCMC ALGORITHMS

The function f is chosen to be a 6-dimensional Gaussian
centered at some point (33.0=) for each of the 6 dimen-
sions. The standard deviation is 1 10

-6
 for each of the 6

dimensions. The object is to evaluate the first and second
moments of f in order to obtain the average and standard
deviation. This would be a very challenging problem for
other methods of numerical integration.

The algorithms use a random walk step size = 1 10
-5

however half the time candidates are chosen from the entire
space (= 1). At each iteration, only one coordinate is ran-
domly selected for movement. Two runs are made with the
chain started at 0= and 1= and with different random
number seeds.

Fig. (5) shows the history of the log of the likelihood
function (the “energy”) as a function of iteration for different
MCMC algorithms.

In Table 4 are shown the average and standard deviation
calculated using 150 samples, one every 10 iterations, after
equilibration. These are obtained by making a certain length
run with an initial fraction (“burnfrac”) ignored in the mo-
ment calculation. Only the final 1500 iterations are used for
the moment calculation. As seen from Table 4, the correct
answers are being reproduced.

For the MRT algorithm, using more candidates at each
iteration does not result in any improvement. As seen from
these results, with the new algorithm more candidates give
an improvement in performance, with 8 candidates allowing
about 5 times fewer iterations.

Fig. (5). Log of likelihood function versus iteration (with shifted

vertical scale). Iteration number can be thought of as a measure of

computation time as long as the energy calculations can be done in

parallel.

Table 4. Average and Standard Deviation of a Very Narrow

6-Dimension Gaussian Calculated Using different

MCMC Algorithms. The Quantity l is the Number

of Candidates Considered at Each Iteration

Algorithm Iterations Burnfrac Idim Average
SD

(1.e-6)

MRT(l = 1) 21500 0.93 1 0.33 0.940

 2 0.33 1.124

 3 0.33 0.929

 4 0.33 0.832

 5 0.33 1.021

 6 0.33 0.974

New(l = 8) 4100 0.634 1 0.33 0.858

 2 0.33 0.930

 3 0.33 0.936

 4 0.33 0.882

 5 0.33 1.084

 6 0.33 0.905

Markov Chain Monte Carlo Algorithms Allowing Parallel Processing The Open Numerical Methods Journal, 2011, Volume 3 19

SUPPLEMENTARY MATERIALS

Supplementary material is available on the publishers
web site along with the published article.

REFERENCES

[1] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller

E. Equation of state calculation by fast computing machines. J
Chem Phys 1953; 21 (6):1087-92.

[2] Barker AA. Monte Carlo calculations of the radial distribution
functions for proton-electron plasma. Aust J Phys 1965; 18: 119-

33.
[3] Miller G. Markov Chain Monte Carlo calculations allowing parallel

processing using a variant of the metropolis algorithm. Open Nu-
mer Meth 2010; 2: 12-7.

[4] Rubenstein BM, Gubernatis JE, Doll JD. Comparative Monte Carlo

efficiency by Monte Carlo analysis. Phys Rev E 2010; 82: 036701.
[5] Wilkinson D. Parallel Bayesian computation in Kontoghiorghes EJ,

ed. Handbook of parallel computing and statistics. Chapman and
Hall 2006; chapter 16: 477-508.

[6] Whiley M, Wilson SP. Parallel algorithms for Markov chain Monte
Carlo in latent spatial Gaussian models. Stat Comput 2004; 14 (3):

171-9.
[7] Yan J, Cowles MK, Wang S, Armstrong MP. Parallelizing MCMC

for Bayesian spatiotemporal geostatistical models. Stat Comput
2007; 17 (4): 323-35.

[8] Hastings WK. Monte Carlo sampling methods using Markov
chains and their applications. Biometrika 1970; 57 (1): 97-109.

[9] Peskun PH. Optimum Monte-Carlo sampling using Markov chains.
Biometrika 1973; 60 (3): 607-12.

Received: March 11, 2011 Revised: April 14, 2011 Accepted: April 27, 2011

© Guthrie Miller; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the

work is properly cited.

