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Abstract: A new Markov Chain Monte Carlo algorithm that allows parallel processing has been described in a previous 

paper (“Markov Chain Monte Carlo Calculations Allowing Parallel Processing Using a Variant of the Metropolis 

Algorithm”) that appeared in this journal in 2010. In this second follow-on paper, the problem of calculating the 

normalization integral of the distribution function is considered. In the usual Markov Chain Monte Carlo calculations this 

normalization integral is not necessary; however, this integral is needed for Bayesian hypothesis testing and is a key 

quantity (the partition function) in statistical physics. Three different methods of calculating this integral are considered: 

an importance-sampling method, a reference-hypothesis method, and a direct method of integration over the random-walk 

region. This latter method is shown to provide the normalization integral in situations where the other methods fail. 

Keywords: Metropolis algorithm, parallel processing, Markov Chain Monte Carlo (MCMC), Bayesian hypothesis testing, 

statistical mechanics, partition function. 

1. INTRODUCTION 

 This is the third paper is a series that considers Markov 

Chain Monte Carlo (MCMC) algorithms suitable for parallel 

processing. The reader should refer to the preceding papers 

[1, 2] for general background and literature references. 

 Markov Chain Monte Carlo is a numerical technique that 

allows the evaluation of expectation value integrals of the 

form 

E[g( )] =
d f ( )g( )

d f ( )
. (1) 

where f is a positive function,  is a multidimensional 

parameter, and g( ) is an arbitrary function of . Markov 

Chain Monte Carlo does not naturally provide the value of 

the “normalization integral” denominator in Eq. (1); 

however, this denominator is very important for Bayesian 

hypothesis testing and as the partition function in Statistical 

Physics. 

 A review (as of 1996) of Bayesian hypothesis testing is 

given in Chapter 10 of ref. [3]. Importance sampling is the 

basic approach considered, where 

d f ( ) = d g( )
f ( )

g( )

1

T

f ( t )

g( t )t

 

with g some probability function (positive and normalized) 

from which samples t can be drawn. The method with g the 

function f itself is the first existing method considered in this 

paper. In the conclusion of Chapter 10 the author (Adrian 
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Raftery) states “Research on this topic is at an early stage 

and much remains to be done.” A more recent textbook [6] 

does not add anything new on this subject. 

 In the present paper, three methods for determining the 

normalization integral are considered. The first is the 

importance sampling method mentioned above. The second 

is a reference-hypothesis method used in ref. [7]. The third is 

a direct method of integration over the random-walk region. 

 These methods make use of the MCMC algorithms 

discussed in the previous papers [1, 2]: the MRT algorithm 

originating in the 1953 paper [4] by Nicolas Metropolis, 

Adriana Rosenbluth, Marshall Rosenbluth, Agusta Teller, 

and Edward Teller, the B algorithm proposed by Barker [5] 

in 1965, and the new algorithm introduced in Refs. 1. and 2. 

Instead of a single candidate for the next position of the 

chain, multiple candidates are being considered. The MRT or 

B algorithms do not improve by having multiple candidates. 

The new algorithm is noteworthy because it benefits greatly 

from having multiple candidates and is therefore suitable for 

parallel processing, taking good advantage of the 

multiprocessor computing environments that will be more 

and more prevalent in the future. 

2. STATEMENT OF THE PROBLEM AND 
SOLUTIONS CONSIDERED 

 We are considering the multidimensional integral of a 

positive function f ( ) . All dimensions of  have domain 0 

to 1. The integral I 

I = d f ( )
0

1

 

can be thought of as the normalization integral that converts f 

into a probability distribution. 

 The first solution considered is to write 
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I =
d f ( )

d f ( ) / f ( )
=

1

E(1 / f )
, (2) 

where the expectation value denoted by E is calculated using 

MCMC. 

 The second solution considered is to add another variable 

that determines the hypothesis: the normal one or a reference 

hypothesis. With probability PH1 (the probability of being in 

the normal hypothesis in the assumed steady state 

distribution, taken to have the value 1/2) the hypothesis is 

assumed to be the normal hypothesis, and with probability 

PH0 it is the reference hypothesis, where f ( )  has a constant 

reference value f0. Then, using normal MCMC, one 

calculates the fraction of the time the chain is in the 

reference hypothesis rather than the normal hypothesis, and 

I = f0
PH 0
PH1

E(Ihyp )

1 E(Ihyp )
, (3) 

where the function Ihyp ( ) takes the value 1 when the chain is 

in the normal hypothesis and 0 when the chain is in the 

reference hypothesis. 

 The third solution considered is to continue the chain 

some number of iterations after equilibration with all 

parameters simultaneously varied. There are l candidates for 

the next position of the chain i  for i = 1… l that are 

generated from a multidimensional random walk distribution 

with interval size j , where j runs over all the n dimensions 

of . Because the point i = 0 (the current chain position) is 

always at or near a point of high f values and not randomly 

distributed in the entire random walk interval like the other 

points, it is left out, and the solution for the normalization 

integral is given by 

I j
j=1

n 1

l
f ( i )

i=1

l

, (4) 

averaged over all chain iterations in the continuation run. 

This method can be applied with any of the algorithms, even 

for l = 1 (a single candidate) because of the averaging over a 

large number of chain iterations, but it requires that the 

random-walk step size be large compared with the size of the 

support region of the distribution function f. 

3. ANALYSIS OF THE REFERENCE HYPOTHESIS 
SOLUTION FOR FINITE, INTEGER-VALUED 

MARKOV CHAINS 

 To understand more clearly the use of a reference 

hypothesis, let us first consider an integer-valued Markov 

Chain, as was done in ref. [2]. The basic ideas and formalism 

are given in ref. [2]. The eigenvalues and eigenvectors of the 

transition matrix are calculated. The time to reach steady 

state is obtained from the magnitude of the second largest 

eigenvalue. This is because the initial state can be 

represented as a linear combination of eigenvectors, and each 

eigenvector has time dependence 
t
, where  is the 

eigenvalue and the t is the chain iteration number. The 

largest eigenvalue is always 1, and this eigenvalue-1 

eigenvector gives the steady state. The second largest 

eigenvalue is the longest persisting of all the others. It has 

time dependence exp(-t/ ), where  = - 1/ln( ). 

 The first approach to the task of including a reference 

hypothesis is to expand the parameter space from i = 1,…n 

to i = 0,…n, where f0 is the probability of being in the 

reference hypothesis. It is convenient to order the indices i = 

1,…n, 0 with 0 last. We define a new transition matrix given 

in block form by 

A =

Ai, j Ai,0

A0, j
, (5) 

where Ai, j  is the transition matrix for the normal hypothesis 

as discussed in ref. [1], however with the constant a = 1/2. 

which is the proposal probability of remaining in the same 

hypothesis, rather than switching. For the B algorithm, the n-

dimensional column matrix Ai,0  is given by 

Ai,0 =
1

2n

fi
f0 + fi

, 

the n-dimensional row matrix A0, j  is given by 

A0, j =
1

2n

f0
f0 + f j

, 

and  denotes the scalar needed for normalization of the last 

column, given by 1 minus the sum of the off-diagonal terms. 

Similar formulas apply for the MRT algorithm. The diagonal 

elements of the old transition matrix Ai, j  are replaced by the 

new values taking into account the changed multiplying 

factor a = 1/2. 

 For the new algorithm, this time including i = 0, 

Ai, j fi  

with column by column normalization, 

Ai, j =
fi

fi
i =0

n , 

for all the nonzero elements of the transition array. 

 In Fig. (1) below is shown the eigenvalue-1 eigenvector 

with f0 = 0.1 , using the new algorithm. The full width of the 

random walk for the normal hypothesis (l = 20) is 5 times the 

standard deviation of assumed steady state distribution (  = 

4). 

 The other two algorithms gave identical agreement 

between the eigenvalue-1 eigenvector and the assumed 

steady state as they must. 

 In Table 1 are shown the times to reach a steady state, 

calculated from the second largest eigenvalue (the largest is 

always 1) for various widths of the assumed steady state 

distribution. The ratio of l to  is kept constant at 5. 
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Fig. (1). Eigenvalue-1 eigenvector, using the new algorithm. 

Table 1. Time to Reach Steady State (3 ) for the Three 

MCMC Algorithms for Different Width Steady 

State Distribution Functions, with (nhyp = 2) and 

without (nhyp = 1) a Reference Hypothesis 

 

Algorithm  l nhyp 3  

MRT 2 10 1 6.4 

   2 11.1 

 4 20 1 7.1 

   2 13.6 

 8 40 1 7.4 

   2 22.5 

     

B 2 10 1 8.4 

   2 16 

 4 20 1 9.2 

   2 17.8 

 8 40 1 9.7 

   2 29.8 

     

new 2 10 1 1.6 

   2 1.5 

 4 20 1 1.8 

   2 1.6 

 8 40 1 1.8 

   2 1.7 

 

 In this first approach to the construction of a transition 

matrix with a reference hypothesis, from the reference 

hypothesis, transitions occur to the entire space of the normal 

hypothesis. In the continuous multidimensional parameter 

case, this needs to happen even with grouping of parameters. 

An alternative is to have transitions from the reference 

hypothesis occur to some small random walk interval around 

a current point. This means that even in the reference 

hypothesis we need to remember a current point. 

 To do this we need to expand the parameter space from  

i = 1,…n to i = 1,…2n, where the points i = n + 1,…2n are in 

the reference hypothesis but record the position of the 

normal hypothesis. The transition matrix is given in block 

form by 

A =

Ai, j Ai,0

A0, j A0,0
. (6) 

 All the blocks are now n  n square matrices with the 

same template of nonzero elements, namely that of the 

original transition matrix Ai, j  for the normal hypothesis, 

although other, simpler templates are possible (for example a 

diagonal for the off-diagonal blocks, where the parameters 

do not change when switching hypotheses). For the B 

algorithm, the n  n square matrix Ai,0  is given by 

Ai,0 =
1

2l

fi
f0 + fi

, 

where the nonzero elements exist in a diagonal band of size  

l just like in the original transition matrix Ai, j . The n  n 

square matrix matrix A0, j  is given by 

A0, j =
1

2l

f0
f0 + f j

, 

where the nonzero elements are in a transposed position 

relative to Ai,0 . 

 The n  n square matrix matrix A0,0  is given by 

A0,0 =
1

2l

f0
f0 + f0

, 

where, again, the nonzero elements exist in a diagonal band 

of size l just like in the original transition matrix Ai, j . 

 Another way of thinking of this structure is that we have 

increased the parameter space to be the product of the 

original space times the space of another integer variable, 

taking only two values, which determine the hypothesis. The 

expanded parameter space is ordered so that the parameters 

of the normal hypothesis come first followed by the 

parameters of the reference hypothesis. The distribution 

function in the reference hypothesis is a constant f0 .  

 Fig. (2) shows the eigenvector with eigenvalue 1, with 

the same conditions as for Fig. (1) except that the probability 

of the reference hypothesis f0  is 0.5 rather than 0.1 (to 

improve the appearance of the plots). 
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Fig. (2). Eigenvector with eigenvalue 1, using the B and MRT 
algorithms (results indistinguishable). 

 The new algorithm does not work well in this situation 

because the desired steady state distribution function does 

not have a limited size support region. For the reference 

hypothesis it occupies the entire space. Fig. (3) shows the 

eigenvector with eigenvalue 1 using the new algorithm. 

 

Fig. (3). Eigenvector with eigenvalue 1, using the new algorithm. 

 For narrow steady state distribution functions, the MRT 

and B algorithms require many more iterations to reach a 

steady state with a reference hypothesis than without one. 

This is illustrated in Table 2. 

 To understand the long times to reach steady state, for 

example 933 in the second line of Table 1, we look at the 

distribution function after 100 iterations when the 

distribution is initially concentrated at i = 1 and when the 

distribution is initially concentrated at i = 50. These are 

shown in Fig. (4). 

 Even though after 100 iterations the normal hypothesis 

has reached the desired steady state distribution in both the 

upper and lower plots, the fraction of the time the chain is in 

the normal hypothesis is low relative to the desired steady 

state distribution in the upper plot and high in the lower plot. 

It takes a long time for the chain to diffusively explore the 

entire space while in the reference hypothesis. This long time 

is necessary for the distribution in the reference hypothesis 

to flatten out. 

Table 2. Time to Reach Steady State (3 ) for the MRT and B 

MCMC Algorithms for Different Width Steady 

State Distribution Functions, with (nhyp = 2) and 

without (nhyp = 1) a Reference Hypothesis.  Narrow 

Distribution Functions Require a Long Time to 

Reach Steady State 

 

Algorithm s l nhyp 3t 

MRT 2 10 1 6.9 

   2 933 

 4 20 1 7.5 

   2 221 

 8 40 1 7.9 

   2 44 

     

B 2 10 1 8.9 

   2 1806 

 4 20 1 9.8 

   2 413 

 8 40 1 10.3 

   2 78 

 

 

 

Fig. (4). Distribution function after 100 iterations with the chain 

initially at i = 1 (above) and i = 50 (below), calculated using the 
MRT algorithm. 
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4. TESTS OF THE METHODS FOR CONTINUOUS 
VARIABLES 

 For the test problem f is given by a Gaussian in  

n dimensions with the same central point = 0.33 and the 

same standard deviation  in all dimensions. There are two 

versions of the reference hypothesis method, corresponding 

to the first and second examples in Section 3, which will be 

denoted as method 2-A and 2-B. We will use both versions. 

Somewhat surprisingly, given the results of Section 3, the 

two versions behave similarly. Some improvement is 

obtained using the new algorithm and method 2-A. The new 

algorithm is not applicable for method 2-B as has been 

discussed. The distribution function in the reference 

hypothesis is chosen so that the chain would be expected to 

spend equal time in the two hypotheses. If grouping of 

parameters is used (only 1 group moved at each iteration), a 

group consists of a single parameter; however, the 

hypothesis is probabilistically switched for every chain 

iteration. The first 10% (burnfrac) of the run is discarded. 

 To demonstrate the first and second methods of 

calculating the normalization integral given by Eq. (2), the 

dimensionality is chosen to be 1 and  is chosen to be 0.2. 

The MRT algorithm is used with one candidate. The random 

walk step size is 0.5. This is an unchallenging MCMC 

problem, and for a normal run equilibration occurs by about 

10 iterations of the chain. However to calculate the 

normalization integral, 50000 iterations are used and the 

results shown in Table 3 are obtained. To demonstrate 

convergence, two MCMC runs, denoted by MCMC1 and 

MCMC2 are done. The first starts with all   variables equal 

to 0 and the second with all   variables initially equal to 1 

and with a different random number seed. The correct 

answer is given by 

I = 2 = 0.501 . 

Table 3. Calculation of the Normalization Integral for f 

Given by a One-Dimensional Gaussian with 

Standard Deviation 0.2, an Unchallenging MCMC 

Problem. The Correct Answer is I = 0.501. The MRT 

Algorithm is Used with 50000 Iterations 

 

Normalization Integral l 
Method 

MCMC1 MCMC2 

1 0.524 0.426 

2-A 0.435 0.486 

2-B 0.427 0.529 

 

 To demonstrate the second method, a six-dimensional 

Gaussian is used with  = 0.01. This would be a challenging 

integration problem using other methods of numerical 

integration. The MRT algorithm is used with a single 

candidate. The random walk step size  is 0.10. For a normal 

run, equilibration occurs by about 400 iterations of the chain. 

However to calculate the normalization integral, many more 

iterations are used and the results shown in Table 4 are 

obtained. The correct answer is given by 

I = 2( )
6
= 2.48 10 10

. 

Table 4. Calculation of the Normalization Integral for f 

Given by a Six-Dimensional Gaussian with Standard 

Deviation 0.01. The Correct Answer is I = 2.48  10
-10

 

 

Normalization Integral l 
Method Algorithm Grouping #Iterations 

MCMC1 MCMC2 

1 MRT yes 5  108 3.26  10-3 1.16  10-4 

2-A MRT no 5  108 3.41  10-10 2.71  10-10 

2-A new (l = 8)  no 1  108 3.30  10-10 2.69  10-10 

2-B MRT yes 5  108 2.32  10-10 1.76  10-10 

 

 As can be seen, the first method fails badly. Upon 

reflection, it is obvious that the expectation of 1/f with 

respect to f, cannot converge well unless f is significantly 

greater than 0 at all points, which is not usually the case. In 

fact, we are most interested in distributions whose region of 

support occupies only a minute fraction of the entire space. 

 The second, reference-hypothesis, method is marginally 

acceptable in this case. The chain initially remains in one 

hypothesis or the other for a long time, seeming to be stuck 

there forever. However, the chain finally begins moving 

slowly moves back and forth between the two hypotheses, 

while the distribution in the normal hypothesis remains the 

same. 

 To demonstrate the third method, a six-dimensional 

Gaussian is used with very small  equal to 1  10
-6

. This 

would be a very challenging integration problem using other 

methods of numerical integration. The new algorithm is used 

with 8 candidates per iteration and the MRT algorithm with 

1 candidate per iteration. In the initial run, with probability 

1/2 the random walk step size  is 1  10
-5

,
 
and with 

probability 1/2 candidates are chosen from the entire space 

(  = 1). To calculate the normalization integral, after the 

initial run achieves equilibration the chain is continued for 

an equal number of iterations with only a small-step-size 

random walk and without coordinate grouping (all 

coordinates varied at each iteration). Only the final 

continuation-run iterations are used to calculate the 

normalization integral using Eq. (4). The correct answer is 

given by 

I = 2( )
6
= 2.48 10 34

. 

 Fig. (5) shows the value of the normalization integral 

obtained from Eq. (4) as the random walk interval  is varied 

from 5 to 10 times the standard deviation of the Gaussian. 

 As we would expect, the direct integration method gives 

a good result as long as the random walk step size is many 

times larger then the support region of f. As the random walk 

step size is increased, the acceptance fraction during the 
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continuation run becomes smaller, increasing the 

autocorrelation of the chain, and causing the observed erratic 

variation of the result. 
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Fig. (5). Normalization integral calculated using direct integration 

over the random-walk region with the new algorithm and the MRT 
algorithm, as a function of the random walk step size. 

5. DISCUSSION AND CONCLUSIONS 

 The normalization integral of the distribution function is 

not required in normal MCMC and its value is not naturally 

calculated. However, this quantity is sometimes important in 

practice, for example in Bayesian hypothesis testing. We 

have discussed three different methods of calculating the 

normalization integral. However, for the situation we are 

most interested in, where the support region of the 

distribution function occupies only a minute fraction of the 

entire space, only one of these methods works. With this 

method, the value of the normalization integral can be 

obtained by doubling the length of the normal MCMC run. 

Additional runs varying the size of the random walk step 

would be necessary to guarantee that the step sizes are 

sufficiently large. The new method can take advantage of 

parallel processing, and a very significant reduction of 

computer run time is possible. 

REFERENCES 

[1] Miller G. Markov chain monte carlo calculations allowing parallel 

processing using a variant of the metropolis algorithm. Open 
Numer Methods J 2010; 2: 12-7. 

[2] Miller G. Markov chain monte carlo calculations allowing parallel 
processing—II. Open Numer Methods J 2011; x: xx-xx. 

[3] Gilks WR, Richardson S, Spiegelhalter DJ. Markov chain monte 
carlo in practice. USA: Chapman and Hall 1996. 

[4] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller 
E. Equation of state calculation by fast computing machines. J 

Chem Phys 1953; 21(6): 1087-92. 
[5] Barker AA. Monte carlo calculations of the radial distribution 

functions for a proton-electron plasma. Aust J Phys 1965; 18: 119-
33. 

[6] Marin J-M, Robert CP. Bayesian core--a practical approach to 
computational bayesian statistics. USA: Springer 2007. 

[7] Miller G, Martz H, Little T, Bertelli L. Bayesian hypothesis testing-
-use in interpretation of measurements. Health Phys 2008; 94(3): 

248-54. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

Received: April 14, 2011 Revised: June 27, 2011 Accepted: August 10, 2011 

 

© Guthrie Miller; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/ 

3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 


